Spatial-Temporal Differentiation Analysis of Agricultural Land Use Intensity and Its Driving Factors at the County Scale: A Case Study in Hubei Province, China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Sources
3. Methodology
3.1. Agricultural Land Use Intensity Indices (In and Out)
3.2. Assessment of Agricultural Land Use Intensity
3.2.1. Data Standardization
3.2.2. Comprehensive Evaluation Method
3.3. Spatial-Temporal Differentiation Analysis
3.3.1. Descriptive Statistical Analysis
3.3.2. Spatial Autocorrelation
3.3.3. Spatial-Temporal Transition
3.4. Driving Factor Analysis Model
3.4.1. Indicators of Driving Factors
3.4.2. Geographical Detectors
4. Results
4.1. Descriptive Statistical Analysis of Agricultural Land Use Intensity
4.2. Analysis of the Spatial Autocorrelation
4.3. Spatial-Temporal Transition Analysis
4.4. Driving Factor Analysis
5. Discussion
5.1. Agglomeration Effect of Agricultural Land Use Intensity
5.2. Driving Factors of the Agglomeration Effect
5.3. Agricultural Land Use Intensity Management Policy Formulation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ali, A.M.S. Population pressure, agricultural intensification and changes in rural systems in Bangladesh. Geoforum 2007, 38, 720–738. [Google Scholar] [CrossRef]
- Amare, M.; Shiferaw, B. Non-farm employment, agricultural intensification and productivity change: Empirical findings from Uganda. Agr. Econ. 2017, 481, 59–72. [Google Scholar] [CrossRef]
- Belete, A. Development of agriculture in Ethiopia since the 1975 land reform. Agr. Econ. 1991, 6, 159–175. [Google Scholar] [CrossRef] [Green Version]
- Bellocq, M.I.; Filloy, J.; Garaffa, P.I. Influence of Agricultural Intensity and Urbanization on the Abundance of the Raptor Chimango Caracara (Milvago chimango) in the Pampean Region of Argentina. Ann. Zool. Fenn. 2008, 45, 128–134. [Google Scholar] [CrossRef]
- Brown, L.R. State of the world 1990: A Worldwatch Institute report on progress toward a sustainable society. W. W. Nort. Co. 1990, 66, 370. [Google Scholar]
- Estel, S.; Kuemmerle, T.; Levers, C.; Baumann, M.; Hostert, P. Mapping cropland-use intensity across Europe using MODIS NDVI time series. Environ. Res. Lett. 2016, 11, 24015. [Google Scholar] [CrossRef] [Green Version]
- Gray, J.; Friedl, M.; Frolking, S.; Ramankutty, N.; Nelson, A.; Gumma, M.K. Mapping Asian Cropping Intensity With MODIS. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3373–3379. [Google Scholar] [CrossRef]
- Herzog, F.; Steiner, B.; Bailey, D.; Baudry, J.; Billeter, R.; Bukácek, R.; De Blust, G.; De Cock, R.; Dirksen, J.; Dormann, C.F.; et al. Assessing the intensity of temperate European agriculture at the landscape scale. Eur. J. Agron. 2006, 24, 165–181. [Google Scholar] [CrossRef]
- Howison, R.A.; Piersma, T.; Kentie, R.; Hooijmeijer, J.C.E.W.; Olff, H. Quantifying landscape-level land-use intensity patterns through radar-based remote sensing. J. App. Ecol. 2018, 55, 1276–1287. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Deng, X.; Seto, K.C. The impact of urban expansion on agricultural land use intensity in China. Land Use Policy 2013, 35, 33–39. [Google Scholar] [CrossRef]
- Jiang, L.; Li, Z. Urbanization and the Change of Fertilizer Use Intensity for Agricultural Production in Henan Province. Sustainability 2016, 8, 186. [Google Scholar] [CrossRef] [Green Version]
- José-María, L.; Armengot, L.; Blanco-Moreno, J.M.; Bassa, M.; Sans, F.X. Effects of agricultural intensification on plant diversity in Mediterranean dryland cereal fields. J. App. Ecol. 2010, 47, 832–840. [Google Scholar] [CrossRef]
- Kerr, J.T.; Cihlar, J. Land Use and Cover with Intensity of Agriculture for Canada from Satellite and Census Data. Glob. Ecol. Biogeogr. 2003, 12, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Koumaris, A.; Fahrig, L. Different Anuran Species Show Different Relationships to Agricultural Intensity. Wetlands 2016, 36, 731–744. [Google Scholar] [CrossRef]
- Lambin, E.F.; Rounsevell, M.D.A.; Geist, H.J. Are agricultural land-use models able to predict changes in land-use intensity? Agric. Ecosyst. Environ. 2000, 82, 321–331. [Google Scholar] [CrossRef]
- Levers, C.; Butsic, V.; Verburg, P.H.; Müller, D.; Kuemmerle, T. Drivers of changes in agricultural intensity in Europe. Land Use Policy 2016, 58, 380–393. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Xie, H.; Yao, G. Impact of land fragmentation on marginal productivity of agricultural labor and non-agricultural labor supply: A case study of Jiangsu, China. Habitat Int. 2019, 83, 65–72. [Google Scholar] [CrossRef]
- Palmer-Felgate, E.J.; Jarvie, H.P.; Withers, P.J.A.; Mortimer, R.J.G.; Krom, M.D. Stream-bed phosphorus in paired catchments with different agricultural land use intensity. Agric. Ecosyst. Environ. 2009, 134, 53–66. [Google Scholar] [CrossRef]
- Paudel, B.; Zhang, Y.; Yan, J.; Rai, R.; Li, L. Farmers’ perceptions of agricultural land use changes in Nepal and their major drivers. J. Environ. Manage. 2019, 235, 432–441. [Google Scholar] [CrossRef]
- Persson, A.S.; Olsson, O.; Rundlöf, M.; Smith, H.G. Land use intensity and landscape complexity—Analysis of landscape characteristics in an agricultural region in Southern Sweden. Agric. Ecosyst. Environ. 2010, 136, 169–176. [Google Scholar] [CrossRef]
- Phimister, E.; Roberts, D. The Effect of Off-farm Work on the Intensity of Agricultural Production. Environ. Resource Econ. 2006, 34, 493–515. [Google Scholar] [CrossRef]
- REIF, J.; VOŘÍŠEK, P.Š.; ASTNÝ, K.; BEJČEK, V.; PETR, J. Agricultural intensification and farmland birds: New insights from a central European country. Ibis 2008, 150, 596–605. [Google Scholar] [CrossRef]
- Rey, S.J. Spatial empirics for economic growth and convergence. Geogr. Anal. 2001, 33, 195–214. [Google Scholar] [CrossRef]
- Shriar, A.J. Determinants of Agricultural Intensity Index “Scores” in a Frontier Region: An Analysis of Data from Northern Guatemala. Agr. Human Values. 2005, 22, 395–410. [Google Scholar] [CrossRef]
- Siebert, S.; Portmann, F.T.; Döll, P. Global Patterns of Cropland Use Intensity. Remote Sens. 2010, 2, 1625–1643. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.; Mcswiney, C.; Grandy, A.; Suwanwaree, P.; Snider, R.; Robertson, G. Diversity and abundance of earthworms across an agricultural land-use intensity gradient. Soil Till. Res. 2008, 100, 83–88. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, D.; Wang, N.; Shi, X.; Warner, E.D.; Zhang, H.; Qin, F. Impacts of agricultural intensity on soil organic carbon pools in a main vegetable cultivation region of China. Soil Till. Res. 2013, 134, 25–32. [Google Scholar] [CrossRef]
- Söderström, B.; Kiema, S.; Reid, R.S. Intensified agricultural land-use and bird conservation in Burkina Faso. Agric. Ecosyst. Environ. 2003, 99, 113–124. [Google Scholar] [CrossRef]
- Teillard, F.; Allaire, G.; Cahuzac, E.; Léger, F.; Maigné, E.; Tichit, M. A novel method for mapping agricultural intensity reveals its spatial aggregation: Implications for conservation policies. Agric. Ecosyst. Environ. 2012, 149, 135–143. [Google Scholar] [CrossRef]
- Teillard, F.; Jiguet, F.; Tichit, M. The Response of Farmland Bird Communities to Agricultural Intensity as Influenced by Its Spatial Aggregation. PLoS ONE 2015, 10, e0119674. [Google Scholar] [CrossRef] [Green Version]
- Temme, A.J.A.M.; Verburg, P.H. Mapping and modelling of changes in agricultural intensity in Europe. Agric. Ecosyst. Environ. 2011, 140, 46–56. [Google Scholar] [CrossRef]
- Urruty, N.; Deveaud, T.; Guyomard, H.; Boiffin, J. Impacts of agricultural land use changes on pesticide use in French agriculture. Eur. J. Agron. 2016, 80, 113–123. [Google Scholar] [CrossRef]
- Van der Sluis, T.; Pedroli, B.; Kristensen, S.B.P.; Lavinia Cosor, G.; Pavlis, E. Changing land use intensity in Europe—Recent processes in selected case studies. Land Use Policy 2016, 57, 777–785. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Xie, H.; He, Y.; Zou, J.; Wu, Q. Spatio-temporal difference analysis of cultivated land use intensity based on emergy in the Poyang Lake Eco-economic Zone of China. J. Geogr. Sci. 2016, 26, 1412–1430. [Google Scholar] [CrossRef]
- Xie, H.; Zou, J.; Jiang, H.; Zhang, N.; Choi, Y. Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis. Sustainability 2014, 6, 3504–3520. [Google Scholar] [CrossRef] [Green Version]
- You, H. Impact of urbanization on pollution-related agricultural input intensity in Hubei, China. Ecol. Indic. 2016, 62, 249–258. [Google Scholar] [CrossRef]
- You, H.; Hu, X.; Wu, Y. Farmland use intensity changes in response to rural transition in Zhejiang province, China. Land Use Policy 2018, 79, 350–361. [Google Scholar] [CrossRef]
- Zechmeister, H.G.; Moser, D. The influence of agricultural land-use intensity on bryophyte species richness. Biodivers. Conserv. 2001, 10, 1609–1625. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H. Characterizing and Assessing the Agricultural Land Use Intensity of the Beijing Mountainous Region. Sustainability 2016, 8, 1180. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, H.; Sun, D.; Zhou, L. A Statistical Assessment of the Impact of Agricultural Land Use Intensity on Regional Surface Water Quality at Multiple Scales. Int. J. Environ. Res. Public Health. 2012, 9, 4170–4186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Bol, R.; Rahn, C.; Xiao, G.; Meng, F.; Wu, W. Agricultural sustainable intensification improved nitrogen use efficiency and maintained high crop yield during 1980–2014 in Northern China. Sci. Total Environ. 2017, 596–597, 61–68. [Google Scholar] [CrossRef] [PubMed]
Indices | Indicators | Definition | Remarks |
---|---|---|---|
Input | A1 | Consumption of chemical fertilizers per unit of cultivated land | Represents the capital component of production input |
A2 | Farming mechanical power per unit of cultivated land | Represents the capital component of production input | |
A3 | Consumption of agricultural film per unit of cultivated land | Represents the capital component of production input | |
A4 | Consumption of agricultural diesel per unit of cultivated land | Represents the capital component of production input | |
Output | A5 | Agricultural electricity consumption per unit of cultivated land | Reflect the situation of agricultural production |
A6 | Gross Agricultural Output Value per unit of cultivated land | Reflect the situation of agricultural production |
Variables | Definition | Sources of Data |
---|---|---|
Multiple cropping index (MCI) | Ratio of total sown area of crops to cultivated area | The China Statistical Yearbook (county-level) and the Statistical Yearbook of Hubei Province |
Irrigation index (II) | Ratio of irrigated area to cultivated area | The China Statistical Yearbook (county-level) and the Statistical Yearbook of Hubei Province |
Per capita output value of the primary industry (PCOVPI) | Ratio of the output value of primary industry to the permanent population | The China Statistical Yearbook (county-level) and the Statistical Yearbook of Hubei Province |
Per capita output value of the secondary industry (PCOVSI) | Ratio of the output value of secondary industry to the permanent population | The China Statistical Yearbook (county-level) and the Statistical Yearbook of Hubei Province |
Per capita output value of the tertiary industry (PCOVTI) | Ratio of the tertiary industry output value to the permanent population | The China Statistical Yearbook (county-level) and the Statistical Yearbook of Hubei Province |
Agricultural fiscal expenditure (AFE) | Agricultural fiscal expenditure | The China Statistical Yearbook (county-level) and the Statistical Yearbook of Hubei Province |
Judgment Basis | Interaction |
---|---|
q(X1∩X2) < Min(q(X1),q(X2)) | Nonlinear attenuation |
Min(q(X1),q(X2)) < q(X1∩X2)<Max(q(X1),q(X2)) | Single-factor nonlinear attenuation |
q(X1∩X2) > Max(q(X1),q(X2)) | Two-factor enhancement |
q(X1∩X2) = q(X1) + q(X2) | Independent |
q(X1∩X2) > q(X1) + q(X2) | Nonlinear enhancement |
Year | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | ||
---|---|---|---|---|---|---|---|---|---|---|
Variables | ||||||||||
Mean | 1.913 | 1.725 | 1.479 | 1.446 | 2.148 | 2.342 | 2.305 | 2.062 | ||
Median | 1.876 | 1.629 | 1.394 | 1.432 | 2.148 | 2.370 | 2.293 | 2.002 | ||
Maximum | 4.729 | 4.730 | 4.698 | 4.623 | 4.433 | 4.241 | 4.193 | 4.462 | ||
Minimum | 0.591 | 0.592 | 0.516 | 0.571 | 0.815 | 1.010 | 0.825 | 0.354 | ||
Standard Deviation | 0.529 | 0.534 | 0.641 | 0.626 | 0.720 | 0.747 | 0.797 | 0.901 | ||
Variation Coefficient | 0.277 | 0.310 | 0.433 | 0.433 | 0.335 | 0.319 | 0.346 | 0.437 | ||
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | |
Variables | ||||||||||
Mean | 2.293 | 2.233 | 2.026 | 2.063 | 2.334 | 2.097 | 2.038 | 1.953 | 2.004 | |
Median | 2.265 | 2.264 | 2.026 | 2.081 | 2.396 | 2.122 | 2.107 | 1.981 | 1.982 | |
Maximum | 4.427 | 4.419 | 4.539 | 4.072 | 4.162 | 3.911 | 3.628 | 3.472 | 3.695 | |
Minimum | 0.697 | 0.731 | 0.658 | 0.695 | 0.000 | 0.716 | 0.703 | 0.646 | 0.812 | |
Standard Deviation | 0.817 | 0.768 | 0.680 | 0.704 | 0.737 | 0.710 | 0.650 | 0.636 | 0.647 | |
Variation Coefficient | 0.356 | 0.344 | 0.335 | 0.341 | 0.316 | 0.339 | 0.319 | 0.326 | 0.323 |
Year | Moran’s I | Var | Z-Value | p-Value |
---|---|---|---|---|
2000 | 0.230089 | 0.004130 | 3.774936 | 0.000160 |
2001 | 0.148651 | 0.003954 | 2.562859 | 0.010381 |
2002 | 0.374362 | 0.004303 | 5.897530 | 0.000000 |
2003 | 0.328729 | 0.004271 | 5.221184 | 0.000000 |
2004 | 0.384508 | 0.004667 | 5.811456 | 0.000000 |
2005 | 0.391518 | 0.004696 | 5.895653 | 0.000000 |
2006 | 0.396168 | 0.004697 | 5.962794 | 0.000000 |
2007 | 0.430174 | 0.004681 | 6.469888 | 0.000000 |
2008 | 0.332978 | 0.004661 | 5.060546 | 0.000000 |
2009 | 0.292806 | 0.004652 | 4.476065 | 0.000008 |
2010 | 0.313902 | 0.004585 | 4.820359 | 0.000001 |
2011 | 0.332591 | 0.004670 | 5.049709 | 0.000000 |
2012 | 0.300246 | 0.004674 | 4.574698 | 0.000005 |
2013 | 0.293114 | 0.004688 | 4.463429 | 0.000008 |
2014 | 0.286077 | 0.004695 | 4.357521 | 0.000013 |
2015 | 0.241891 | 0.004696 | 3.712302 | 0.000205 |
2016 | 0.241900 | 0.004685 | 3.716784 | 0.000202 |
Types | 2000-2001 | 2001-2002 | 2002-2003 | 2003-2004 | 2004-2005 | 2005-2006 | 2006-2007 | 2007-2008 | 2008-2009 | 2009-2010 | 2010-2011 | 2011-2012 | 2012-2013 | 2013-2014 | 2014-2015 | 2015-2016 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HH→HL | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— |
HH→LL | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— |
HH→LH | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | 1 | —— | —— | —— | —— | —— |
HH→NS | —— | —— | 3 | —— | 2 | 2 | 2 | 4 | —— | 4 | —— | 1 | —— | 1 | 3 | —— |
HL→HH | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— |
HL→LL | —— | 1 | —— | —— | —— | —— | —— | —— | —— | —— | 1 | —— | —— | —— | —— | —— |
HL→LH | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— |
HL→NS | —— | —— | 1 | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— |
LL→HH | —— | 1 | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— |
LL→HL | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | 1 | —— | 1 | —— |
LL→LH | —— | —— | —— | —— | —— | —— | —— | —— | —— | 1 | —— | —— | —— | —— | —— | —— |
LL→NS | 3 | 3 | 5 | —— | 1 | —— | 4 | 7 | 3 | —— | 4 | —— | 1 | 3 | 2 | 2 |
LH→HH | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | 1 | —— | —— | —— | —— |
LH→HL | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— |
LH→LL | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— |
LH→NS | —— | —— | 2 | —— | 1 | —— | —— | 1 | —— | —— | —— | 1 | —— | —— | 1 | —— |
NS→HH | —— | 6 | 3 | 3 | 4 | —— | 1 | —— | —— | 2 | 5 | —— | —— | 1 | —— | 2 |
NS→HL | —— | 1 | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— |
NS→LL | 1 | 7 | 2 | 1 | 1 | 2 | 4 | 4 | 2 | 3 | —— | 3 | —— | 1 | 1 | 1 |
NS→LH | —— | 2 | —— | 2 | —— | —— | —— | —— | —— | —— | 1 | —— | 1 | —— | —— | —— |
Year | q Statistic | p-Value | Effect Direction | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MCI | II | PCOVPI | PCOVSI | PCOVTI | AFE | MCI | II | PCOVPI | PCOVSI | PCOVTI | AFE | MCI | II | PCOVPI | PCOVSI | PCOVTI | AFE | |
2000 | 0.4518 | 0.1454 | 0.0875 | 0.1499 | 0.0637 | 0.0518 | 0.7268 | 0.1909 | 0.8799 | 0.9936 | 0.9987 | 0.9976 | + | + | + | + | + | + |
2001 | 0.4942 | 0.0995 | 0.2449 | 0.2258 | 0.0537 | 0.0683 | 0.5547 | 0.4658 | 0.4532 | 0.9596 | 0.9997 | 0.9999 | + | + | + | + | + | + |
2002 | 0.7536 | 0.4527 | 0.1553 | 0.1413 | 0.0710 | 0.0579 | 0.9985 | 0.4532 | 0.2733 | 0.8471 | 0.9986 | 0.9795 | + | + | + | + | + | + |
2003 | 0.7582 | 0.4354 | 0.1205 | 0.1510 | 0.1245 | 0.0508 | 0.9876 | 0.4406 | 0.4089 | 0.7326 | 0.9578 | 0.9900 | + | + | + | + | + | + |
2004 | 0.6540 | 0.3871 | 0.1026 | 0.0911 | 0.1010 | 0.0467 | 0.9767 | 0.4279 | 0.9300 | 0.9984 | 0.9939 | 0.9871 | + | + | + | + | + | + |
2005 | 0.5944 | 0.3832 | 0.0672 | 0.1124 | 0.1068 | 0.0324 | 0.9658 | 0.4153 | 0.9726 | 0.9999 | 0.9987 | 0.9978 | + | + | + | + | + | + |
2006 | 0.5264 | 0.3449 | 0.1141 | 0.1353 | 0.1656 | 0.1199 | 0.9549 | 0.4026 | 0.8539 | 1.0000 | 0.9889 | 0.8143 | + | + | + | + | + | + |
2007 | 0.5638 | 0.3887 | 0.0849 | 0.1334 | 0.1406 | 0.0984 | 0.9440 | 0.3900 | 0.8904 | 0.9993 | 0.9269 | 0.8612 | + | + | + | + | + | + |
2008 | 0.5463 | 0.2661 | 0.0558 | 0.1818 | 0.1615 | 0.0693 | 0.9331 | 0.0030 | 0.9212 | 0.9744 | 0.9143 | 0.9512 | + | + | + | + | + | + |
2009 | 0.5159 | 0.2513 | 0.0539 | 0.1952 | 0.1230 | 0.0656 | 0.9222 | 0.0181 | 0.9182 | 0.9231 | 0.9792 | 0.9770 | + | + | + | + | + | + |
2010 | 0.5321 | 0.2791 | 0.0783 | 0.1257 | 0.1527 | 0.0261 | 0.9113 | 0.0120 | 0.9737 | 0.9913 | 0.9977 | 0.9985 | + | + | + | + | + | + |
2011 | 0.4280 | 0.2971 | 0.1160 | 0.2089 | 0.1214 | 0.0380 | 0.9004 | 0.0361 | 0.9753 | 0.8630 | 0.9184 | 0.9995 | + | + | + | + | + | + |
2012 | 0.9819 | 0.9737 | 0.0159 | 0.0594 | 0.0305 | 0.0840 | 0.8895 | 0.0000 | 0.9502 | 0.5336 | 0.8271 | 0.3646 | + | + | + | + | + | + |
2013 | 0.4855 | 0.2045 | 0.0666 | 0.1903 | 0.2094 | 0.0533 | 0.8786 | 0.2197 | 0.9874 | 0.6419 | 0.4747 | 0.9978 | + | + | + | + | + | + |
2014 | 0.5027 | 0.1249 | 0.1318 | 0.1908 | 0.2127 | 0.0745 | 0.8677 | 0.8631 | 0.8865 | 0.6856 | 0.6217 | 0.9511 | + | + | + | + | + | + |
2015 | 0.4059 | 0.1918 | 0.2893 | 0.2427 | 0.0944 | 0.0996 | 0.8568 | 0.0846 | 0.1259 | 0.4804 | 0.9995 | 0.9553 | + | + | + | + | + | + |
2016 | 0.4331 | 0.1404 | 0.1390 | 0.2319 | 0.0833 | 0.0211 | 0.8459 | 0.3448 | 0.9606 | 0.5183 | 0.9994 | 0.9995 | + | + | + | + | + | + |
* | FZ2000 | GG2000 | EC2000 | SC2000 | YC2000 | ZC2000 | * | FZ2001 | GG2001 | EC2001 | SC2001 | YC2001 | ZC2001 | * | FZ2002 | GG2002 | EC2002 | SC2002 | YC2002 | ZC2002 |
FZ2000 | 0.452 | FZ2001 | 0.494 | FZ2002 | 0.754 | |||||||||||||||
GG2000 | 0.707 | 0.145 | GG2001 | 0.678 | 0.099 | GG2002 | 0.826 | 0.453 | ||||||||||||
EC2000 | 0.602 | 0.344 | 0.150 | EC2001 | 0.738 | 0.399 | 0.226 | EC2002 | 0.868 | 0.613 | 0.141 | |||||||||
SC2000 | 0.628 | 0.439 | 0.286 | 0.064 | SC2001 | 0.737 | 0.367 | 0.276 | 0.054 | SC2002 | 0.856 | 0.594 | 0.202 | 0.071 | ||||||
YC2000 | 0.573 | 0.406 | 0.316 | 0.248 | 0.087 | YC2001 | 0.782 | 0.513 | 0.606 | 0.742 | 0.245 | YC2002 | 0.810 | 0.609 | 0.503 | 0.394 | 0.155 | |||
ZC2000 | 0.646 | 0.328 | 0.289 | 0.329 | 0.260 | 0.052 | ZC2001 | 0.741 | 0.364 | 0.324 | 0.250 | 0.449 | 0.068 | ZC2002 | 0.820 | 0.556 | 0.231 | 0.240 | 0.398 | 0.058 |
* | FZ2003 | GG2003 | EC2003 | SC2003 | YC2003 | ZC2003 | * | FZ2004 | GG2004 | EC2004 | SC2004 | YC2004 | ZC2004 | * | FZ2005 | GG2005 | EC2005 | SC2005 | YC2005 | ZC2005 |
FZ2003 | 0.758 | FZ2004 | 0.654 | FZ2005 | 0.594 | |||||||||||||||
GG2003 | 0.848 | 0.435 | GG2004 | 0.798 | 0.387 | GG2005 | 0.746 | 0.383 | ||||||||||||
EC2003 | 0.836 | 0.575 | 0.151 | EC2004 | 0.790 | 0.533 | 0.091 | EC2005 | 0.667 | 0.514 | 0.112 | |||||||||
SC2003 | 0.861 | 0.609 | 0.254 | 0.125 | SC2004 | 0.812 | 0.567 | 0.197 | 0.101 | SC2005 | 0.660 | 0.534 | 0.160 | 0.107 | ||||||
YC2003 | 0.833 | 0.604 | 0.405 | 0.515 | 0.120 | YC2004 | 0.719 | 0.583 | 0.259 | 0.285 | 0.103 | YC2005 | 0.696 | 0.624 | 0.205 | 0.190 | 0.067 | |||
ZC2003 | 0.802 | 0.566 | 0.206 | 0.229 | 0.318 | 0.051 | ZC2004 | 0.759 | 0.586 | 0.215 | 0.271 | 0.350 | 0.047 | ZC2005 | 0.688 | 0.617 | 0.167 | 0.188 | 0.253 | 0.032 |
* | FZ2006 | GG2006 | EC2006 | SC2006 | YC2006 | ZC2006 | * | FZ2007 | GG2007 | EC2007 | SC2007 | YC2007 | ZC2007 | * | FZ2008 | GG2008 | EC2008 | SC2008 | YC2008 | ZC2008 |
FZ2006 | 0.526 | FZ2007 | 0.564 | FZ2008 | 0.546 | |||||||||||||||
GG2006 | 0.712 | 0.345 | GG2007 | 0.774 | 0.389 | GG2008 | 0.733 | 0.266 | ||||||||||||
EC2006 | 0.661 | 0.530 | 0.135 | EC2007 | 0.725 | 0.568 | 0.133 | EC2008 | 0.704 | 0.475 | 0.182 | |||||||||
SC2006 | 0.678 | 0.573 | 0.236 | 0.166 | SC2007 | 0.733 | 0.582 | 0.184 | 0.141 | SC2008 | 0.676 | 0.532 | 0.253 | 0.162 | ||||||
YC2006 | 0.621 | 0.579 | 0.280 | 0.303 | 0.114 | YC2007 | 0.677 | 0.549 | 0.300 | 0.314 | 0.085 | YC2008 | 0.599 | 0.583 | 0.411 | 0.431 | 0.056 | |||
ZC2006 | 0.666 | 0.571 | 0.179 | 0.212 | 0.334 | 0.120 | ZC2007 | 0.730 | 0.638 | 0.232 | 0.246 | 0.346 | 0.098 | ZC2008 | 0.716 | 0.385 | 0.372 | 0.253 | 0.306 | 0.069 |
* | FZ2009 | GG2009 | EC2009 | SC2009 | YC2009 | ZC2009 | * | FZ2010 | GG2010 | EC2010 | SC2010 | YC2010 | ZC2010 | * | FZ2011 | GG2011 | EC2011 | SC2011 | YC2011 | ZC2011 |
FZ2009 | 0.516 | FZ2010 | 0.532 | FZ2011 | 0.428 | |||||||||||||||
GG2009 | 0.694 | 0.251 | GG2010 | 0.771 | 0.279 | GG2011 | 0.743 | 0.297 | ||||||||||||
EC2009 | 0.667 | 0.488 | 0.195 | EC2010 | 0.725 | 0.464 | 0.126 | EC2011 | 0.730 | 0.489 | 0.209 | |||||||||
SC2009 | 0.645 | 0.517 | 0.276 | 0.123 | SC2010 | 0.660 | 0.446 | 0.268 | 0.153 | SC2011 | 0.707 | 0.486 | 0.263 | 0.121 | ||||||
YC2009 | 0.595 | 0.469 | 0.482 | 0.302 | 0.054 | YC2010 | 0.759 | 0.569 | 0.406 | 0.412 | 0.078 | YC2011 | 0.627 | 0.495 | 0.422 | 0.349 | 0.116 | |||
ZC2009 | 0.590 | 0.441 | 0.328 | 0.238 | 0.320 | 0.066 | ZC2010 | 0.670 | 0.392 | 0.306 | 0.244 | 0.361 | 0.026 | ZC2011 | 0.612 | 0.439 | 0.340 | 0.274 | 0.357 | 0.038 |
* | FZ2012 | GG2012 | EC2012 | SC2012 | YC2012 | ZC2012 | * | FZ2013 | GG2013 | EC2013 | SC2013 | YC2013 | ZC2013 | * | FZ2014 | GG2014 | EC2014 | SC2014 | YC2014 | ZC2014 |
FZ2012 | 0.982 | FZ2013 | 0.486 | FZ2014 | 0.503 | |||||||||||||||
GG2012 | 0.988 | 0.974 | GG2013 | 0.669 | 0.205 | GG2014 | 0.660 | 0.125 | ||||||||||||
EC2012 | 0.990 | 0.980 | 0.059 | EC2013 | 0.805 | 0.431 | 0.190 | EC2014 | 0.778 | 0.375 | 0.191 | |||||||||
SC2012 | 0.989 | 0.982 | 0.127 | 0.031 | SC2013 | 0.729 | 0.384 | 0.410 | 0.209 | SC2014 | 0.739 | 0.320 | 0.372 | 0.213 | ||||||
YC2012 | 0.985 | 0.981 | 0.137 | 0.154 | 0.016 | YC2013 | 0.676 | 0.354 | 0.369 | 0.379 | 0.067 | YC2014 | 0.656 | 0.395 | 0.391 | 0.446 | 0.132 | |||
ZC2012 | 0.986 | 0.980 | 0.503 | 0.156 | 0.375 | 0.084 | ZC2013 | 0.620 | 0.345 | 0.304 | 0.295 | 0.196 | 0.053 | ZC2014 | 0.749 | 0.421 | 0.398 | 0.285 | 0.422 | 0.074 |
* | FZ2015 | GG2015 | EC2015 | SC2015 | YC2015 | ZC2015 | * | FZ2016 | GG2016 | EC2016 | SC2016 | YC2016 | ZC2016 | * FZ:MCI GG:II EC:PCOVSI SC:PCOVTI YC:PCOVPI ZC:AFE | ||||||
FZ2015 | 0.406 | FZ2016 | 0.433 | |||||||||||||||||
GG2015 | 0.590 | 0.192 | GG2016 | 0.662 | 0.140 | |||||||||||||||
EC2015 | 0.727 | 0.428 | 0.289 | EC2016 | 0.619 | 0.325 | 0.139 | |||||||||||||
SC2015 | 0.689 | 0.382 | 0.367 | 0.243 | SC2016 | 0.704 | 0.397 | 0.274 | 0.232 | |||||||||||
YC2015 | 0.572 | 0.354 | 0.388 | 0.389 | 0.094 | YC2016 | 0.574 | 0.415 | 0.297 | 0.341 | 0.083 | |||||||||
ZC2015 | 0.550 | 0.515 | 0.508 | 0.299 | 0.353 | 0.100 | ZC2016 | 0.554 | 0.419 | 0.231 | 0.298 | 0.355 | 0.021 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Wang, Z.; Zhang, H.; Wei, C. Spatial-Temporal Differentiation Analysis of Agricultural Land Use Intensity and Its Driving Factors at the County Scale: A Case Study in Hubei Province, China. Int. J. Environ. Res. Public Health 2020, 17, 6910. https://doi.org/10.3390/ijerph17186910
Yu L, Wang Z, Zhang H, Wei C. Spatial-Temporal Differentiation Analysis of Agricultural Land Use Intensity and Its Driving Factors at the County Scale: A Case Study in Hubei Province, China. International Journal of Environmental Research and Public Health. 2020; 17(18):6910. https://doi.org/10.3390/ijerph17186910
Chicago/Turabian StyleYu, Li, Zhanqi Wang, Hongwei Zhang, and Chao Wei. 2020. "Spatial-Temporal Differentiation Analysis of Agricultural Land Use Intensity and Its Driving Factors at the County Scale: A Case Study in Hubei Province, China" International Journal of Environmental Research and Public Health 17, no. 18: 6910. https://doi.org/10.3390/ijerph17186910
APA StyleYu, L., Wang, Z., Zhang, H., & Wei, C. (2020). Spatial-Temporal Differentiation Analysis of Agricultural Land Use Intensity and Its Driving Factors at the County Scale: A Case Study in Hubei Province, China. International Journal of Environmental Research and Public Health, 17(18), 6910. https://doi.org/10.3390/ijerph17186910