Impact on Air Quality of the COVID-19 Lockdown in the Urban Area of Palermo (Italy)
Abstract
:1. Introduction
2. Materials and Methods
Description of the Area and Sampling Sites
3. Results and Discussion
3.1. Gaseous Air Pollutants, CO, NO2, and O3
3.2. Particulate Matter PM10
3.3. Pre-Lockdown
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 1–23. [Google Scholar] [CrossRef] [PubMed]
- WHO. 2020. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 4 October 2020).
- Dutheil, F.; Baker, J.S.; Navel, V. COVID-19 as a factor influencing air pollution? Environ. Pollut. 2020, 263, 114466. [Google Scholar] [CrossRef] [PubMed]
- DPCM 9 Marzo 2020, n. DPCM 9 Marzo 2020, n. 14. Ulteriori disposizioni attuative del decreto-legge 23 febbraio 2020, n. 6, recante misure urgenti in materia di contenimento e gestione dell’emergenza epidemiologica da COVID-19, applicabili sull’intero territorio nazionale. (20A01558) (GU Serie Generale n.62 del 09-03-2020). Available online: https://www.gazzettaufficiale.it/eli/id/2020/03/09/20A01558/sg (accessed on 10 March 2020).
- DPCM 21 Marzo 2020. Ulteriori misure urgenti in materia di contenimento e gestione dell’emergenza epidemiologica da COVID-19, applicabili sull’intero territorio nazionale. (GU Serie Generale n.75 del 22-03-2020). Available online: https://www.gazzettaufficiale.it/eli/id/2020/03/22/20A01806/sg (accessed on 22 March 2020).
- Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020, 114465. [Google Scholar] [CrossRef] [PubMed]
- Fattorini, D.; Regoli, F. Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environ. Pollut. 2020, 264, 114732. [Google Scholar] [CrossRef] [PubMed]
- Brauer, M. How much, how long, what, and where: Air pollution exposure assessment for epidemiologic studies of respiratory disease. Proc. Am. Thorac. Soc. 2010, 7, 111–115. [Google Scholar] [CrossRef]
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A.; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef] [Green Version]
- Ciencewicki, J.; Jaspers, I. Air pollution and respiratory viral infection. Inhal. Toxicol. 2007, 19, 1135–1146. [Google Scholar] [CrossRef]
- Sedlmaier, N.; Hoppenheidt, K.; Krist, H.; Lehmann, S.; Lang, H.; Büttner, M. Generation of avian influenza virus (AIV) contaminated fecal fine particulate matter (PM2.5): Genome and infectivity detection and calculation of immission. Vet. Microbiol. 2009, 139, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci. Total Environ. 2020, 727. [Google Scholar] [CrossRef]
- Patel, K. 2020 Airborne Nitrogen Dioxide Plummets over China. Available online: https://www.earthobservatory.nasa.gov/images/146362/airborne-nitrogen-dioxide-plummets-over-china (accessed on 4 October 2020).
- Zambrano-Monserrate, M.A.; Alejandra Ruano, M.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total Environ. 2020, 728, 138813. [Google Scholar] [CrossRef]
- ESA. 2020. Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/COVID-19_nitrogen_dioxide_over_China (accessed on 4 April 2020).
- CAMS. 2020. Available online: https://atmosphere.copernicus.eu/amid-coronavirus-outbreak-copernicus-monitors-reduction-particulate-matter-pm25-over-china (accessed on 4 April 2020).
- European Environmental Agency. Air Pollution Goes down as Europe Takes Hard Measures to Combat Coronavirus. European Environment Agency. 2020. Available online: https://www.eea.europa.eu/highlights/air-pollution-goes-down-as (accessed on 4 October 2020).
- ESA. 2020. Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/Coronavirus_lockdown_leading_to_drop_in_pollution_across_Europe (accessed on 4 October 2020).
- Sharma, P.; Dhar, A. Effect of hydrogen supplementation on engine performance and emissions. Int. J. Hydrog. Energy 2018, 43, 7570–7580. [Google Scholar] [CrossRef]
- Berman, J.D.; Ebisu, K. Changes in U.S. air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739. [Google Scholar] [CrossRef] [PubMed]
- CEN. Ambient Air Quality. Standard Method for the Measurement of the Concentration of Nitrogen Dioxide and Nitrogen Monoxide by Chem-Iluminescence, EN 14211 41. 2005. Available online: https://standards.iteh.ai/catalog/standards/cen/181f3d8d-a64c-46fb-b90a-7affd10c7c0b/en-14211-2005 (accessed on 11 June 2008).
- CEN. Air Quality-Determination of the PM10 Fraction of Suspended Particulate Matter-Reference Method and Field Test Procedure to Demonstrate Reference Equivalence of Measurement Methods, EN123. 1998. Available online: https://ec.europa.eu/environment/air/pdf/finalwgreporten (accessed on 18 November 1998).
- Han, X.; Luke, P.N. A review of traffic-related air pollution exposure assessment studies in the developing world. Environ. Int. 2006, 32, 106–120. [Google Scholar] [CrossRef]
- EU-Commission. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. 2008. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32008L0050 (accessed on 11 June 2008).
- He, L.; Zhang, S.; Hu, J.; Li, Z.; Zheng, X.; Cao, Y.; Xu, G.; Yan, M.; Wu, Y. On-road emission measurements of reactive nitrogen compounds from heavy-duty diesel trucks in China. Environ. Pollut. 2020, 114280. [Google Scholar] [CrossRef] [PubMed]
- He, M.Z.; Kinney, P.L.; Li, T.; Chen, C.; Sun, Q.; Ban, J.; Wang, J.; Liu, S.; Goldsmith, J.; Kioumourtzoglou, M.A. Short- and intermediate-term exposure to NO2 and mortality: A multi-county analysis in China. Environ. Pollut. 2020, 114165. [Google Scholar] [CrossRef] [PubMed]
- ESA. 2020. Available online: https://www.esa.int/Applications/Observing_the_Earth/Co-pernicus/Sentinel-5P (accessed on 27 March 2020).
- Muhammad, S.; Long, X.; Muhammad, S. COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ. 2020, 728, 138813. [Google Scholar] [CrossRef]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in Milan, Italy. Sci. Total Environ. 2020, 740, 14005. [Google Scholar] [CrossRef] [PubMed]
- Stockwell, W.R.; Lawson, C.V.; Saunders, E.; Goliff, W.S. A review of tropospheric atmospheric chemistry and gas-phase chemical mechanisms for air quality modeling. Atmosphere 2012, 3, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Finlayson-Pitts, B.J.; Pitts, J.N. Chemistry of Upper and Lower Atmosphere; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Fujita, E.M.; Campbell, D.E.; Stockwell, W.R.; Lawson, D.R. Past and future ozone trends in California’s South Coast Air Basin: Reconciliation of ambient measurements with past and projected emission inventories. J. Air Waste Manag. Assoc. 2013, 63, 54–69. [Google Scholar] [CrossRef]
- Fujita, E.M.; Stockwell, W.R.; Campbell, D.E.; Keislar, R.E.; Lawson, D.R. Evolution of the magnitude and spatial extent of the weekend ozone effect in California’s South Coast Air Basin, 1981–2000. J. Air Waste Manag. Assoc. 2003, 53, 802–815. [Google Scholar] [CrossRef]
- Escudero, M.; Segers, A.; Kranenburg, R.; Querol, X.; Alastuey, A.; Borge, R.; de la Paz, D.; Gangoiti, G.; Schaap, M. Analysis of summer O3 in the Madrid air basin with the LOTOS-EUROS chemical transport model. Atmos. Chem. Phys. 2019, 19, 14211–14232. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Qiao, X.; Zhang, H. Modeling PM2.5 and O3 with aerosol feedbacks using WRF/Chem over the Sichuan Basin, southwestern China. Chemosphere 2020, 254, 126735. [Google Scholar] [CrossRef]
- Sharma, S.; Zhang, M.; Anshika, G.J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 138, 138878. [Google Scholar] [CrossRef] [PubMed]
- Varrica, D.; Tamburo, E.; Vultaggio, M.; Di Carlo, I. ATR–FTIR Spectral Analysis and Soluble Components of PM10 And PM2.5 Particulate Matter over the Urban Area of Palermo (Italy) during Normal Days and Saharan Events. Int. J. Environ. Res. Public Health 2019, 16, 2507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dongarrà, G.; Manno, E.; Varrica, D. Possible markers of traffic-related emissions. Environ. Monit. Assess. 2009, 154, 17–125. [Google Scholar] [CrossRef]
- Dongarrà, G.; Manno, E.; Varrica, D.; Lombardo, M.; Vultaggio, M. Study on ambient concentrations of PM10, PM10–2.5, PM2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates. Atmos. Environ. 2010, 44, 5244–5257. [Google Scholar] [CrossRef]
Pollutant | Monitoring Station | ||
---|---|---|---|
CO | Di Blasi | DB | Urban (Hight density traffic) |
Giulio Cesare | GC | Urban (Heavy density traffic) | |
Indipendenza | IND | Urban (Lower traffic flow) | |
NO2 | Castelnuovo | CS | Urban (Heavy density traffic) |
Di Blasi | DB | Urban (Hight density traffic) | |
Giulio Cesare | GC | Urban (Heavy density traffic) | |
O3 | Castelnuovo | CS | Urban (Heavy density traffic) |
PM10 | Castelnuovo | CS | Urban (Heavy density traffic) |
Di Blasi | DB | Urban (Hight density traffic) | |
Giulio Cesare | GC | Urban (Heavy density traffic) | |
Indipendenza | IND | Urban (Lower traffic flow) |
2015–2019 | 2020 | % Change | t-Test | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IND | GC | CS | DB | IND | GC | CS | DB | IND | GC | CS | DB | IND | GC | CS | DB | ||
CO | 01/01–/02/29 | 0.49 | 0.76 | 0.64 | 0.48 | 0.81 | 0.70 | −2 | 7 | 9 | 0.5 | −2.8 | −2.9 | ||||
03/01–04/30 | 0.41 | 0.63 | 0.49 | 0.24 | 0.26 | 0.28 | −41 | −58 | −43 | 17.5 | 43.6 | 18.9 | |||||
05/01–07/31 | 0.33 | 0.51 | 0.40 | 0.26 | 0.32 | 0.39 | −21 | −38 | −3 | 9.9 | 36.0 | 1.7 | |||||
NO2 | 01/01–/02/29 | 59 | 50 | 52 | 58 | 41 | 65 | −1 | −19 | 25 | 0.7 | 13.6 | −15.8 | ||||
03/01–04/30 | 56 | 46 | 58 | 29 | 21 | 36 | −48 | −54 | −37 | 42.1 | 37.2 | 30.2 | |||||
05/01–07/31 | 45 | 39 | 53 | 31 | 24 | 40 | −31 | −38 | −23 | 33.3 | 36.2 | 25.7 | |||||
O3 | 01/01–/02/29 | 40 | 39 | −4 | 1.8 | ||||||||||||
03/01–04/30 | 54 | 63 | 18 | −14.9 | |||||||||||||
05/01–07/31 | 53 | 53 | −1 | 15.1 |
2015–2019 | 2020 | % Change | t-Test | |||
---|---|---|---|---|---|---|
1 March–30 April | CO | Median | 0.46 | 0.20 | −56 | |
Mean | 0.51 | 0.26 | −48 | 15.36 | ||
St. Dev. | 0.25 | 0.09 | ||||
NO2 | Median | 51.4 | 26.8 | −48 | ||
Mean | 53.4 | 32.4 | −39 | 12.04 | ||
St. Dev. | 14.2 | 18.3 | ||||
10 March–30 April | CO | Median | 0.45 | 0.19 | −58 | |
Mean | 0.50 | 0.25 | −51 | 15.63 | ||
St. Dev. | 0.08 | 0.09 | ||||
NO2 | Median | 51.4 | 24.5 | −52 | ||
Mean | 53.3 | 26.8 | −50 | 15.72 | ||
St. Dev. | 5.2 | 9.9 | ||||
22 March–30 April | CO | Median | 0.44 | 0.18 | −60 | |
Mean | 0.49 | 0.22 | −56 | 16.62 | ||
St. Dev. | 0.08 | 0.06 | ||||
NO2 | Median | 50.4 | 21.8 | −57 | ||
Mean | 51.9 | 25.5 | −51 | 20.99 | ||
St. Dev. | 4.9 | 6.3 |
2015–2019 | 2020 | % Change | t-Test | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IND | GC | CS | DB | IND | GC | CS | DB | IND | GC | CS | DB | IND | GC | CS | DB | ||
PM10 | 01/01–/02/29 | 29 | 32 | 31 | 35 | 31 | 32 | 36 | 31 | 6 | 1 | 19 | −13 | −1.3 | −0.2 | −3.3 | 3.4 |
03/01–04/30 | 33 | 34 | 34 | 39 | 19 | 19 | 24 | 18 | −44 | −43 | −30 | −53 | 10.3 | 12.9 | 6.2 | 16.0 | |
05/01–07/31 | 27 | 29 | 27 | 33 | 17 | 17 | 18 | 20 | −35 | −42 | −34 | −38 | 11.7 | 13.8 | 9.5 | 14.7 |
2015–2019 | 2020 | % Change | t-Test | |||
---|---|---|---|---|---|---|
11 March–16 March | CO | Median | 0.46 | 0.32 | −31 | 5.054 |
Mean | 0.50 | 0.37 | −27 | |||
NO2 | Median | 54 | 38 | −30 | 6.648 | |
Mean | 56 | 43 | −23 | |||
PM10 | Median | 29.1 | 22.1 | −24 | 2.99 | |
Mean | 29.4 | 22.3 | −24 | |||
17 March–22 March | CO | Median | 0.52 | 0.22 | −58 | 11.5 |
Mean | 0.58 | 0.30 | −49 | |||
NO2 | Median | 57 | 28 | −52 | 17.462 | |
Mean | 59 | 31 | −48 | |||
PM10 | Median | 27.1 | 18.6 | −31 | 5.014 | |
Mean | 33.6 | 19.1 | −43 | |||
23 March–28 March | CO | Median | 0.48 | 0.16 | −66 | 15.86 |
Mean | 0.50 | 0.20 | −61 | |||
NO2 | Median | 53 | 25 | −52 | 15 | |
Mean | 54 | 29 | −47 | |||
PM10 | Median | 34.6 | 14.1 | −59 | 7.49 | |
Mean | 33.8 | 13.3 | −61 |
1 January–29 February | ||||
---|---|---|---|---|
2015–2019 | 2020 | % Change | ||
CO | Median | 0.56 | 0.50 | −11 |
Mean | 0.63 | 0.66 | 6 | |
St. Dev. | 0.34 | 0.50 | ||
NO2 | Median | 52 | 51 | −3 |
Mean | 54 | 54 | 0 | |
St. Dev. | 6 | 11 | ||
PM10 | Median | 31 | 32 | 3 |
Mean | 32 | 33 | 2 | |
St. Dev. | 6 | 9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vultaggio, M.; Varrica, D.; Alaimo, M.G. Impact on Air Quality of the COVID-19 Lockdown in the Urban Area of Palermo (Italy). Int. J. Environ. Res. Public Health 2020, 17, 7375. https://doi.org/10.3390/ijerph17207375
Vultaggio M, Varrica D, Alaimo MG. Impact on Air Quality of the COVID-19 Lockdown in the Urban Area of Palermo (Italy). International Journal of Environmental Research and Public Health. 2020; 17(20):7375. https://doi.org/10.3390/ijerph17207375
Chicago/Turabian StyleVultaggio, Marcello, Daniela Varrica, and Maria Grazia Alaimo. 2020. "Impact on Air Quality of the COVID-19 Lockdown in the Urban Area of Palermo (Italy)" International Journal of Environmental Research and Public Health 17, no. 20: 7375. https://doi.org/10.3390/ijerph17207375
APA StyleVultaggio, M., Varrica, D., & Alaimo, M. G. (2020). Impact on Air Quality of the COVID-19 Lockdown in the Urban Area of Palermo (Italy). International Journal of Environmental Research and Public Health, 17(20), 7375. https://doi.org/10.3390/ijerph17207375