Natural Sweeteners: The Relevance of Food Naturalness for Consumers, Food Security Aspects, Sustainability and Health Impacts
Abstract
:1. Introduction
2. Consumer Perceptions of and Attitudes to Natural Food Products
3. Natural Sweeteners
3.1. Sugars
3.2. Sugar Alcohols
3.3. Terpenoid Glycosides
3.4. Proteins
4. Production of Safe Enviro-Friendly Natural Sweeteners
4.1. Erythritol
4.2. Tagatose
4.3. Steviol Glycosides
4.4. Glycyrrhizin
4.5. Thaumatin
- (1)
- Raw Honey: one of the oldest natural sweeteners. Honey is sweeter than sugar, and is the only sweetener obtained from an animal source (insect bees, minilivestock). Honey is a sugar secretion that is deposited on honeycombs by bees Apis mellifera, Apis indica (Indian Bee), Apis dorsata (Rock Bee), among other Apis species of the family Apidae [131].
- (2)
- Blackstrap Molasses: the by product from raw sugar refinery or a sugarcane factory; it is the thick dark, viscous liquid that is left after the final sugar crystallisation stage from which no more sugar can be crystallised economically by usual methods [132].
- (3)
- Real Maple Syrup: it is made from the sap exuded from stems of the genus Acer, usually in spring. Sap primarily contains water and sucrose, with varying amounts of amino and organic acids and phenolic substances, which is concentrated by heating to produce a wide range of flavour compounds [133].
- (4)
- Coconut Sugar: it is locally produced from the phloem sap of coconut palm tree (Cocos nucifera L.) blossom. Juice collectors climb palm trees and cut off unopened inflorescences with sickles. The escaping sap is collected in bamboo or plastic containers for 8–12 h. Lime is sometimes added to prevent sap from fermenting [132].
- (5)
- Other combinations: they involve production that blends several natural product sweeteners, such as a low concentration of steviol glycosides (<0.5 percent per dry leaf weight) with a small amount of raw organic sugar cane. Similarly, a combination of sweetening solutions, e.g., Erysweet+, a stevia erythritol blend, and KetoseSweet+, an allulose, stevia and monk fruit blends are becoming popular beverages [134].
5. Health Impacts
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Lusk, J.L. Unnaturally Delicious: How Science and Technology Are Serving up Super Foods to Save the World, 1st ed.; St. Martin’s Press: New York, NY, USA, 2016; pp. 189–213. [Google Scholar]
- Meneses, Y.; Cannon, K.J.; Flores, R.A. Keys to understanding and addressing consumer perceptions and concerns about processed foods. Cereal Foods World. 2014, 59, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Augustin, M.A.; Riley, M.; Stockmann, R.; Bennett, L.; Kahl, A.; Lockett, T.; Osmond, M.; Sanguansri, P.; Stonehouse, W.; Zajac, I.; et al. Role of food processing in food and nutrition security. Trends Food Sci. Technol. 2016, 56, 115–125. [Google Scholar] [CrossRef]
- Weaver, C.M.; Dwyer, J.; Fulgoni, V.L., III; King, J.C.; Leveille, G.A.; MacDonald, R.S.; Ordovas, J.; Schnakenberg, D. Processed foods: Contributions to nutrition. Am. J. Clin. Nutr. 2014, 99, 1525–1542. [Google Scholar] [CrossRef]
- Princen, T. The shading and distancing of commerce: When internalization is not enough. Ecol Econ 1997, 20, 235–253. [Google Scholar] [CrossRef]
- Weis, T. The Global Food Economy: The Battle for the Future of Farming, 1st ed.; Fernowood Publishing: Black Point, NS, Canada, 2007; pp. 11–47. [Google Scholar]
- Román, S.; Sánchez-Siles, L.M.; Siegrist, M. The importance of food naturalness for consumers: Results of a systematic review. Trends Food Sci. Technol. 2017, 67, 44–57. [Google Scholar] [CrossRef]
- Philippe, R.N.; De Mey, M.; Anderson, J.; Ajikumar, P.K. Biotechnological production of natural zero-calorie sweeteners. Curr. Opin. Biotechnol. 2014, 26, 155–161. [Google Scholar] [CrossRef]
- Mooradian, A.D.; Smith, M.; Tokuda, M. The role of artificial and natural sweeteners in reducing the consumption of table sugar: A narrative review. Clin. Nutr. Espen 2017, 18, 1–8. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ferreira, I.C. Natural food additives: Quo vadis? Trends Food Sci. Technol. 2015, 45, 284–295. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Raposo, A.; Aranceta-Bartrina, J.; Varela-Moreiras, G.; Logue, C.; Laviada, H.; Socolovsky, S.; Pérez-Rodrigo, C.; Aldrete-Velasco, J.A.; Meneses Sierra, E.; et al. Ibero–American consensus on low-and no-calorie sweeteners: Safety, nutritional aspects and benefits in food and beverages. Nutrients 2018, 10, 818. [Google Scholar] [CrossRef] [Green Version]
- Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I.C. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Compr. Rev. Food Sci. Food Saf. 2014, 13, 377–399. [Google Scholar] [CrossRef]
- Wilson, E.O. Biophilia, 1st ed.; Harvard University Press: Cambridge, MA, USA, 1984; pp. 1–23. [Google Scholar]
- Rozin, P.; Fischler, C.; Shields-Argelès, C. European and American perspectives on the meaning of natural. Appetite 2012, 59, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Nielsen. We Are What We Eat, Healthy Eating Trends around the World. January 2015. Available online: https://www.nielsen.com/wp-content/uploads/sites/3/2019/04/january-2015-global-health-and-wellness-report.pdf (accessed on 27 July 2020).
- GoodMills Innovation. Kampffmeyer Food Innovation Study. November 2012. Available online: http://goodmillsinnovation.com/sites/kfi.kampffmeyer.faktor3server.de/files/attachments/1_pi_kfi_cleanlabelstudy_english_final.pdf (accessed on 27 July 2020).
- Rozin, P. The meaning of “natural” process more important than content. Psychol. Sci. 2005, 16, 652–658. [Google Scholar] [CrossRef]
- Rozin, P. Naturalness judgments by lay Americans: Process dominates content in judgments of food or water acceptability and naturalness. Judgm. Decis. Mak. 2006, 1, 91–97. [Google Scholar]
- Rozin, P.; Spranca, M.; Krieger, Z.; Neuhaus, R.; Surillo, D.; Swerdlin, A.; Wood, K. Preference for natural: Instrumental and ideational/moral motivations, and the contrast between foods and medicines. Appetite 2004, 43, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Beck, U. Risk Society: Towards a New Modernity, 1st ed.; Sage Publications Ltd.: London, UK, 1992; pp. 19–91. [Google Scholar]
- Bánáti, D. Consumer response to food scandals and scares. Trends Food Sci. Technol. 2011, 22, 56–60. [Google Scholar] [CrossRef]
- Knowles, T.; Moody, R.; McEachern, M.G. European food scares and their impact on EU food policy. Br. Food J. 2007, 109, 43–67. [Google Scholar] [CrossRef]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lucová, M.; Hojerová, J.; Pažoureková, S.; Klimová, Z. Absorption of triphenylmethane dyes Brilliant Blue and Patent Blue through intact skin, shaven skin and lingual mucosa from daily life products. Food Chem. Toxicol. 2013, 52, 19–27. [Google Scholar] [CrossRef]
- Grunert, K.G.; Bredahl, L.; Scholderer, J. Four questions on European consumers’ attitudes toward the use of genetic modification in food production. Innov. Food Sci. Emerg. Technol. 2003, 4, 435–445. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asioli, D.; Canavari, M.; Pignatti, E.; Obermowe, T.; Sidali, K.L.; Vogt, C.; Spiller, A. Sensory experiences and expectations of Italian and German organic consumers. J. Int. Food Agribus. Mark. 2014, 26, 13–27. [Google Scholar] [CrossRef]
- Caputo, V.; Nayga, R.M., Jr.; Scarpa, R. Food miles or carbon emissions? Exploring labelling preference for food transport footprint with a stated choice study. Aust. J. Agric. Econ. 2013, 57, 465–482. [Google Scholar] [CrossRef] [Green Version]
- Frewer, L.J.; van Trijp, H. Understanding Consumers of Food Products, 1st ed.; Woodhead Publishing Limited: Cambridge, UK, 2007; pp. 21–24. [Google Scholar]
- MacFie, H. Preference mapping and food product development. In Consumer-Led Food Product Development, 1st ed.; MacFie, H., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2007; pp. 551–593. [Google Scholar]
- Grunert, K.G. Trends in food choice and nutrition. In Consumer Attitudes to Food Quality Products: Emphasis on Southern Europe, 1st ed.; Klopčič, M., Kuipers, A., Hocquette, J.-F., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; pp. 23–30. [Google Scholar]
- Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. B 2010, 365, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- Krovetz, H. The effect of water-use labeling and information on consumer valuation for water sustainable food choices in California. In Proceedings of the Environmental Sciences Senior Thesis Symposium, University of California at Berkeley, Berkeley, CA, USA, 23 April 2016. [Google Scholar]
- Lachat, C.; Nago, E.; Verstraeten, R.; Roberfroid, D.; Van Camp, J.; Kolsteren, P. Eating out of home and its association with dietary intake: A systematic review of the evidence. Obes. Rev. 2012, 13, 329–346. [Google Scholar] [CrossRef]
- Chrysochou, P.; Askegaard, S.; Grunert, K.G.; Kristensen, D.B. Social discourses of healthy eating. A market segmentation approach. Appetite 2010, 55, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Pohjanheimo, T.; Paasovaara, R.; Luomala, H.; Sandell, M. Food choice motives and bread liking of consumers embracing hedonistic and traditional values. Appetite 2010, 54, 170–180. [Google Scholar] [CrossRef]
- Mai, R.; Hoffmann, S. How to combat the unhealthy = tasty intuition: The influencing role of health consciousness. J. Public Policy Mark. 2015, 34, 63–83. [Google Scholar] [CrossRef]
- Steptoe, A.; Pollard, T.M.; Wardle, J. Development of a measure of the motives underlying the selection of food: The food choice questionnaire. Appetite 1995, 25, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Bearth, A.; Cousin, M.E.; Siegrist, M. The consumer’s perception of artificial food additives: Influences on acceptance, risk and benefit perceptions. Food Qual. Prefer. 2014, 38, 14–23. [Google Scholar] [CrossRef]
- Chen, M.F. The gender gap in food choice motives as determinants of consumers’ attitudes toward GM foods in Taiwan. Br. Food J. 2011, 113, 697–709. [Google Scholar] [CrossRef]
- Chen, M.F. Consumers’ health and taste attitude in Taiwan: The impacts of modern tainted food worries and gender difference. Br. Food J. 2013, 115, 526–540. [Google Scholar] [CrossRef]
- Dickson-Spillmann, M.; Siegrist, M.; Keller, C. Attitudes toward chemicals are associated with preference for natural food. Food Qual. Prefer. 2011, 22, 149–156. [Google Scholar] [CrossRef]
- Huotilainen, A.; Tuorila, H. Social representation of new foods has a stable structure based on suspicion and trust. Food Qual. Prefer. 2005, 16, 565–572. [Google Scholar] [CrossRef]
- Siegrist, M.; Stampfli, N.; Kastenholz, H.; Keller, C. Perceived risks and perceived benefits of different nanotechnology foods and nanotechnology food packaging. Appetite 2008, 51, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Pieniak, Z.; Verbeke, W.; Vanhonacker, F.; Guerrero, L.; Hersleth, M. Association between traditional food consumption and motives for food choice in six European countries. Appetite 2009, 53, 101–108. [Google Scholar] [CrossRef]
- Olbrich, R.; Hundt, M.; Grewe, G. Willingness to pay in food retailing—An empirical study of consumer behaviour in the context of the proliferation of organic products. In European Retail Research, 1st ed.; Foscht, T., Morschett, D., Rudolph, T., Schnedlitz, P., Schramm-Klein, H., Swoboda, B., Eds.; Springer Gabler: Wiesbaden, Germany, 2015; pp. 67–101. [Google Scholar]
- Hsu, S.Y.; Chang, C.C.; Lin, T.T. An analysis of purchase intentions toward organic food on health consciousness and food safety with/under structural equation modeling. Br. Food J. 2016, 118, 200–216. [Google Scholar] [CrossRef]
- Bäckström, A.; Pirttilä-Backman, A.M.; Tuorila, H. Willingness to try new foods as predicted by social representations and attitude and trait scales. Appetite 2004, 43, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Eertmans, A.; Victoir, A.; Vansant, G.; Van den Bergh, O. Food-related personality traits, food choice motives and food intake: Mediator and moderator relationships. Food Qual. Prefer. 2005, 16, 714–726. [Google Scholar] [CrossRef]
- Onwezen, M.C.; Bartels, J. Development and cross-cultural validation of a shortened social representations scale of new foods. Food Qual. Prefer. 2013, 28, 226–234. [Google Scholar] [CrossRef]
- Huotilainen, A.; Pirttilä-Backman, A.M.; Tuorila, H. How innovativeness relates to social representation of new foods and to the willingness to try and use such foods. Food Qual. Prefer. 2006, 17, 353–361. [Google Scholar] [CrossRef]
- Urala, N.; Lähteenmäki, L. Consumers’ changing attitudes towards functional foods. Food Qual. Prefer. 2007, 18, 1–12. [Google Scholar] [CrossRef]
- Mouta, J.S.; de Sá, N.C.; Menezes, E.; Melo, L. Effect of institutional sensory test location and consumer attitudes on acceptance of foods and beverages having different levels of processing. Food Qual. Prefer. 2016, 48 Pt A, 262–267. [Google Scholar] [CrossRef]
- Tobler, C.; Visschers, V.H.; Siegrist, M. Eating green. Consumers’ willingness to adopt ecological food consumption behaviors. Appetite 2011, 57, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Gomez, P.; Schneid, N.; Delaere, F. How often should I eat it? Product correlates and accuracy of estimation of appropriate food consumption frequency. Food Qual. Prefer. 2015, 40, 1–7. [Google Scholar] [CrossRef]
- Hemmerling, S.; Canavari, M.; Spiller, A. Preference for naturalness of european organic Consumers: First evidence of an attitude-liking-gap. Br. Food J. 2016, 118, 2287–2307. [Google Scholar] [CrossRef]
- Oellingrath, I.M.; Hersleth, M.; Svendsen, M.V. Association between parental motives for food choice and eating patterns of 12-to 13-year-old Norwegian children. Public Health Nutr. 2013, 16, 2023–2031. [Google Scholar] [CrossRef] [Green Version]
- Phan, U.T.; Chambers, E. Motivations for choosing various food groups based on individual foods. Appetite 2016, 105, 204–211. [Google Scholar] [CrossRef]
- Kraus, A. Factors influencing the decisions to buy and consume functional food. Br. Food J. 2015, 117, 1622–1636. [Google Scholar] [CrossRef]
- Urala, N.; Lähteenmäki, L. Attitudes behind consumers’ willingness to use functional foods. Food Qual. Prefer. 2004, 15, 793–803. [Google Scholar] [CrossRef]
- Lähteenmäki, L.; Grunert, K.; Ueland, Ø.; Åström, A.; Arvola, A.; Bech-Larsen, T. Acceptability of genetically modified cheese presented as real product alternative. Food Qual. Prefer. 2002, 13, 523–533. [Google Scholar] [CrossRef]
- Lusk, J.L.; Crespi, J.M.; Cherry, J.B.C.; Mcfadden, B.R.; Martin, L.E.; Bruce, A.S. An fMRI investigation of consumer choice regarding controversial food technologies. Food Qual. Prefer. 2015, 40, 209–220. [Google Scholar] [CrossRef]
- Grubor, A.; Djokic, N.; Djokic, I.; Kovac-Znidersic, R. Application of health and Taste attitude scales in Serbia. Br. Food J. 2015, 117, 840–860. [Google Scholar] [CrossRef]
- Pollard, J.; Greenwood, D.; Kirk, S.; Cade, J. Motivations for fruit and vegetable consumption in the UK Women’s Cohort Study. Public Health Nutr. 2002, 5, 479–486. [Google Scholar] [CrossRef]
- Pollard, T.M.; Steptoe, A.; Wardle, J. Motives underlying healthy eating: Using the Food Choice Questionnaire to explain variation in dietary intake. J. Biosoc. Sci. 1998, 30, 165–179. [Google Scholar] [CrossRef]
- Steptoe, A.; Wardle, J. Motivational factors as mediators of socioeconomic variations in dietary intake patterns. Psychol Health 1999, 14, 391–402. [Google Scholar] [CrossRef]
- Thong, N.T.; Solgaard, H.S. Consumer’s food motives and seafood consumption. Food Qual. Prefer. 2017, 56, 181–188. [Google Scholar] [CrossRef]
- Lockie, S.; Lyons, K.; Lawrence, G.; Mummery, K. Eating “Green”: Motivations behind organic food consumption in Australia. Sociol. Rural. 2002, 42, 23–40. [Google Scholar] [CrossRef]
- Pieniak, Z.; Perez-Cueto, F.; Verbeke, W. Nutritional status, self identification as a traditional food consumer and motives for food choice in six european countries. Br. Food J. 2013, 115, 1297–1312. [Google Scholar] [CrossRef]
- Brunner, T.A.; Van der Horst, K.; Siegrist, M. Convenience food products. Drivers for consumption. Appetite 2010, 55, 498–506. [Google Scholar] [CrossRef]
- Roininen, K.; Tuorila, H. Health and taste attitudes in the prediction of use frequency and choice between less healthy and more healthy snacks. Food Qual. Prefer. 1999, 10, 357–365. [Google Scholar] [CrossRef]
- Zandstra, E.H.; De Graaf, C.; Van Staveren, W.A. Influence of health and taste attitudes on consumption of low-and high-fat foods. Food Qual. Prefer. 2001, 12, 75–82. [Google Scholar] [CrossRef]
- Carrillo, E.; Prado-Gascó, V.; Fiszman, S.; Varela, P. Why buying functional foods? Understanding spending behaviour through structural equation modelling. Food Res. Int. 2013, 50, 361–368. [Google Scholar] [CrossRef]
- Devcich, D.A.; Pedersen, I.K.; Petrie, K.J. You eat what you are: Modern health worries and the acceptance of natural and synthetic additives in functional foods. Appetite 2007, 48, 333–337. [Google Scholar] [CrossRef]
- Pokorný, J. Natural antioxidants for food use. Trends Food Sci. Technol. 1991, 2, 223–227. [Google Scholar] [CrossRef]
- Lindley, M.G. Natural High-Potency Sweeteners. In Sweeteners and Sugar Alternatives in Food Technology, 2nd ed.; O’Donnell, K., Kearsley, M.W., Eds.; John Wiley & Sons, Ltd.: Chichester West Sussex, UK, 2012; pp. 185–212. [Google Scholar]
- Drewnowski, A.; Mennella, J.A.; Johnson, S.L.; Bellisle, F. Sweetness and food preference. J. Nutr. 2012, 142, 1142–1148. [Google Scholar] [CrossRef] [Green Version]
- Marcus, J.B. A taste primer. In Aging, Nutrition and Taste: Nutrition, Foods Science and Culinary Perspectives for Aging Tastefully; Academic Press: New York, NY, USA, 2019; p. 114. [Google Scholar]
- Belloir, C.; Neiers, F.; Briand, L. Sweeteners and sweetness enhancers. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 279–285. [Google Scholar] [CrossRef]
- Laffitte, A.; Neiers, F.; Briand, L. Characterization of taste compounds: Chemical structures and sensory properties. In Flavour: From Food to Perception; Guichard, E., Salles, C., Morzel, M., Le Bon, A.-M., Eds.; Wiley-Blackwell: Oxford, UK, 2017; pp. 154–191. [Google Scholar]
- Statista. Sugar Consumption Worldwide 2009/10–2019/20. Available online: https://www.statista.com/statistics/249681/total-consumption-of-sugar-worldwide/ (accessed on 12 May 2020).
- World Health Organization (WHO). Guideline: Sugars Intake for Adults and Children. Available online: http://www.who.int/nutrition/publications/guidelines/sugars_intake/en/ (accessed on 12 May 2020).
- Grembecka, M. Natural sweeteners in a human diet. Rocz. Państwowego Zakładu Hig. 2015, 66, 195–202. [Google Scholar]
- Chéron, J.-B.; Marchal, A.; Fiorucci, S. Natural sweeteners. In Encyclopedia of Food Chemistry; Varelis, P., Melton, L., Shahidi, F., Eds.; Elsevier: Amesterdam, The Netherlands, 2019; Volume 1, pp. 189–195. [Google Scholar]
- Kroger, M.; Meister, K.; Kava, R. Low-calorie sweeteners and other sugar substitutes: A review of the safety issues. Compr. Rev. Food Sci. Food Saf. 2006, 5, 35–47. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Sweeteners as food additives in the XXI century: A review of what is known, and what is to come. Food Chem. Toxicol. 2017, 107, 302–317. [Google Scholar] [CrossRef]
- Shah, R.; Jager, L.S. Recent analytical methods for the analysis of sweeteners in food: A regulatory perspective. Food Drug Adm. Pap. 2017, 5, 13–32. [Google Scholar]
- Mortensen, A. Sweeteners permitted in the European Union: Safety aspects. Scand. J. Food Nutr. 2006, 50, 104–116. [Google Scholar] [CrossRef]
- Fry, J.C. Natural low-calorie sweeteners. In Natural Food Additives, Ingredients and Flavourings; Baines, D., Seal, R., Eds.; Woodhead Publishing: Cambridge, UK, 2012; pp. 41–75. [Google Scholar]
- Tappy, L.; Le, K.A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 2010, 90, 23–46. [Google Scholar] [CrossRef] [Green Version]
- The Commission of the European Communities. Commission decision of 25 September 2001 authorising the placing on the market of trehalose as a novel food or novel food ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council. Off. J. Eur. Communities 2001, L269, 17. [Google Scholar]
- BeMiller, J.N. Oligosaccharides. In Carbohydrate Chemistry for Food Scientists; Elsevier: Amesterdam, The Netherlands, 2019; pp. 49–74. [Google Scholar]
- Grembecka, M. Sugar alcohols—their role in the modern world of sweeteners: A review. Eur. Food Res. Technol. 2015, 241, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Chades, T.; Scully, S.M.; Ingvadottir, E.M.; Orlygsson, J. Fermentation of mannitol extracts from brown macro algae by Thermophilic Clostridia. Front. Microbiol. 2018, 9, 1931. [Google Scholar] [CrossRef]
- Andersen, R.; Sørensen, A. Separation and determination of alditols and sugars by high-pH anion-exchange chromatography with pulsed amperometric detection. J. Chromatogr. A 2000, 897, 195–204. [Google Scholar] [CrossRef]
- Ruiz-Ojeda, F.J.; Plaza-Díaz, J.; Sáez-Lara, M.J.; Gil, A. Effects of sweeteners on the gut microbiota: A review of experimental studies and clinical trials. Adv. Nutr. 2019, 10, 31–48. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, A.; Carrascosa, C.; Raheem, D.; Ramos, F.; Raposo, A. Maltitol: Analytical Determination Methods, Applications in the Food Industry, Metabolism and Health Impacts. Int. J. Environ. Res. Public Health 2020, 17, 5227. [Google Scholar] [CrossRef]
- Alternative Sweeteners, 4th ed.; O’Brien-Nabors, L. (Ed.) CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- European Food Safety Authority (EFSA). Call for Technical Data on Sweeteners Authorised as Food Additives in the EU. Available online: https://www.efsa.europa.eu/en/consultations/call/call-technical-data-sweeteners-authorised-food-additives-eu (accessed on 12 May 2020).
- Swiader, K.; Wegner, K.; Piotrowska, A.; Tan, F.-J.; Sadowska, A. Plants as a source of natural high-intensity sweeteners: A review. J. Appl. Bot. Food Qual. 2019, 92, 160–171. [Google Scholar]
- Gu, W.; Rebsdorf, A.; Anker, C.; Gregersen, S.; Hermansen, K.; Geuns, J.M.C.; Jeppesen, P.B. Steviol glucuronide, a metabolite of steviol glycosides, potently stimulates insulin secretion from isolated mouse islets: Studies in vitro. Endocrinol. Diabetes Metab. 2019, 2, 1–9. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority Panel on Food Additives and Flavourings (EFSA-FAF Panel). Safety of a proposed amendment of the specifications for steviol glycosides (E 960) as a food additive: To expand the list of steviol glycosides to all those identified in the leaves of Stevia rebaudiana Bertoni. EFSA J. 2020, 18, 6106. [Google Scholar]
- Chatsudthipong, V.; Muanprasat, C. Stevioside and related compounds: Therapeutic benefits beyond sweetness. Pharmacol. Ther. 2009, 121, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Pielak, M.; Czarniecka-Skubina, E.; Trafiałek, J.; Głuchowski, A. Contemporary trends and habits in the consumption of sugar and sweeteners—A questionnaire survey among poles. Int. J. Environ. Res. Public Health 2019, 16, 1164. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration (FDA). Food Additive Status List. Available online: https://www.fda.gov/food/food-additives-petitions/food-additive-status-list (accessed on 12 May 2020).
- Nazari, S.; Rameshrad, M.; Hosseinzadeh, H. Toxicological effects of Glycyrrhiza glabra (licorice): A review. Phyther. Res. 2017, 31, 1635–1650. [Google Scholar] [CrossRef]
- European Commission’s Scientific Committee on Food (EC-SCF). Opinion of the Scientific Committee on Food on Glycyrrhizinic Acid and Its Ammonium Salt. Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/sci-com_scf_out186_en.pdf (accessed on 12 May 2020).
- Masuda, T. Sweet-tasting protein thaumatin: Physical and chemical properties. In Sweeteners: Pharmacology, Biotechnology, and Applications; Merillon, J.-M., Ramawat, K.G., Eds.; Springer: Berlin, Germany, 2017; pp. 493–523. [Google Scholar]
- European Food Safety Authority Panel on Food Additives and Nutrient Sources added to Food (EFSA-ANS Panel). Scientific Opinion on the safety of the extension of use of thaumatin (E 957). EFSA J. 2015, 13, 4290. [Google Scholar]
- Tschannen, M.P.; Glück, U.; Bircher, A.J.; Heijnen, I.; Pletscher, C. Thaumatin and gum arabic allergy in chewing gum factory workers. Am. J. Ind. Med. 2017, 60, 1–6. [Google Scholar] [CrossRef]
- European Commission. From Farm to Fork. May 2020. Available online: https://ec.europa.eu/info/strategy/priorities-2019–2024/european-green-deal/actions-being-taken-eu/farm-fork_en (accessed on 26 May 2020).
- Rzechonek, D.A.; Dobrowolski, A.; Rymowicz, W.; Mirończuk, A.M. Recent advances in biological production of erythritol. Crit. Rev. Biotechnol. 2018, 38, 620–633. [Google Scholar] [CrossRef]
- Moon, H.J.; Jeya, M.; Kim, I.W.; Lee, J.K. Biotechnological production of erythritol and its applications. Appl. Microbiol. Biotechnol. 2010, 86, 1017–1025. [Google Scholar] [CrossRef]
- Horikita, H.; Hattori, N.; Takagi, Y.; Kawaguchi, G.; Maeda, T. Process for Producing Erythritol. U.S. Patent 4,923,812, 8 May 1990. [Google Scholar]
- Cheetham, P.S.J.; Wootton, A.N. Bioconversion of d-galactose into d-tagatose. Enzym. Microb. Technol. 1993, 15, 105–108. [Google Scholar] [CrossRef]
- Roh, H.J.; Kim, P.; Park, Y.C.; Choi, J.H. Bioconversion of d-galactose into d-tagatose by expression of l-arabinose isomerase. Biotechnol. Appl. Biochem. 2000, 31, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Chikkerur, J.; Roy, S.C.; Dhali, A.; Kolte, A.P.; Sridhar, M.; Samanta, A.K. Tagatose as a potential nutraceutical: Production, properties, biological roles, and applications. J. Food Sci. 2018, 83, 2699–2709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, D.K. Tagatose: Properties, applications, and biotechnological processes. Appl. Microbiol. Biotechnol. 2007, 76, 1–8. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Steviol Glycosides, Chemical and Technical Assessment Prepared by Harriet Wallin. June 2004. Available online: http://www.fao.org/fileadmin/templates/agns/pdf/jecfa/cta/63/Steviol.pdf (accessed on 20 May 2020).
- Mathur, S.; Bulchandani, N.; Parihar, S.; Shekhawat, G.S. Critical Review on Steviol Glycosides: Pharmacological, Toxicological and Therapeutic Aspects of High Potency Zero Caloric Sweetener. Int. J. Pharm. 2017, 13, 916–928. [Google Scholar]
- Pasquel, A.; Meireles, M.A.A.; Marques, M.O.M.; Petenate, A.J. Extraction of stevia glycosides with CO2+ water, CO2+ ethanol, and CO2+ water+ ethanol. Braz. J. Chem. Eng. 2000, 17, 271–282. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.; Kaur, A. Agro-production, processing and utilization of Stevia rebaudiana as natural sweetener. J. Agric. Eng. Food Technol. 2014, 1, 28–31. [Google Scholar]
- Rao, A.B.; Reddy, G.R.; Ernala, P.; Sridhar, S.; Ravikumar, Y.V.L. An improvised process of isolation, purification of steviosides from Stevia rebaudiana Bertoni leaves and its biological activity. Int. J. Food Sci. Technol. 2012, 47, 2554–2560. [Google Scholar] [CrossRef]
- Mukhopadhyay, M.; Panja, P. A novel process for extraction of natural sweetener from licorice (Glycyrrhiza glabra) roots. Sep. Purif. Technol. 2008, 63, 539–545. [Google Scholar] [CrossRef]
- Liao, J.; Qu, B.; Zheng, N. Extraction of Glycyrrhizic Acid from Glycyrrhiza uralensis Using Ultrasound and Its Process Extraction Model. Appl. Sci. 2016, 6, 319. [Google Scholar] [CrossRef]
- Charpe, T.W.; Rathod, V.K. Extraction of glycyrrhizic acid from licorice root using ultrasound: Process intensification studies. Chem. Eng. Process. 2012, 54, 37–41. [Google Scholar] [CrossRef]
- Joseph, J.A.; Akkermans, S.; Nimmegeers, P.; Van Impe, J.F. Bioproduction of the recombinant sweet protein thaumatin: Current state of the art and perspectives. Front. Microbiol. 2019, 10, 695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabors, L.O.; Gelardi, R. Alternative Sweeteners, 3rd ed.; Marcel Dekker: New York, NY, USA, 2001; pp. 1–12. [Google Scholar]
- Jain, T.; Grover, K. Sweeteners in human nutrition. Int. J. Health Sci. Res. 2015, 5, 439–451. [Google Scholar]
- Priya, K.; Gupta, V.R.M.; Srikanth, K. Natural sweeteners: A complete review. J. Pharm. Res. 2011, 4, 2034–2039. [Google Scholar]
- Chen, J.C.; Chou, C.C. Cane Sugar Handbook: A Manual for Cane Sugar Manufacturers and Their Chemists, 12th ed.; John Wiley & Sons: New York, NY, USA, 1993; pp. 375–435. [Google Scholar]
- Perkins, T.D.; van den Berg, A.K. Maple syrup—Production, composition, chemistry, and sensory characteristics. Adv. Food Nutr. Res. 2009, 56, 101–143. [Google Scholar]
- Beverage Industry. Natural Sweeteners Resonate with Consumers. September 2018. Available online: https://www.bevindustry.com/articles/91414-natural-sweeteners-resonate-with-consumers?oly_enc_id=3136G3707801F0X (accessed on 20 May 2020).
- Baines, D.; Seal, R. Natural Food Additives, Ingredients and Flavourings, 1st ed.; Woodhead Publishing: Cambridge, UK, 2012; pp. 23–26. [Google Scholar]
- EFSA. Scientific opinion on the safety of the proposed extension of use of erythritol (E968) as a food additive. EFSA J. 2015, 13, 4033. [Google Scholar] [CrossRef]
- Bernt, W.O.; Borzelleca, J.F.; Flamm, G.; Munro, I.C. Erythritol: A review of biological and toxicological studies. Regul. Toxicol. Pharm. 1996, 24, S191–S197. [Google Scholar] [CrossRef] [Green Version]
- Munro, I.C.; Berndt, W.O.; Borzelleca, J.F.; Flamm, G.; Lynch, B.S.; Kennepohl, E.; Bär, E.A.; Modderman, J. Erythritol: An interpretive summary of biochemical, metabolic, toxicological and clinical data. Food Chem. Toxicol. 1998, 36, 1139–1174. [Google Scholar] [CrossRef]
- Waalkens-Berendsen, D.H.; Smits-van Prooije, A.E.; Wijnands, M.V.; Bär, A. Two-generation reproduction study of erythritol in rats. Regul. Toxicol. Pharm. 1996, 24, S237–S246. [Google Scholar] [CrossRef]
- Shimizu, M.; Katoh, M.; Imamura, M.; Modderman, J. Teratology study of erythritol in rabbits. Regul. Toxicol. Pharm. 1996, 24, S247–S253. [Google Scholar] [CrossRef]
- Kawamura, Y.; Saito, Y.; Imamura, M.; Modderman, J.P. Mutagenicity studies on erythritol in bacterial reversion assay systems and in Chinese hamster fibroblast cells. Regul. Toxicol. Pharm. 1996, 24, S261–S263. [Google Scholar] [CrossRef]
- Chung, Y.S.; Lee, M. Genotoxicity assessment of erythritol by using short-term assay. Toxicol. Res. 2013, 29, 249–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawanabe, J.; Hirasawa, M.; Takeuchi, T.; Oda, T.; Ikeda, T. Noncariogenicity of erythritol as a substrate. Caries Res. 1992, 26, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Makinen, K.K.; Saag, M.; Isotupa, K.P.; Olak, J.; Nommela, R.; Soderling, E.; Makinen, P.L. Similarity of the effects of erythritol and xylitol on some risk factors of dental caries. Caries Res. 2005, 39, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Hashino, E.; Kuboniwa, M.; Alghamdi, S.A.; Yamaguchi, M.; Yamamoto, R.; Cho, H.; Amano, A. Erythritol alters microstructure and metabolomic profiles of biofilm composed of Streptococcus gordonii and Porphyromonas gingivalis. Mol. Oral Microbiol. 2013, 28, 435–451. [Google Scholar] [CrossRef]
- Runnel, R.; Mäkinen, K.K.; Honkala, S.; Olak, J.; Mäkinen, P.L.; Nõmmela, R.; Vahlberg, T.; Honkala, E.; Saag, M. Effect of three-year consumption of erythritol, xylitol and sorbitol candies on various plaque and salivary caries-related variables. J. Dent. 2013, 41, 1236–1244. [Google Scholar] [CrossRef]
- Honkala, S.; Runnel, R.; Saag, M.; Olak, J.; Nommela, R.; Russak, S.; Makinen, P.L.; Vahlberg, T.; Falony, G.; Makinen, K.; et al. Effect of erythritol and xylitol on dental caries prevention in children. Caries Res. 2014, 48, 482–490. [Google Scholar] [CrossRef]
- Den Hartog, G.J.; Boots, A.W.; Adam-Perrot, A.; Brouns, F.; Verkooijen, I.W.; Weseler, A.R.; Haenen, G.R.; Bast, A. Erythritol is a sweet antioxidant. Nutrition 2010, 26, 449–458. [Google Scholar] [CrossRef]
- Yokozawa, T.; Kim, H.Y.; Cho, E.J. Erythritol attenuates the diabetic oxidative stress through glucose metabolism and lipid peroxidation in streptozotocin-induced diabetic rats. J. Agric. Food Chem. 2002, 50, 5485–5489. [Google Scholar] [CrossRef]
- Roberts, A.C.; Porter, K.E. Cellular and molecular mechanisms of endothelial dysfunction in diabetes. Diabetes Vasc. Dis. Res. 2013, 10, 472–482. [Google Scholar] [CrossRef] [Green Version]
- Boesten, D.M.P.H.J.; Berger, A.; de Cock, P.; Dong, H.; Hammock, B.D.; den Hartog, G.J.M.; Bast, A. Multi-targeted mechanisms underlying the endothelial protective effects of the diabetic-safe sweetener erythritol. PLoS ONE 2013, 8, e65741. [Google Scholar] [CrossRef]
- Flint, N.; Hamburg, N.; Holbrook, M.; Dorsey, P.; LeLeiko, R.; Berger, A.; de Cock, P.; Bosscher, D.; Vita, J. Effects of erythritol on endothelial function in patients with type 2 diabetes mellitus: A pilot study. Acta Diabetol. 2013, 51, 513–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boesten, D.M.; den Hartog, G.J.; de Cock, P.; Bosscher, D.; Bonnema, A.; Bast, A. Health effects of erythritol. Nutrafoods 2015, 14, 3–9. [Google Scholar] [CrossRef]
- Dobbs, C.M.; Bell, L.N. Storage stability of tagatose in buffer solutions of various compositions. Food Res. Int. 2010, 43, 382–386. [Google Scholar] [CrossRef]
- Kruger, C.L.; Whittaker, M.H.; Frankos, V.H.; Schroeder, R.E. Developmental toxicity study of d-tagatose in rats. Regul. Toxicol. Pharm. 1999, 29 Pt 2, S29–S35. [Google Scholar] [CrossRef]
- Kruger, C.L.; Whittaker, M.H.; Frankos, V.H.; Trimmer, G.W. 90-Day oral toxicity study of d-tagatose in rats. Regul. Toxicol. Pharm. 1999, 29 Pt 2, S1–S10. [Google Scholar] [CrossRef]
- Saunders, J.P.; Donner, T.W.; Sadler, J.H.; Levin, G.V.; Makris, N.G. Effects of acute and repeated oral doses of d-tagatose on plasma uric acid in normal and diabetic humans. Regul. Toxicol. Pharm. 1999, 29 Pt 2, S57–S65. [Google Scholar] [CrossRef]
- Boesch, C.; Ith, M.; Jung, B.; Bruegger, K.; Erban, S.; Diamantis, I.; Kreis, R.; Bär, A. Effect of oral d-tagatose on liver volume and hepatic glycogen accumulation in healthy male volunteers. Regul. Toxicol. Pharm. 2001, 33, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Donner, T.W. The metabolic effects of dietary supplementation with d-tagatose in patients with type 2 diabetes. Diabetes 2006, 55 (Suppl. 1), 461. [Google Scholar]
- Buemann, B.; Toubro, S.; Raben, A.; Astrup, A. Human tolerance to single, high dose of d-tagatose. Regul. Toxicol. Pharm. 1999, 29, S66–S70. [Google Scholar] [CrossRef]
- World Health Organization. Evaluation of Certain Food Additives Food Additives, Sixty-First Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO Technical Report Series; World Health Organization: Geneva, Switzerland, 2004; p. 922. [Google Scholar]
- EFSA. Scientific opinion on the revised exposure assessment of Steviol glycosides (E 960) for the proposed uses as a food additive. EFSA J. 2014, 12, 3639. [Google Scholar]
- Samuel, P.; Ayoob, K.T.; Magnuson, B.A.; Wölwer-Rieck, U.; Jeppesen, P.B.; Rogers, P.J.; Rowland, I.; Mathews, R. Stevia leaf to Stevia sweetener: Exploring its science, benefits, and future potential. J. Nutr. 2018, 148, 1186S–1205S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Expert Committee on Food Additives, & World Health Organization (JECFA). 82nd Joint FAO/WHO Expert Committee on Food Additives (JECFA) Meeting—Food Additives (Summary and Conclusions); World Health Organization: Geneva, Switzerland, June 2016. [Google Scholar]
- Food Standards Australia New Zealand (FSANZ). Final Assessment Report Application A.540 Steviol Glycosides as Intense Sweeteners. August 2008. Available online: https://www.foodstandards.gov.au/code/applications/documents/FAR_A540_Steviol_glycosides.pdf (accessed on 6 July 2020).
- EFSA. Statement of EFSA Revised exposure assessment for steviol glycosides for the proposed uses as a food additive on request from the European Commission, Question No. EFSA-Q-2010-01214. EFSA J. 2011, 9, 1–19. [Google Scholar]
- Matsui, M.; Matsui, K.; Kawasaki, Y.; Oda, Y.; Noguchi, T.; Kitagawa, Y.; Sawada, M.; Hayashi, M.; Nohmi, T.; Yoshihira, K.; et al. Evaluation of the genotoxicity of stevioside and steviol using six in vitro and one in vivo mutagenicity assays. Mutagenesis 1996, 11, 573–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pezzuto, J.M.; Nanayakkara, N.D.; Compadre, C.M.; Swanson, S.M.; Kinghorn, A.D.; Guenthner, T.M.; Sparnins, V.L.; Lam, L.K. Characterization of bacterial mutagenicity mediated by 13-hydroxy-ent-kaurenoic acid (steviol) and several structurally-related derivatives and evaluation of potential to induce glutathione S-transferase in mice. Mutat. Res. Genet. Toxicol. 1986, 169, 93–103. [Google Scholar] [CrossRef]
- Klongpanichpak, S.; Temcharoen, P.; Toskulkao, C.; Apibal, S.; Glinsukon, T. Lack of mutagenicity of stevioside and steviol in Salmonella typhimurium TA 98 and TA 100. J. Med. Assoc. Thail. 1997, 80, 121–128. [Google Scholar]
- Suttajit, M.; Vinitketkaumnuen, U.; Meevatee, U.; Buddhasukh, D. Mutagenicity and human chromosomal effect of stevioside, a sweetener from Stevia rebaudiana Bertoni. Environ. Health Perspect. 1993, 101, 53–56. [Google Scholar]
- Brusick, D. A critical review of the genetic toxicity of steviol and steviol glycosides. Food Chem. Toxicol. 2008, 46, S83–S91. [Google Scholar] [CrossRef]
- Mizushina, Y.; Akihisa, T.; Ukiya, M.; Hamasaki, Y.; Murakami-Nakai, C.; Kuriyama, I.; Takeuchi, T.; Sugawara, F.; Yoshida, H. Structural analysis of isosteviol and related compounds as DNA polymerase and DNA topoisomerase inhibitors. Life Sci. 2005, 77, 2127–2140. [Google Scholar] [CrossRef]
- Melis, M. Effects of chronic administration of Stevia rebaudiana on fertility in rats. J. Ethnopharmacol. 1999, 67, 157–161. [Google Scholar] [CrossRef]
- Aze, Y.; Toyoda, K.; Imaida, K.; Hayashi, S.; Imazawa, T.; Hayashi, Y.; Takahashi, M. Subchronic oral toxicity study of stevioside in F344 rats. Eisei Shikenjo Hokoku 1991, 109, 48–54. [Google Scholar]
- Saenphet, K.; Aritajat, S.; Saenphet, S.; Manosroi, J.; Manosroi, A. Safety evaluation of aqueous extracts from Aegle marmelos and Stevia rebaudiana on reproduction of female rats. Southeast Asian J. Trop. Med. Public Health 2006, 37, 203–205. [Google Scholar] [PubMed]
- Geuns, J.M. Safety evaluation of Stevia and stevioside. In Studies in Natural Products Chemistry (Part H), 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2002; pp. 299–319. [Google Scholar]
- Barriocanal, L.A.; Palacios, M.; Benitez, G.; Benitez, S.; Jimenez, J.T.; Jimenez, N.; Rojas, V. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in Type 1 and Type 2 diabetics. Regul. Toxicol. Pharm. 2008, 51, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Abbas Momtazi-Borojeni, A.; Esmaeili, S.A.; Abdollahi, E.; Sahebkar, A. A review on the pharmacology and toxicology of steviol glycosides extracted from Stevia rebaudiana. Curr. Pharm. Des. 2017, 23, 1616–1622. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J.; Khan, I.; Blundell, R.; Azzopardi, J.; Mahomoodally, M.F. Stevia rebaudiana Bertoni.: An updated review of its health benefits, industrial applications and safety. Trends Food Sci. Technol. 2020, 100, 177–189. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, H.; Li, Y.; Liu, H.; Jia, X. Toxicological evaluation of ethanolic extract from Stevia rebaudiana Bertoni leaves: Genotoxicity and subchronic oral toxicity. Regul. Toxicol. Pharm. 2017, 86, 253–259. [Google Scholar] [CrossRef]
- Barclay, A.; Sandall, P.; Shwide-Slavin, C. The Ultimate Guide to Sugars and Sweeteners: Discover the Taste, Use, Nutrition, Science, and Lore of Everything from Agave Nectar to Xylitol, 1st ed.; The Experiment: New York, NY, USA, 2014; pp. 209–249. [Google Scholar]
- Roohbakhsh, A.; Iranshahy, M.; Iranshahi, M. Glycyrrhetinic acid and its derivatives: Anti-cancer and cancer chemopreventive properties, mechanisms of action and structure-cytotoxic activity relationship. Curr. Med. Chem. 2016, 23, 498–517. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, J.J.; Cho, K.H.; Jung, W.S.; Moon, S.K.; Park, E.K.; Kim, D.H. Biotransformation of ginsenoside Rb1, crocin, amygdalin, geniposide, puerarin, ginsenoside Re, hesperidin, poncirin, glycyrrhizin, and baicalin by human fecal microflora and its relation to cytotoxicity against tumor cells. J. Microbiol. Biotechnol. 2008, 18, 1109–1114. [Google Scholar]
- Yu, K.; Chen, F.; Li, C. Absorption, disposition, and pharmacokinetics of saponins from Chinese medicinal herbs: What do we know and what do we need to know more? Curr. Drug Metab. 2012, 13, 577–598. [Google Scholar] [CrossRef]
- Kim, D.H.; Hong, S.W.; Kim, B.T.; Bae, E.A.; Park, H.Y.; Han, M.J. Biotransformation of glycyrrhizin by human intestinal bacteria and its relation to biological activities. Arch. Pharm. Res. 2000, 23, 172–177. [Google Scholar] [CrossRef]
- Yim, J.S.; Kim, Y.S.; Moon, S.K.; Bae, H.S.; Kim, J.J.; Park, E.K.; Dim, D.H. Metabolic activities of ginsenoside Rb1, baicalin, glycyrrhizin and geniposide to their bioactive compounds by human intestinal microflora. Biol. Pharm. Bull. 2004, 10, 1580–1583. [Google Scholar] [CrossRef] [Green Version]
- Kinghorn, D.A.; Kaneda, N.; Baek, N.; Kennelly, E.J. Noncariogenic intense natural sweeteners. Med. Res. Rev. 1998, 18, 347–360. [Google Scholar] [CrossRef]
- Hsu, H.W.; Vavak, D.L.; Satterlee, L.D.; Miller, G.A. A multienzyme technique for estimating protein digestibility. J. Food Sci. 1977, 42, 1269–1273. [Google Scholar] [CrossRef]
- WHO Expert Committee on Food Additives, & World Health Organization (JECFA). Evaluation of Certain Food Additives and Contaminants: Twenty-Ninth Report of the Joint FAO; World Health Organization: Geneva, Switzerland, 1986. [Google Scholar]
- Higginbotham, J.; Snodin, D.; Eaton, K.; Daniel, J. Safety evaluation of thaumatin (talin protein). Food Chem. Toxicol. 1983, 21, 815–823. [Google Scholar] [CrossRef]
- Zemanek, E.C.; Wasserman, B.P. Issues and advances in the use of transgenic organisms for the production of thaumatin, the intensely sweet protein from Thaumatococcus daniellii. Crit. Rev. Food Sci. Nutr. 1995, 35, 455–466. [Google Scholar] [CrossRef] [PubMed]
- EFSA–The Panel on Additives and Products or Substances used in Animal Feed. Scientific opinion on the safety and efficacy of thaumatin for all animal species. EFSA J. 2011, 9, 2354–2363. [Google Scholar]
Natural Sweetener | Attribute(s) and Reference(s) |
---|---|
Erythritol | Non-carcinogenic [137,138]; Non-mutagenic [137,138,141,142]; does not affect glucose or insulin levels [148,149]; beneficially impacts the endothelium [152] |
Tagatose | Lowers postprandial plasma glucose levels [160] |
Steviol glycosides | Non-genotoxic [171]; non-carcinogenic [172,178,179]; non-allergic [176]; non-teratogenic and non-mutagenic [178,179] |
Glycyrrhizin | Anticancer, antiviral, antioxidant, anti-inflammatory, and hepatoprotective [97,185] |
Thaumatin | Does not induce tooth decay [187]; not toxic and non-allergic [128] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saraiva, A.; Carrascosa, C.; Raheem, D.; Ramos, F.; Raposo, A. Natural Sweeteners: The Relevance of Food Naturalness for Consumers, Food Security Aspects, Sustainability and Health Impacts. Int. J. Environ. Res. Public Health 2020, 17, 6285. https://doi.org/10.3390/ijerph17176285
Saraiva A, Carrascosa C, Raheem D, Ramos F, Raposo A. Natural Sweeteners: The Relevance of Food Naturalness for Consumers, Food Security Aspects, Sustainability and Health Impacts. International Journal of Environmental Research and Public Health. 2020; 17(17):6285. https://doi.org/10.3390/ijerph17176285
Chicago/Turabian StyleSaraiva, Ariana, Conrado Carrascosa, Dele Raheem, Fernando Ramos, and António Raposo. 2020. "Natural Sweeteners: The Relevance of Food Naturalness for Consumers, Food Security Aspects, Sustainability and Health Impacts" International Journal of Environmental Research and Public Health 17, no. 17: 6285. https://doi.org/10.3390/ijerph17176285
APA StyleSaraiva, A., Carrascosa, C., Raheem, D., Ramos, F., & Raposo, A. (2020). Natural Sweeteners: The Relevance of Food Naturalness for Consumers, Food Security Aspects, Sustainability and Health Impacts. International Journal of Environmental Research and Public Health, 17(17), 6285. https://doi.org/10.3390/ijerph17176285