Quantitative Analysis of Different Environmental Factor Impacts on Land Cover in Nisos Elafonisos, Crete, Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Data Processing
- d is the absolute distance between to the two events i,q.
- g is the kernel function gamma term for all kernel types except linear
- r is the kernel function bias term for the polynomial and sigmoid kernels.
- T is the kernel Trick (the bridge from linearity to non-linearity to any algorithm).
- B7 = 783 nm (15 nm),
- B6 = 740 nm (15 nm),
- B5 = 705 nm (15 nm),
- B4 = 665 nm (30 nm).
- r, is the number of rows in the error matrix
- xii, is the number of observations in row i and column i (the diagonal cells)
- xi+, is the total observations of row i
- x+I, is the total observations of column i
- N, is the total of observations in the matrix
3. Results
- Mainly in SE-SW and NE-NW aspects,
- High elevation; greater than 1000 m,
- Steep slope about 33°, and
- Increase in S2REP values.
- SE_SW aspects,
- High elevation (greater than 1000 m) with a considerable percent about 91%,
- Wide range slope starting with flat areas to steep ones, and
- Increase in S2REP values.
- Low elevation,
- Low slope from 0 to 10°, and
- A decrease in S2REP values.
- SE-SW aspects,
- Medium elevation,
- Moderate climatic conditions, and
- Moderate slope.
- A low slope or nearly flat areas,
- Low elevation, and
- A decrease in S2REP values.
4. Discussion
5. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Verburg, P.H.; Schulp, C.J.; Witte, N.; Veldkamp, A.; Veldkamp, A. Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agric. Ecosyst. Environ. 2006, 114, 39–56. [Google Scholar] [CrossRef]
- Norman, L.M.; Tallent-Halsell, N.; Labiosa, W.; Weber, M.; McCoy, A.; Hirschboeck, K.; Callegary, J.B.; Van Riper, C.; Gray, F. Developing an ecosystem services online decision support tool to assess the impacts of climate change and urban growth in the Santa Cruz Watershed; where we live, work, and play. Sustainability 2010, 2, 2044–2069. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, R.; Fortin, M.-J. Land-cover pattern and change. In Spatial Ecology and Conservation Modeling; Springer: Berlin, Germany, 2018; pp. 55–100. [Google Scholar]
- Elhag, M.; Bahrawi, J. Deliberation of hilly areas for water harvesting application in Western Crete, Greece. Global Nest J. 2016, 18, 621–629. [Google Scholar]
- Turner, M.; Gardner, R.H.; Dale, V.H.; O’Neill, R.V. Predicting the spread of disturbance across heterogeneous landscapes. Oikos 1989, 55, 121. [Google Scholar] [CrossRef] [Green Version]
- Alroy, J. Effects of habitat disturbance on tropical forest biodiversity. Proc. Natl. Acad. Sci. USA 2017, 114, 6056–6061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lookingbill, T.R.; Kaushal, S.S.; Elmore, A.J.; Gardner, R.; Eshleman, K.; Hilderbrand, R.H.; Morgan, R.P.; Boynton, W.R.; Palmer, M.; Dennison, W. Altered ecological flows blur boundaries in urbanizing watersheds. Ecol. Soc. 2009, 14. [Google Scholar] [CrossRef] [Green Version]
- Strayer, D.L.; Power, M.E.; Fagan, W.F.; Pickett, S.T.A.; Belnap, J. A Classification of ecological boundaries. BioScience 2003, 53, 723. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.B.; Riitters, K.H.; Wickham, J.D.; Tankersley, R.D.; O’Neill, R.V.; Chaloud, D.J.; Smith, E.R.; Neale, A.C. An Ecological Assessment of the United States Mid-Atlantic Region: A Landscape Atlas; United States Environmental Protection Agency; Office of Research and Development: Washington, DC, USA, 1997; p. 20460, EPA/600/R-97/130. [Google Scholar]
- Elhag, M. Quantification of Land cover changes based on temporal remote sensing data for ras tarout area, Saudi Arabia. ISPRS Int. J. Geo-Inf. 2016, 5, 15. [Google Scholar]
- Elhag, M. Consideration of landsat-8 Spectral band combination in typical mediterranean forest classification in Halkidiki, Greece. Open Geosci. 2017, 9, 468–479. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape changes in nine rural counties in Georgia. Photogramm. Eng. Remote Sens. 1990, 56, 379–386. [Google Scholar]
- Elhag, M.; Psilovikos, A.; Sakellariou-Makrantonaki, M. Land use changes and its impacts on water resources in Nile Delta region using remote sensing techniques. Environ. Dev. Sustain. 2013, 15, 1189–1204. [Google Scholar] [CrossRef]
- Sachs, D.L.; Sollins, P.; Cohen, W. Detecting landscape changes in the interior of British Columbia from 1975 to 1992 using satellite imagery. Can. J. For. Res. 1998, 28, 23–36. [Google Scholar] [CrossRef]
- Hamre, L.N.; Domaas, S.T.; Austad, I.; Rydgren, K. Land-cover and structural changes in a western Norwegian cultural landscape since 1865, based on an old cadastral map and a field survey. Landsc. Ecol. 2007, 22, 1563–1574. [Google Scholar] [CrossRef]
- Forman, R.T.T. Some general principles of landscape and regional ecology. Landsc. Ecol. 1995, 10, 133–142. [Google Scholar] [CrossRef]
- Corry, R.C.; Lafortezza, R.; Brown, R.D. Ecological functionality of landscapes with alternative rehabilitations of depleted aggregate sites. Int. J. Min. Reclam. Environ. 2010, 24, 216–232. [Google Scholar] [CrossRef]
- Brandt, L.A.; Portier, K.M.; Kitchens, W.M. Patterns of change in tree islands in Arthur R. Marshall Loxahatchee National Wildlife Refuge from 1950 to 1991. Wetlands 2000, 20, 1–14. [Google Scholar] [CrossRef]
- Fan, C.; Myint, S. A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation. Landsc. Urban Plan. 2014, 121, 117–128. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.R.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs. Geoinform. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, T.; Li, Y.; Li, Y.; Bu, C.; Zhang, Q. Comparative analysis of fractional vegetation cover estimation based on multi-sensor data in a semi-arid sandy area. Chin. Geogr. Sci. 2018, 29, 166–180. [Google Scholar] [CrossRef] [Green Version]
- Clevers, J.G.P.W.; De Jong, S.M.; Epema, G.F.; Van Der Meer, F.D.; Bakker, W.H.; Skidmore, A.K.; Scholte, K.H.; De Jong, S. Derivation of the red edge index using the MERIS standard band setting. Int. J. Remote Sens. 2002, 23, 3169–3184. [Google Scholar] [CrossRef] [Green Version]
- Clevers, J.G.P.W.; Gitelson, A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinform. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Birgin, E.G.; Martínez, J.M. Complexity and performance of an Augmented Lagrangian algorithm. Optim. Methods Softw. 2020, 1–36. [Google Scholar] [CrossRef]
- Glass, C.; Carr, J.; Yang, H.-M.; Myers, D. Application of Spatial Statistics to Analyzing Multiple Remote Sensing Data Sets; ASTM International: West Conshohocken, PA, USA, 2009; p. 138. [Google Scholar]
- Dawson, T.P.; Curran, P.J. Technical note A new technique for interpolating the reflectance red edge position. Int. J. Remote. Sens. 1998, 19, 2133–2139. [Google Scholar] [CrossRef]
- Cho, M.A.; Skidmore, A.K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote. Sens. Environ. 2006, 101, 181–193. [Google Scholar] [CrossRef]
- Gerylo, G.R.; Hall, R.J.; Franklin, S.E.; Moskal, L.M. Estimation of forest inventory parameters from high spatial resolution airborne data. In Proceedings of the 2nd International Conference on Geospatial Information in Agriculture and Forestry, Colorado Springs, FL, USA, 10–12 January 2000. [Google Scholar]
- Lopez, R.D.; Frohn, R.C. Remote Sensing for Landscape Ecology: New Metric Indicators; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Steinhorst, R.K.; Williams, R.E. Discrimination of Groundwater Sources Using Cluster Analysis, MANOVA, Canonical Analysis and Discriminant Analysis. Water Resour. Res. 1985, 21, 1149–1156. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 344. [Google Scholar]
- Faust, N.L.; Anderson, W.H.; Star, J.L. Geographic information systems and remote sensing future computing environment. Photogramm. Eng. Remote Sens. 1991, 57, 655–668. [Google Scholar]
- Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Springer Science and Business Media LLC: Berlin, Germany, 2015. [Google Scholar]
- Godinho, S.; Guiomar, N.; Machado, R.; Santos, P.; Sá-Sousa, P.; Fernandes, J.P.; Neves, N.; Pinto-Correia, T. Assessment of environment, land management, and spatial variables on recent changes in montado land cover in southern Portugal. Agrofor. Syst. 2014, 90, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Bahrawi, J.; Elhag, M. Consideration of seasonal variations of water radiometric indices for the estimation of soil moisture content in arid environment in Saudi Arabia. Appl. Ecol. Environ. Res. 2019, 17, 285–303. [Google Scholar] [CrossRef]
- Elhag, M.; Boteva, S. Mediterranean Land use and land cover classification assessment using high spatial resolution data. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2016; Volume 44, p. 42032. [Google Scholar]
- Verheye, W. The FAO guidelines for land evaluation. In Encyclopedia of Land Use, Land Cover and Soil Sciences: Land Evaluation; UNESCO: Paris, France, 2009; Volume 2, pp. 78–100. [Google Scholar]
- Lanorte, A.; Manzi, T.; Nolè, G.; Lasaponara, R. On the use of the principal component analysis (PCA) for evaluating vegetation anomalies from LANDSAT-TM NDVI temporal series in the Basilicata Region (Italy). In Computational Science and Its Applications—ICCSA; Springer Science and Business Media LLC: Berlin, Germany, 2015; Volume 9158, pp. 204–216. [Google Scholar]
- Murtagh, F.; Legendre, P. Ward’s Hierarchical clustering method: Clustering criterion and agglomerative algorithm. arXiv 2011, arXiv:1111.6285, 2011. [Google Scholar]
- Itten, K.; Meyer, P. Geometric and radiometric correction of TM data of mountainous forested areas. IEEE Trans. Geosci. Remote Sens. 1993, 31, 764–770. [Google Scholar] [CrossRef]
- Baboo, S.; Devi, M. Geometric correction in recent high resolution satellite imagery: A case study in Coimbatore, Tamil Nadu. Int. J. Comput. Appl. 2011, 14, 32–37. [Google Scholar] [CrossRef]
- Chavez, P.S. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Congalton, R.G.; Mead, R.A. A quantitative method to test for consistency and correctness in photointerpretation. Photogramm. Eng. Remote Sens. 1983, 49, 69–74. [Google Scholar]
- Walker, B.; Carpenter, S.R.; Anderies, J.M.; Abel, N.; Cumming, G.S.; Janssen, M.A.; Lebel, L.; Norberg, J.; Peterson, G.D.; Pritchard, R. Resilience management in social-ecological systems: A working hypothesis for a participatory approach. Conserv. Ecol. 2002, 6. [Google Scholar] [CrossRef]
- Fang, Y.-P.; Zhu, F.-B.; Yi, S.; Qiu, X.-P.; Ding, Y. Role of permafrost in resilience of social-ecological system and its spatio-temporal dynamics in the source regions of Yangtze and Yellow Rivers. J. Mt. Sci. 2019, 16, 179–194. [Google Scholar] [CrossRef]
- Carignan, V.; Villard, M.-A. Selecting indicator species to monitor ecological integrity: A review. Environ. Monit. Assess. 2002, 78, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Spadoni, L. The Effectiveness of Land Use Planning on the Preservation of Open Space in five Rural, High Amenity Communities in the Rocky Mountains. Master’s Thesis, Humbo ldt State University, Arcata, CA, USA, 2008. [Google Scholar]
- Sakai, T. The Simulations of the Urban Logistics Land Use and Associated Logistics Chains for Policy Insights. Ph.D. Thesis, Argonne National Laboratory, University of Illinois at Chicago, Chicago, IL, USA, 2017. [Google Scholar]
- Blaschke, T. The role of the spatial dimension within the framework of sustainable landscapes and natural capital. Landsc. Urban Plan. 2006, 75, 198–226. [Google Scholar] [CrossRef]
- Jensen, J.R.; Lulla, K. Introductory digital image processing: A remote sensing perspective. Geocarto Int. 1987, 2, 65. [Google Scholar] [CrossRef]
- Farina, A.; Bogaert, J.; Schipani, I. Cognitive landscape and information: New perspectives to investigate the ecological complexity. Biosystem 2005, 79, 235–240. [Google Scholar] [CrossRef]
- Perry, J.N.; Liebhold, A.M.; Rosenberg, M.S.; Dungan, J.; Miriti, M.; Jakomulska, A.; Citron-Pousty, S. Illustrations and guidelines for selecting statistical methods for quantifying spatial pattern in ecological data. Ecography 2002, 25, 578–600. [Google Scholar] [CrossRef] [Green Version]
- Elhag, M. Land suitability for afforestation and nature conservation practices using remote sensing & GIS techniques. Int. J. Environ. Sci. 2011, 6, 11–17. [Google Scholar]
- Chamapira, G.; Goudarzi, S.T. Geomorphological facies zonation, using GIS and RS and its application in natural resources (case study of Kouhdasht Watershed). J. Rangeland Sci. 2011, 1, 143–152. [Google Scholar]
- Clarke, K.C. Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Comput. Geosci. 1986, 12, 713–722. [Google Scholar] [CrossRef]
- Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.-P. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models. Geomorphology 2018, 301, 10–20. [Google Scholar] [CrossRef]
- Burrough, P.A.; Macmillan, R.A.; Deursen, W. Fuzzy classification methods for determining land suitability from soil profile observations and topography. J. Soil Sci. 1992, 43, 193–210. [Google Scholar] [CrossRef]
- Lam, N.S.-N. Fractals and scale in environmental assessment and monitoring. Scale Geogr. Inq. 2008, 23–40. [Google Scholar] [CrossRef]
Variable | Classes | |
---|---|---|
Vegetation | 1 | Natural grasslands |
2 | Complex cultivation patterns | |
3 | Sclerophyllous vegetation | |
Habitats | 4 | Agricultural land |
5 | Formations composed mostly or predominantly of annuals, in particular, Chenopodiaceae | |
6 | Juniper formations of Mediterranean coastal dune slacks and slopes, J. communis formations | |
7 | Large indentations of the coast where, in contrast to estuaries, influence by freshwater is limited | |
8 | Low, thorny formations of hemispherical shrubs of the coastal thermo-Mediterranean zone | |
9 | The Mediterranean and thermo-Atlantic woods of thermophilous pines | |
10 | Mediterranean humid grasslands of tall grasses and brushes | |
11 | Meso- and thermo-Mediterranean xerophile, short-grass annual grasslands rich in therophytes | |
12 | Moving sand dunes, formed in the line of undulation or coastal sand dunes systems | |
13 | Sclerophyllous scrubs established on dunes of the Mediterranean regions | |
14 | Tamarisk, oleander and chaste tree galleries and similar low ligneous formations of permanent | |
15 | Thermo-Mediterranean woodland dominated by arborescent Olea europaea ssp. sylvestris | |
16 | Vegetated cliffs and rocky shores of the Mediterranean | |
17 | Vegetation found in calcareous declivities | |
18 | Very shallow temporary ponds (a few cms deep) which exist only in winter or late spring | |
19 | Woods, often riparian, formed by the palm Phoenix theophrasti, restricted to sandy coastal valleys | |
20 | Woody coppice mainly consisting of Juniperus phoenicea. | |
Geology | 21 | Mixed formation |
22 | Stavros-Seli schists | |
23 | Dolomites, dolomitic limestones, limestones | |
24 | Flysch | |
25 | Limestones | |
26 | Recrystallized limestones and dolomites | |
27 | Talus cones and scree | |
28 | Transition beds | |
29 | Undivided neogene formations | |
Soil | 30 | Arenosoils |
31 | Cambisoils | |
32 | Gleysoils | |
33 | Lithosoils | |
34 | Luvisoils | |
35 | Rankers | |
36 | Regosoils | |
37 | Solonetz | |
38 | Terra rossa | |
39 | Vertisoils | |
Elevation | 40 | 20 |
41 | 60 | |
42 | 100 | |
43 | 140 | |
44 | 180 | |
Slope ° | 45 | 0 |
46 | 10 | |
47 | 20 | |
48 | 40 | |
49 | 60 | |
Aspect | 50 | North |
51 | Northeast | |
52 | East, northwest | |
53 | West, southeast | |
54 | Southwest | |
55 | South | |
Temperature | 56 | 19 |
57 | 20 | |
58 | 21 | |
59 | 22 |
Elevation (m) | Slope | Aspect | S2REP | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
>100 | 100–350 | 350–700 | <700 | 5° | 15° | 35° | 60° | N | NE–NW | E–W | SE–SW | S | −ve | +ve |
0.00 | 0.00 | 0.00 | 1.00 | 0.04 | 0.18 | 0.68 | 0.10 | 0.14 | 0.25 | 0.29 | 0.13 | 0.20 | 0.00 | 1.00 |
0.00 | 0.00 | 0.00 | 1.00 | 0.07 | 0.18 | 0.68 | 0.07 | 0.17 | 0.09 | 0.25 | 0.21 | 0.29 | 0.00 | 1.00 |
0.00 | 0.00 | 0.17 | 0.83 | 0.08 | 0.21 | 0.62 | 0.09 | 0.21 | 0.12 | 0.21 | 0.22 | 0.24 | 0.14 | 0.86 |
0.00 | 0.01 | 0.16 | 0.84 | 0.08 | 0.19 | 0.58 | 0.15 | 0.23 | 0.08 | 0.15 | 0.20 | 0.34 | 0.07 | 0.93 |
0.00 | 0.00 | 0.09 | 0.91 | 0.11 | 0.14 | 0.56 | 0.19 | 0.16 | 0.15 | 0.21 | 0.19 | 0.29 | 0.15 | 0.85 |
0.00 | 0.00 | 0.17 | 0.83 | 0.04 | 0.09 | 0.59 | 0.28 | 0.15 | 0.11 | 0.20 | 0.24 | 0.30 | 0.08 | 0.92 |
0.00 | 0.00 | 0.19 | 0.81 | 0.06 | 0.21 | 0.68 | 0.05 | 0.30 | 0.06 | 0.13 | 0.15 | 0.36 | 0.00 | 1.00 |
0.00 | 0.00 | 0.18 | 0.82 | 0.08 | 0.26 | 0.63 | 0.04 | 0.25 | 0.06 | 0.15 | 0.20 | 0.34 | 0.02 | 0.98 |
0.00 | 0.00 | 0.23 | 0.77 | 0.04 | 0.19 | 0.72 | 0.05 | 0.24 | 0.02 | 0.10 | 0.22 | 0.42 | 0.01 | 0.99 |
0.00 | 0.03 | 0.24 | 0.73 | 0.04 | 0.12 | 0.61 | 0.23 | 0.12 | 0.15 | 0.29 | 0.23 | 0.22 | 0.09 | 0.91 |
0.00 | 0.03 | 0.27 | 0.70 | 0.09 | 0.16 | 0.56 | 0.19 | 0.08 | 0.15 | 0.30 | 0.25 | 0.22 | 0.17 | 0.83 |
Land Use Land Cover | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shrubland | Beach | Bare Land | Olive Grove | Urban Area | Grassland | Arable Land | Wetland | Industrial | Complex Vegetation | Mixed Forest | Pasture | Scrubland |
0.06 | 0.40 | 0.11 | 0.29 | 0.11 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.18 | 0.00 |
0.04 | 0.15 | 0.29 | 0.24 | 0.05 | 0.13 | 0.03 | 0.01 | 0.00 | 0.00 | 0.23 | 0.29 | 0.01 |
0.20 | 0.18 | 0.10 | 0.30 | 0.06 | 0.07 | 0.01 | 0.00 | 0.00 | 0.00 | 0.20 | 0.26 | 0.01 |
0.07 | 0.12 | 0.19 | 0.36 | 0.02 | 0.05 | 0.01 | 0.00 | 0.00 | 0.00 | 0.26 | 0.34 | 0.01 |
0.10 | 0.04 | 0.04 | 0.01 | 0.01 | 0.20 | 0.12 | 0.01 | 0.01 | 0.00 | 0.16 | 0.20 | 0.01 |
0.02 | 0.09 | 0.42 | 0.07 | 0.03 | 0.11 | 0.10 | 0.00 | 0.06 | 0.00 | 0.13 | 0.14 | 0.01 |
0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.19 | 0.25 | 0.17 | 0.14 | 0.23 | 0.01 |
0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.21 | 0.22 | 0.16 | 0.26 | 0.01 |
0.06 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.16 | 0.24 | 0.22 | 0.56 | 0.64 | 0.01 |
0.37 | 0.01 | 0.02 | 0.01 | 0.00 | 0.01 | 0.05 | 0.13 | 0.21 | 0.21 | 0.22 | 0.29 | 0.02 |
0.07 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.07 | 0.17 | 0.21 | 0.15 | 0.18 | 0.00 |
Dependent Variables | Independent Variable |
---|---|
>100 | Shrubland |
100–350 | Beach |
350–700 | Barren land |
<700 | Olive groves |
5° | Urban |
15° | Grassland |
33° | Arable land |
60° | Wetland |
North | Industrial area |
North-East, North-west | Complex vegetation |
East, West | Mixed forest |
South-East, South-west | Pastures |
South | Scrub and/or herbaceous vegetation associations |
Decrease in S2REP | |
Increase in S2REP |
Classes | Environmental Cluster-1 | Environmental Cluster-2 | Environmental Cluster-3 |
---|---|---|---|
Land Cover-1 | 91.7 | 6.5 | 1.8 |
Land Cover-2 | 98.7 | 1.3 | 0 |
Land Cover-3 | 23.87 | 76.13 | 0 |
Land Cover-4 | 12.65 | 29.82 | 57.53 |
Land Cover-5 | 63.24 | 36.76 | 0 |
Land Cover-6 | 0 | 100 | 0 |
No. of Polygon | Arable Land | Bare Land | Beech | Grassland | Olive Groves | Shrub Land | Urban | Wet Land | |
---|---|---|---|---|---|---|---|---|---|
61 | 0.799906 | 0.58718 | 0.431012 | 0.768129 | 0.674134 | 0.632161 | 0.777378 | 0.55758 | |
39 | 0.637107 | 0.259516 | 0.117314 | 0.319812 | 0.512119 | 0.348523 | 0.449973 | 0.357792 | arable |
54 | 0.82531 | 0.588621 | 0.393353 | 0.713888 | 0.706997 | 0.62585 | 0.78394 | 0.667842 | |
43 | 0.609853 | 0.400427 | 0.225673 | 0.458572 | 0.530236 | 0.454796 | 0.539279 | 0.572374 | |
46 | 0.806603 | 0.546066 | 0.384374 | 0.71705 | 0.664334 | 0.604831 | 0.752392 | 0.542179 | |
31 | 0.790158 | 0.591977 | 0.41167 | 0.709696 | 0.678383 | 0.611934 | 0.773755 | 0.619639 | |
57 | 0.456022 | 0.660931 | 0.580697 | 0.726048 | 0.480824 | 0.601469 | 0.600324 | 0.437603 | |
32 | 0.562177 | 0.676842 | 0.551495 | 0.718756 | 0.590976 | 0.619461 | 0.614093 | 0.579831 | |
45 | 0.467544 | 0.423003 | 0.214324 | 0.421036 | 0.429589 | 0.437654 | 0.48943 | 0.587629 | |
53 | 0.474722 | 0.665498 | 0.62288 | 0.714923 | 0.534693 | 0.578743 | 0.571937 | 0.486884 | bare land |
30 | 0.634927 | 0.552087 | 0.3897 | 0.621188 | 0.550485 | 0.5226 | 0.703732 | 0.584108 | |
24 | 0.490168 | 0.644248 | 0.687665 | 0.780871 | 0.516743 | 0.590439 | 0.632292 | 0.414108 | |
21 | 0.482945 | 0.618225 | 0.562028 | 0.597282 | 0.436575 | 0.61945 | 0.598841 | 0.475398 | |
19 | 0.396544 | 0.500852 | 0.414102 | 0.392778 | 0.385138 | 0.465285 | 0.398464 | 0.404823 | |
9 | 0.423174 | 0.55338 | 0.612084 | 0.697643 | 0.429035 | 0.515147 | 0.541046 | 0.351185 | |
16 | 0.211442 | 0.474692 | 0.590102 | 0.457264 | 0.268752 | 0.410199 | 0.335801 | 0.252881 | |
2 | 0.373547 | 0.609212 | 0.671709 | 0.715295 | 0.445892 | 0.528703 | 0.542652 | 0.33978 | |
12 | 0.453558 | 0.405463 | 0.307176 | 0.487675 | 0.37786 | 0.461018 | 0.519316 | 0.374904 | beech |
14 | 0.221746 | 0.44596 | 0.53973 | 0.355641 | 0.270143 | 0.364864 | 0.31037 | 0.171797 | |
6 | 0.378031 | 0.494513 | 0.573469 | 0.614519 | 0.475992 | 0.474182 | 0.442344 | 0.375249 | |
13 | 0.347412 | 0.518811 | 0.47777 | 0.390187 | 0.348045 | 0.450657 | 0.413934 | 0.379168 | |
22 | 0.285016 | 0.548151 | 0.657674 | 0.627569 | 0.376713 | 0.468019 | 0.439361 | 0.291821 | |
10 | 0.251168 | 0.47557 | 0.630301 | 0.567722 | 0.364715 | 0.410419 | 0.385139 | 0.285138 | |
48 | 0.637608 | 0.665996 | 0.597609 | 0.83662 | 0.600185 | 0.652088 | 0.737245 | 0.506114 | |
49 | 0.619742 | 0.622823 | 0.456074 | 0.727037 | 0.563117 | 0.631964 | 0.70503 | 0.668353 | grass |
5 | 0.417348 | 0.599119 | 0.680211 | 0.741976 | 0.505727 | 0.554437 | 0.548686 | 0.375903 | |
7 | 0.783401 | 0.598503 | 0.449891 | 0.75481 | 0.68359 | 0.636382 | 0.75897 | 0.542353 | |
27 | 0.711867 | 0.358672 | 0.255548 | 0.483257 | 0.615233 | 0.447077 | 0.561928 | 0.445182 | |
28 | 0.783888 | 0.52798 | 0.393221 | 0.709804 | 0.655616 | 0.582254 | 0.741228 | 0.494745 | |
29 | 0.724523 | 0.498935 | 0.300399 | 0.569256 | 0.646785 | 0.527627 | 0.661745 | 0.650207 | |
3 | 0.668083 | 0.635537 | 0.521235 | 0.799018 | 0.640535 | 0.64043 | 0.71667 | 0.533046 | |
26 | 0.689574 | 0.562915 | 0.38515 | 0.633056 | 0.622816 | 0.552837 | 0.704679 | 0.625085 | olive |
59 | 0.671963 | 0.566092 | 0.436732 | 0.657279 | 0.664335 | 0.595557 | 0.643879 | 0.523582 | |
40 | 0.578896 | 0.259343 | 0.136784 | 0.332147 | 0.495207 | 0.351813 | 0.439867 | 0.467936 | |
34 | 0.470044 | 0.491017 | 0.397132 | 0.529358 | 0.508869 | 0.516781 | 0.457846 | 0.52119 | |
35 | 0.28809 | 0.486038 | 0.590508 | 0.5836 | 0.427612 | 0.458406 | 0.419114 | 0.281162 | |
36 | 0.485922 | 0.469853 | 0.379273 | 0.515377 | 0.563329 | 0.481119 | 0.470894 | 0.377599 | |
47 | 0.793669 | 0.462266 | 0.285783 | 0.601485 | 0.646086 | 0.528705 | 0.684299 | 0.436621 | |
8 | 0.665887 | 0.568886 | 0.394432 | 0.644221 | 0.577852 | 0.544451 | 0.724859 | 0.606636 | |
1 | 0.80877 | 0.546946 | 0.388503 | 0.718146 | 0.664421 | 0.60424 | 0.758571 | 0.534088 | |
33 | 0.510907 | 0.52117 | 0.369083 | 0.545209 | 0.536263 | 0.547929 | 0.491283 | 0.532157 | |
41 | 0.669563 | 0.483078 | 0.335585 | 0.579324 | 0.561664 | 0.57761 | 0.610008 | 0.841363 | |
42 | 0.446169 | 0.400698 | 0.232808 | 0.41044 | 0.419769 | 0.47052 | 0.472019 | 0.930396 | |
23 | 0.764011 | 0.660052 | 0.546088 | 0.824037 | 0.690094 | 0.670085 | 0.793649 | 0.550561 | shrub |
44 | 0.631298 | 0.575634 | 0.41455 | 0.627274 | 0.564026 | 0.55702 | 0.694663 | 0.584694 | |
20 | 0.369716 | 0.489787 | 0.394549 | 0.418266 | 0.35574 | 0.53398 | 0.444183 | 0.396975 | |
18 | 0.267213 | 0.370611 | 0.370494 | 0.338819 | 0.218164 | 0.42647 | 0.340587 | 0.248719 | |
37 | 0.549923 | 0.597724 | 0.492308 | 0.683222 | 0.597682 | 0.624028 | 0.587683 | 0.568144 | |
17 | 0.335732 | 0.509763 | 0.554662 | 0.534041 | 0.347768 | 0.527549 | 0.485879 | 0.374163 | |
15 | 0.496485 | 0.591986 | 0.503082 | 0.633479 | 0.42889 | 0.579177 | 0.597685 | 0.517594 | |
50 | 0.582459 | 0.627429 | 0.536024 | 0.71099 | 0.635981 | 0.605942 | 0.639972 | 0.48305 | |
51 | 0.567069 | 0.688331 | 0.603061 | 0.796908 | 0.601687 | 0.647235 | 0.675754 | 0.502034 | |
52 | 0.64957 | 0.698218 | 0.61086 | 0.841893 | 0.642748 | 0.674497 | 0.735287 | 0.541804 | |
4 | 0.659464 | 0.596394 | 0.525522 | 0.790824 | 0.582632 | 0.603365 | 0.738362 | 0.513628 | |
55 | 0.814406 | 0.500342 | 0.333034 | 0.648159 | 0.6918 | 0.570492 | 0.715362 | 0.476914 | urban |
56 | 0.82369 | 0.59385 | 0.42254 | 0.748838 | 0.694805 | 0.634128 | 0.792009 | 0.5898 | |
25 | 0.640866 | 0.555725 | 0.390637 | 0.610372 | 0.566858 | 0.52968 | 0.69421 | 0.616016 | |
58 | 0.662649 | 0.602715 | 0.451524 | 0.667631 | 0.663172 | 0.635498 | 0.643728 | 0.692736 | |
11 | 0.432502 | 0.518708 | 0.438612 | 0.555104 | 0.38148 | 0.535141 | 0.582006 | 0.454979 | |
60 | 0.722593 | 0.665242 | 0.494767 | 0.791453 | 0.635008 | 0.655309 | 0.80194 | 0.681049 | |
38 | 0.552901 | 0.496298 | 0.313547 | 0.523181 | 0.496916 | 0.543267 | 0.575017 | 1 | wet |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elhag, M.; Boteva, S. Quantitative Analysis of Different Environmental Factor Impacts on Land Cover in Nisos Elafonisos, Crete, Greece. Int. J. Environ. Res. Public Health 2020, 17, 6437. https://doi.org/10.3390/ijerph17186437
Elhag M, Boteva S. Quantitative Analysis of Different Environmental Factor Impacts on Land Cover in Nisos Elafonisos, Crete, Greece. International Journal of Environmental Research and Public Health. 2020; 17(18):6437. https://doi.org/10.3390/ijerph17186437
Chicago/Turabian StyleElhag, Mohamed, and Silvena Boteva. 2020. "Quantitative Analysis of Different Environmental Factor Impacts on Land Cover in Nisos Elafonisos, Crete, Greece" International Journal of Environmental Research and Public Health 17, no. 18: 6437. https://doi.org/10.3390/ijerph17186437
APA StyleElhag, M., & Boteva, S. (2020). Quantitative Analysis of Different Environmental Factor Impacts on Land Cover in Nisos Elafonisos, Crete, Greece. International Journal of Environmental Research and Public Health, 17(18), 6437. https://doi.org/10.3390/ijerph17186437