Large for Gestational Age and Risk for Academic Delays and Learning Disabilities: Assessing Modification by Maternal Obesity and Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Measures
2.3. Statistical Analysis
2.4. Ethical Statement
3. Results
Characteristic | Total 108,348 | LGA n = 8634 (8.0%) | AGA n = 99,714 (92.0%) | p-Value | |||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Maternal race/ethnicity | <0.001 | ||||||
Non-Hispanic black | 33,931 | 31.3 | 2474 | 28.7 | 31,457 | 31.6 | |
Non-Hispanic white | 20,189 | 18.6 | 1959 | 22.7 | 18,230 | 18.3 | |
Hispanic | 41,344 | 38.2 | 3469 | 40.2 | 37,875 | 38.0 | |
Asian | 12,422 | 11.5 | 704 | 8.2 | 11,718 | 11.8 | |
Other | 462 | 0.4 | 28 | 0.3 | 434 | 0.4 | |
Maternal age | <0.001 | ||||||
18 < 20 | 8461 | 7.8 | 406 | 4.7 | 8055 | 8.1 | |
20 < 35 | 82,230 | 75.9 | 6435 | 74.5 | 75,795 | 76.0 | |
35+ | 17,657 | 16.3 | 1793 | 20.8 | 15,864 | 15.9 | |
Maternal education | 0.01 | ||||||
<high school graduate | 30,627 | 28.3 | 2339 | 27.1 | 28,288 | 28.4 | |
Maternal nativity | 0.03 | ||||||
Foreign born | 55,403 | 51.1 | 4513 | 52.3 | 50,890 | 51.0 | |
Marital status | <0.001 | ||||||
Not married | 58,462 | 54.0 | 4320 | 50.0 | 54,142 | 54.3 | |
Insurance payer: Medicaid | <0.001 | ||||||
Yes | 64,691 | 59.7 | 4836 | 56.0 | 59,855 | 60.0 | |
Parity | <0.001 | ||||||
Nulliparous | 42,538 | 39.3 | 2601 | 30.1 | 39,937 | 40.1 | |
Tobacco use b | <0.001 | ||||||
Yes | 5433 | 5.0 | 276 | 3.2 | 5157 | 5.2 | |
Alcohol use b | 0.12 | ||||||
Yes | 407 | 0.4 | 24 | 0.3 | 383 | 0.4 | |
Drug use b | <0.001 | ||||||
Yes | 1043 | 1.0 | 37 | 0.4 | 1006 | 1.0 | |
Infant Sex | 0.22 | ||||||
Male | 53,668 | 49.5 | 4222 | 48.9 | 49,446 | 49.6 | |
Gestational weight gain | <0.001 | ||||||
Excessive | 22,509 | 20.8 | 3101 | 35.9 | 19,408 | 19.5 | |
Obesity (≥200 lb) | <0.001 | ||||||
Yes | 8214 | 7.6 | 1315 | 15.2 | 6899 | 6.9 | |
Pregestational diabetes | <0.001 | ||||||
Yes | 358 | 0.3 | 71 | 0.8 | 287 | 0.3 | |
Gestational diabetes | <0.001 | ||||||
Yes | 4598 | 4.2 | 754 | 8.7 | 3844 | 3.9 |
3.1. Assessing Effect Modification by Maternal Obesity or Diabetes
3.1.1. Obesity
3.1.2. Pregestational Diabetes
3.1.3. Gestational Diabetes
3.2. Children of Women with Gestational Diabetes: Characterizing Children Born LGA
4. Discussion
4.1. Strengths and Limitations
4.2. Future Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Athukorala, C.; Rumbold, A.R.; Willson, K.J.; Crowther, C.A. The risk of adverse pregnancy outcomes in women who are overweight or obese. BMC Pregnancy Childbirth 2010, 10, 56. [Google Scholar] [CrossRef] [Green Version]
- Meur, S.; Mann, N.P. Infant outcomes following diabetic pregnancies. Paediatr. Child Health 2007, 17, 217–222. [Google Scholar] [CrossRef]
- Schwartz, R.; Teramo, K.A. Effects of diabetic pregnancy on the fetus and newborn. Semin. Perinatol. 2000, 24, 120–135. [Google Scholar] [CrossRef] [PubMed]
- Scott-Pillai, R.; Spence, D.; Cardwell, C.; Hunter, A.; Holmes, V.A.; Cardwell, C.R. The impact of body mass index on maternal and neonatal outcomes: A retrospective study in a UK obstetric population, 20042–011. BJOG Int. J. Obstet. Gynaecol. 2013, 120, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Weindling, A.M. Offspring of diabetic pregnancy: Short-term outcomes. Semin. Fetal Neonatal Med. 2009, 14, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Weintrob, N.; Karp, M.; Hod, M. Short- and long-range complications in offspring of diabetic mothers. J. Diabetes Its Complicat. 1996, 10, 294–301. [Google Scholar] [CrossRef]
- Liu, L.; Ma, Y.-N.; Wang, N.; Lin, W.; Liu, Y.; Wen, D. Maternal body mass index and risk of neonatal adverse outcomes in China: A systematic review and meta-analysis. BMC Pregnancy Childbirth 2019, 19, 105. [Google Scholar] [CrossRef]
- Boney, C.M. Metabolic Syndrome in Childhood: Association With Birth Weight, Maternal Obesity, and Gestational Diabetes Mellitus. Pediatrics 2005, 115, e290–e296. [Google Scholar] [CrossRef] [Green Version]
- Paulson, J.F.; Mehta, S.H.; Sokol, R.J.; Chauhan, S.P. Large for gestational age and long-term cognitive function. Am. J. Obstet. Gynecol. 2014, 210, 343.e1–343.e4. [Google Scholar] [CrossRef]
- Khambalia, A.Z.; Algert, C.; Bowen, J.R.; Collie, R.J.; Roberts, C. Long-term outcomes for large for gestational age infants born at term. J. Paediatr. Child Health 2017, 53, 876–881. [Google Scholar] [CrossRef]
- Henriksen, T. The macrosomic fetus: A challenge in current obstetrics. Acta Obstet. Gynecol. Scand. 2008, 87, 134–145. [Google Scholar] [CrossRef]
- Oken, E.; Kleinman, K.; Rich-Edwards, J.; Gillman, M.W. A nearly continuous measure of birth weight for gestational age using a United States national reference. BMC Pediatr. 2003, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Biggio, J.R.; Chapman, V.; Neely, C.; Cliver, S.P.; Rouse, D.J. Fetal anomalies in obese women: The contribution of diabetes. Obstet. Gynecol. 2010, 115, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Dodds, L.; Fell, D.B.; Shea, S.; Armson, B.A.; Allen, A.C.; Bryson, S. The Role of Prenatal, Obstetric and Neonatal Factors in the Development of Autism. J. Autism Dev. Disord. 2010, 41, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Defining Overweight and Obesity: Adult Body Mass Index. Available online: https://www.cdc.gov/obesity/adult/defining.html. (accessed on 21 December 2019).
- Fryar, C.D.; Gu, Q.; Ogden, C.L. Anthropometric Reference Data for Children and Adults. USA, 2007–2010. Available online: https://www.cdc.gov/nchs/products/series/series11.htm (accessed on 21 December 2019).
- Mayers, C.M. Public Law 107–110: No Child Left Behind Act of 2001: Support or Threat to Education as a Fundamental Right? Education 2006, 126, 449–461. [Google Scholar]
- New York State Education Department. New York State Testing Program 2017: Technical Report; New York State Education Department: New York, NY, USA, 2017; 340p. [Google Scholar]
- Kotelchuck, M. An evaluation of the Kessner Adequacy of Prenatal Care Index and a proposed Adequacy of Prenatal Care Utilization Index. Am. J. Public Health 1994, 84, 1414–1420. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1615177/ (accessed on 23 June 2020). [CrossRef] [Green Version]
- Van Ness, P.H.; Allore, H.G. Paper 1953–1: Using the SAS system to investigate effect modification. Presented at the Thirty-First Annual SAS Users Group International Conference, San Francisco, CA, USA, 26–29 March 2006. [Google Scholar]
- Spiegelman, D. Easy SAS Calculations for Risk or Prevalence Ratios and Differences. Am. J. Epidemiol. 2005, 162, 199–200. [Google Scholar] [CrossRef] [Green Version]
- Zou, G. A modified poisson regression approach to prospective studies with binary data. Am. J. Epidemiol. 2004, 159, 702–706. [Google Scholar] [CrossRef]
- National Research Council. Weight Gain during Pregnancy: Re-Examining the Guidelines; The National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- Pedersen, J. Weight and length at birth of infants of diabetic mothers. Eur. J. Endocrinol. 1955, 18, 553–554. [Google Scholar] [CrossRef]
- Nold, J.L.; Georgieff, M.K. Infants of diabetic mothers. Pediatr. Clin. N. Am. 2004, 51, 619–637. [Google Scholar] [CrossRef]
- Fraser, A.; Lawlor, D. Long-term health outcomes in offspring born to women with diabetes in pregnancy. Curr. Diabetes Rep. 2014, 14, 489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowther, C.A.; Hiller, J.; Moss, J.R.; McPhee, A.J.; Jeffries, W.S.; Robinson, J.S. Effect of Treatment of Gestational Diabetes Mellitus on Pregnancy Outcomes. N. Engl. J. Med. 2005, 352, 2477–2486. [Google Scholar] [CrossRef] [Green Version]
- Landon, M.B.; Spong, C.Y.; Thom, E.; Carpenter, M.W.; Ramin, S.M.; Casey, B.; Wapner, R.J.; Varner, M.W.; Rouse, D.J.; Thorp, J.M.; et al. A Multicenter, Randomized Trial of Treatment for Mild Gestational Diabetes. N. Engl. J. Med. 2009, 361, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Ogonowski, J.; Miazgowski, T.; Czeszyńska, M.B.; Jaskot, B.; Kuczyńska, M.; Celewicz, Z. Factors influencing risk of macrosomia in women with gestational diabetes mellitus undergoing intensive diabetic care. Diabetes Res. Clin. Pract. 2008, 80, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Platt, R.W.; Kramer, M.S. Variation in Child Cognitive Ability by Week of Gestation Among Healthy Term Births. Am. J. Epidemiol. 2010, 171, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Mackay, D.; Smith, G.; Dobbie, R.; Pell, J.; Cooper, S.-A.; Smith, G. Obstetric factors and different causes of special educational need: Retrospective cohort study of 407 503 schoolchildren. BJOG Int. J. Obstet. Gynaecol. 2012, 120, 297–308. [Google Scholar] [CrossRef]
- Der, G.; Batty, G.D.; Deary, I.J. Effect of breast feeding on intelligence in children: Prospective study, sibling pairs analysis, and meta-analysis. BMJ 2006, 333, 945. [Google Scholar] [CrossRef] [Green Version]
- Kantomaa, M.T.; Stamatakis, E.; Kankaanpää, A.; Kaakinen, M.; Rodriguez, A.; Taanila, A.; Ahonen, T.; Jarvelin, M.-R.; Tammelin, T. Physical activity and obesity mediate the association between childhood motor function and adolescents’ academic achievement. Proc. Natl. Acad. Sci. USA 2012, 110, 1917–1922. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Lee, S.-H.; Kim, S.-S.; Yoo, J.-H.; Kim, C.-J. The influence of maternal treadmill running during pregnancy on short-term memory and hippocampal cell survival in rat pups. Int. J. Dev. Neurosci. 2007, 25, 243–249. [Google Scholar] [CrossRef]
- Robinson, A.M.; Bucci, D.J. Physical exercise during pregnancy improves object recognition memory in adult offspring. Neuroscience 2013, 256, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Lundgren, M.; Tuvemo, T. Effects of being born small for gestational age on long-term intellectual performance. Best Pract. Res. Clin. Endocrinol. Metab. 2008, 22, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Debiec, K.E.; Paul, K.J.; Mitchell, C.; Hitti, J.E. Inadequate prenatal care and risk of preterm delivery among adolescents: A retrospective study over 10 years. Am. J. Obstet. Gynecol. 2010, 203, 122.e1–122.e6. [Google Scholar] [CrossRef] [PubMed]
- Hale, N.L.; Glover, S.; Probst, J.C.; Liu, J.; Bennett, K.J.; Martin, A. Variation in Excessive Fetal Growth across Levels of Prenatal Care among Women with Gestational Diabetes. J. Prim. Care Community Health 2011, 2, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Ziauddeen, N.; Wilding, S.; Roderick, P.J.; Macklon, N.S.; Alwan, N.A. Is maternal weight gain between pregnancies associated with risk of large-for-gestational age birth? Analysis of a UK population-based cohort. BMJ Open 2019, 9, e026220. [Google Scholar] [CrossRef]
- Feig, D.; Hwee, J.; Shah, B.R.; Booth, G.L.; Bierman, A.S.; Lipscombe, L.L. Trends in Incidence of Diabetes in Pregnancy and Serious Perinatal Outcomes: A Large, Population-Based Study in Ontario, Canada, 1996–2010. Diabetes Care 2014, 37, 1590–1596. [Google Scholar] [CrossRef] [Green Version]
- Fong, A.; Serra, A.; Herrero, T.; Pan, D.; Ogunyemi, D. Pre-gestational versus gestational diabetes: A population based study on clinical and demographic differences. J. Diabetes Its Complicat. 2014, 28, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Farabi, S.S.; Rn, T.L.H. Low-Carbohydrate Diets for Gestational Diabetes. Nutrients 2019, 11, 1737. [Google Scholar] [CrossRef] [Green Version]
- Hanson, M.; Barker, M.; Dodd, J.M.; Kumanyika, S.; Norris, S.A.; Steegers, E.; Stephenson, J.; Thangaratinam, S.; Yang, H. Interventions to prevent maternal obesity before conception, during pregnancy, and post partum. Lancet Diabetes Endocrinol. 2017, 5, 65–76. [Google Scholar] [CrossRef]
- Ferrara, A. Increasing Prevalence of Gestational Diabetes Mellitus: A public health perspective. Diabetes Care 2007, 30 (Suppl. 2), S141–S146. [Google Scholar] [CrossRef] [Green Version]
Outcome | Category | Unadjusted RR | Fully Adjusted RR a |
---|---|---|---|
Did not meet proficiency on mathematics b | AGA LGA | Reference 0.95 (0.92–0.99) | Reference 0.96 (0.92–0.99) |
Did not meet proficiency on English language arts b | AGA LGA | Reference 0.97 (0.94–0.99) | Reference 0.97 (0.95–0.99) |
Referred for special education | AGA LGA | Reference 1.01 (0.97–1.06) | Reference 0.98 (0.94–1.03) |
Category | Unadjusted | Fully Adjusted | ||||
---|---|---|---|---|---|---|
Infants of Mothers without Gestational Diabetes | Infants of Mothers with Gestational Diabetes | Infants of Mothers without Gestational Diabetes | Infants of Mothers with Gestational Diabetes 1 | |||
Did not meet proficiency on Mathematics | ||||||
AGA | Reference | Reference | Reference | Reference | ||
LGA | 0.92 (0.88–0.96) | 1.28 (1.14–1.45) | ⱡ * | 0.94 (0.90–0.97) | 1.18 (1.07–1.31) | ⱡ * |
Did not meet proficiency on English Language Arts | ||||||
AGA | Reference | Reference | Reference | Reference | ||
LGA | 0.95 (0.92–0.98) | 1.13 (1.03–1.23) | ⱡ * | 0.96 (0.94–0.99) | 1.05 (0.97–1.13) | ⱡ |
Recommended for Special Education | ||||||
AGA | Reference | Reference | Reference | Reference | ||
LGA | 0.99 (0.94–1.04) | 1.26 (1.08–1.47) | ⱡ | 0.96 (0.92–1.01) | 1.18 (1.02–1.37) | ⱡ |
Characteristic | Total | LGA n = 667 (16.2%) | AGA n = 3446 (83.8%) | p-Value | |||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Maternal race/ethnicity | <0.001 | ||||||
Non-Hispanic black | 1239 | 30.1 | 213 | 31.9 | 1026 | 29.8 | |
Non-Hispanic white | 601 | 14.6 | 106 | 15.9 | 495 | 14.4 | |
Hispanic | 1553 | 37.8 | 278 | 41.7 | 1275 | 37.0 | |
Asian | 682 | 16.6 | 67 | 10.0 | 615 | 17.9 | |
Other | 38 | 0.9 | 3 | 0.5 | 35 | 1.0 | |
Maternal age | 0.84 | ||||||
18 < 20 | 72 | 1.8 | 10 | 1.5 | 62 | 1.8 | |
20 < 35 | 2794 | 67.9 | 457 | 68.5 | 2337 | 67.8 | |
35+ | 1247 | 30.3 | 200 | 30.0 | 1047 | 30.4 | |
Maternal education | 0.10 | ||||||
< HS graduate | 1156 | 28.1 | 205 | 30.7 | 951 | 27.6 | |
Maternal nativity | 0.28 | ||||||
Foreign born | 2458 | 59.8 | 386 | 57.9 | 2072 | 60.1 | |
Marital status | 0.04 | ||||||
Not married | 1994 | 48.5 | 348 | 52.2 | 1646 | 47.8 | |
Insurance payer: Medicaid | 0.99 | ||||||
Yes | 2503 | 60.9 | 406 | 60.9 | 2097 | 60.9 | |
Parity | <0.001 | ||||||
Nulliparous | 1285 | 31.2 | 148 | 22.2 | 1137 | 33.0 | |
Tobacco use during pregnancy | 0.38 | ||||||
Yes | 174 | 4.2 | 24 | 3.6 | 150 | 4.4 | |
Alcohol use during pregnancy | - | ||||||
Yes | 8 | 0.2 | 2 | 0.3 | 6 | 0.17 | |
Drug use during pregnancy | - | ||||||
Yes | 13 | 0.3 | 1 | 0.4 | 12 | 0.4 | |
Infant sex | 0.13 | ||||||
Male | 2065 | 50.2 | 317 | 47.5 | 1748 | 50.7 | |
Gestational weight gain | <0.001 | ||||||
Excessive | 846 | 20.6 | 221 | 33.1 | 625 | 18.1 | |
Obesity (≥200 lb) | <0.001 | ||||||
Yes | 667 | 16.2 | 161 | 24.1 | 506 | 14.7 | |
Prior sibling born 4000+ g | <0.001 | ||||||
Yes | 49 | 1.2 | 21 | 3.2 | 28 | 0.8 | |
Maternal and neonatal conditions/events | |||||||
Maternal chronic hypertension | 0.84 | ||||||
Yes | 122 | 3.0 | 19 | 2.9 | 103 | 3.0 | |
Pre-eclampsia | 0.76 | ||||||
Yes | 150 | 3.7 | 23 | 3.5 | 127 | 3.7 | |
Eclampsia | |||||||
Yes | 5 | 0.12 | 0 | - | 5 | 0.15 | |
Preterm (32–36 weeks) | 0.001 b | ||||||
Yes | 362 | 8.8 | 37 | 5.6 | 325 | 9.4 | |
Needed NICU | 0.44 | ||||||
Yes | 556 | 15.9 | 97 | 17.0 | 459 | 15.7 | |
Missing (n = 617 (15.0%)) | 96 | 14.4 | 521 | 15.1 | |||
Abnormal metabolic condition of newborn | |||||||
Yes | 0 | 0 | |||||
Missing (n = 675 (16.4%)) | 106 | 15.9 | 569 | 16.5 | |||
Infant anemic at birth | |||||||
Yes | 3 | 0.1 | 0 | 0 | 3 | 0.1 | |
Seizure of newborn | |||||||
Yes | 3 | 0.1 | 0 | 0 | 3 | 0.1 | |
Intubation of newborn | |||||||
Yes | 19 | 0.5 | 3 | 0.5 | 16 | 0.5 | |
Birth injury | |||||||
Yes | 1 | 0 | 1 | ||||
Prenatal care | |||||||
Trimester of first prenatal care visit | 0.90 | ||||||
≤91 days | 2801 | 68.1 | 459 | 68.8 | 2342 | 68.0 | |
92–189 days | 1137 | 27.6 | 183 | 27.4 | 954 | 27.7 | |
190+ days | 159 | 3.9 | 23 | 3.5 | 136 | 3.9 | |
No prenatal care | 16 | 0.4 | 2 | 0.3 | 14 | 0.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duffany, K.O.; McVeigh, K.H.; Lipkind, H.S.; Kershaw, T.S.; Ickovics, J.R. Large for Gestational Age and Risk for Academic Delays and Learning Disabilities: Assessing Modification by Maternal Obesity and Diabetes. Int. J. Environ. Res. Public Health 2020, 17, 5473. https://doi.org/10.3390/ijerph17155473
Duffany KO, McVeigh KH, Lipkind HS, Kershaw TS, Ickovics JR. Large for Gestational Age and Risk for Academic Delays and Learning Disabilities: Assessing Modification by Maternal Obesity and Diabetes. International Journal of Environmental Research and Public Health. 2020; 17(15):5473. https://doi.org/10.3390/ijerph17155473
Chicago/Turabian StyleDuffany, Kathleen O’Connor, Katharine H. McVeigh, Heather S. Lipkind, Trace S. Kershaw, and Jeannette R. Ickovics. 2020. "Large for Gestational Age and Risk for Academic Delays and Learning Disabilities: Assessing Modification by Maternal Obesity and Diabetes" International Journal of Environmental Research and Public Health 17, no. 15: 5473. https://doi.org/10.3390/ijerph17155473
APA StyleDuffany, K. O., McVeigh, K. H., Lipkind, H. S., Kershaw, T. S., & Ickovics, J. R. (2020). Large for Gestational Age and Risk for Academic Delays and Learning Disabilities: Assessing Modification by Maternal Obesity and Diabetes. International Journal of Environmental Research and Public Health, 17(15), 5473. https://doi.org/10.3390/ijerph17155473