Development of a Rapid and Eco-Friendly UHPLC Analytical Method for the Detection of Histamine in Fish Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solution
2.2. Standard Solutions and Calibration Curve Preparation
2.3. Sample Preparation and Extraction
2.4. Ultra-High Performance Liquid Chromatography Conditions
2.5. Validation of the Analytical Method
3. Results and Discussion
3.1. Extraction Optimization
3.2. Method Optimization
3.2.1. Validation Parameters
3.2.2. Composition and pH of Mobile Phase
3.3. Application of the Method to Real Samples
3.4. Proficiency Test
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020; FAO: Rome, Italy, 2020; pp. 1–224. [Google Scholar]
- Turco, V.L.; Bella, G.D.; Furci, P.; Cicero, N.; Pollicino, G.; Dugo, G. Heavy metals content by ICP-OES in Sarda sarda, Sardinella aurita and Lepidopus caudatus; from the Strait of Messina (Sicily, Italy). Nat. Prod. Res. 2013, 27, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Cammilleri, G.; Vazzana, M.; Arizza, V.; Giunta, F.; Vella, A.; Dico, G.L.; Giaccone, V.; Giofrè, S.V.; Giangrosso, G.; Cicero, N.; et al. Mercury in fish products: What’s the best for consumers between bluefin tuna and yellowfin tuna? Nat. Prod. Res. 2018, 32, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Cammilleri, G.; Galluzzo, F.G.; Fazio, F.; Pulvirenti, A.; Vella, A.; Lo Dico, G.M.; Macaluso, A.; Ciaccio, G.; Ferrantelli, V. Mercury Detection in Benthic and Pelagic Fish Collected from Western Sicily (Southern Italy). Animals 2019, 9, 594. [Google Scholar] [CrossRef] [Green Version]
- Hair Mercury Levels Detection in Fishermen from Sicily (Italy) by ICP-MS Method after Microwave-Assisted Digestion. Available online: https://www.hindawi.com/journals/bca/2016/5408014/abs/ (accessed on 1 July 2019).
- Domingo, J.L. Nutrients and Chemical Pollutants in Fish and Shellfish. Balancing Health Benefits and Risks of Regular Fish Consumption. Crit. Rev. Food Sci. Nutr. 2016, 56, 979–988. [Google Scholar] [CrossRef]
- Giaccone, V.; Cammilleri, G.; Macaluso, A.; Cicero, N.; Pulvirenti, A.; Vella, A.; Ferrantelli, V. A LC-HRMS After QuEChERS Cleanup Method for the Rapid Determination of Dye Residues in Fish Products. Food Anal. Methods 2018, 11, 625–634. [Google Scholar] [CrossRef]
- Tsai, Y.-H.; Chang, S.-C.; Kung, H.-F.; Wei, C.-I.; Hwang, D.-F. Histamine Production by Enterobacter aerogenes in Sailfish and Milkfish at Various Storage Temperatures. J. Food Prot. 2005, 68, 1690–1695. [Google Scholar] [CrossRef]
- Leonard, B. Fish and Fishery Products Hazards and Controls Guidance, 4th ed.; DIANE Publishing: Darby, PA, USA, 2011; pp. 1–498. [Google Scholar]
- Massari, N.A.; Nicoud, M.B.; Medina, V.A. Histamine receptors and cancer pharmacology: An update. Br. J. Pharmacol. 2020, 177, 516–538. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Capillas, C.; Moral, A. Free amino acids and biogenic amines in red and white muscle of tuna stored in controlled atmospheres. Amino Acids 2004, 26, 125–132. [Google Scholar] [CrossRef]
- Wang, D.; Yamaki, S.; Kawai, Y.; Yamazaki, K. Histamine Production Behaviors of a Psychrotolerant Histamine-Producer, Morganella psychrotolerans in Various Environmental Conditions. Curr. Microbiol. 2020, 77, 460–467. [Google Scholar] [CrossRef]
- Gagic, M.; Jamroz, E.; Krizkova, S.; Milosavljevic, V.; Kopel, P.; Adam, V. Current Trends in Detection of Histamine in Food and Beverages. J. Agric. Food Chem. 2019, 67, 773–783. [Google Scholar] [CrossRef]
- Bjornsdottir-Butler, K.; Bencsath, F.A.; McCarthy, S.; Benner, R.A. Heat Resistance of Histidine Decarboxylase from Gram-Negative Histamine-Producing Bacteria in Seafood. J. Food Prot. 2017, 80, 1273–1279. [Google Scholar] [CrossRef] [PubMed]
- Hungerford, J.M. Scombroid poisoning: A review. Toxicon 2010, 56, 231–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, C.; Teuber, S.; Gershwin, M.E. Histamine (Scombroid) Fish Poisoning: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2016, 50, 64–69. [Google Scholar] [CrossRef]
- Lehane, L.; Olley, J. Histamine fish poisoning revisited. Int. J. Food Microbiol. 2000, 58, 1–37. [Google Scholar] [CrossRef]
- Cattaneo, P. Scombroid syndrome—Histamine poisoning. Food In 2012, 1, 5–80. [Google Scholar] [CrossRef]
- Taylor, S.L.; Stratton, J.E.; Nordlee, J.A. Histamine Poisoning (Scombroid Fish Poisoning): An Allergy-Like Intoxication. J. Toxicol. Clin. Toxicol. 1989, 27, 225–240. [Google Scholar] [CrossRef]
- Collins, J.D.; Noerrung, B.; Budka, H.; Andreoletti, O.; Buncic, S.; Griffin, J.; Hald, T.; Havelaar, A.; Hope, J.; Klein, G. EFSA Panel on Biological Hazards (BIOHAZ) Scientific Opinion on risk based control of biogenic amine formation in fermented foods: Biogenic amines in fermented foods. EFSA J. 2011, 9, 2393. [Google Scholar] [CrossRef] [Green Version]
- Consolidated Text: Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs (Text with EEA Relevance)Text with EEA Relevance. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02005R2073-20200308 (accessed on 3 September 2020).
- Commission Regulation (EC) No 1441/2007 of 5 December 2007 Amending Regulation (EC) No 2073/2005 on Microbiological Criteria for Foodstuffs (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/eli/reg/2007/1441/oj (accessed on 3 September 2020).
- Venza, I.; Visalli, M.; Ceci, G.; Teti, D. Quantitative Determination of Histamine in Tears during Conjunctivitis by a Novel HPLC Method. Ophthalmic Res. 2004, 36, 62–69. [Google Scholar] [CrossRef]
- Granerus, G.; Lönnqvist, B.; Wass, U. Determination of the histamine metabolite tele-methylimidazoleacetic acid and of creatinine in urine by the same HPLC system. Inflamm. Res. 1999, 48, 75–80. [Google Scholar] [CrossRef]
- Šimat, V.; Dalgaard, P. Use of small diameter column particles to enhance HPLC determination of histamine and other biogenic amines in seafood. LWT Food Sci. Technol. 2011, 44, 399–406. [Google Scholar] [CrossRef]
- Arulkumar, A.; Karthik, G.; Paramasivam, S.; Rabie, M.A. Histamine levels in Indian fish via enzymatic, TLC and HPLC methods during storage. Food Meas. 2017, 11, 281–289. [Google Scholar] [CrossRef]
- Tahmouzi, S.; Khaksar, R.; Ghasemlou, M. Development and validation of an HPLC-FLD method for rapid determination of histamine in skipjack tuna fish (Katsuwonus pelamis). Food Chem. 2011, 126, 756–761. [Google Scholar] [CrossRef]
- Altieri, I.; Semeraro, A.; Scalise, F.; Calderari, I.; Stacchini, P. European official control of food: Determination of histamine in fish products by a HPLC–UV-DAD method. Food Chem. 2016, 211, 694–699. [Google Scholar] [CrossRef]
- Piersanti, A.; Tavoloni, T.; Lestingi, C.; Galarini, R. High-throughput histamine analysis approach in an official control laboratory: Analytical methods and four years fish products results. Food Chem. 2014, 153, 437–443. [Google Scholar] [CrossRef]
- Nadeem, M.; Naveed, T.; Rehman, F.; Xu, Z. Determination of histamine in fish without derivatization by indirect reverse phase-HPLC method. Microchem. J. 2019, 144, 209–214. [Google Scholar] [CrossRef]
- ISO/IEC 17025:2005-General Requirements for the Competence of Testing and Calibration Laboratories. Available online: https://www.iso.org/standard/39883.html (accessed on 3 October 2018).
- Oguri, S.; Mizusawa, A.; Kamada, M.; Kohori, M. A new method of histamine colorimetry using 2,3-naphthalenedicarboxaldehyde on a silica–gel column cartridge. Anal. Chim. Acta 2006, 558, 326–331. [Google Scholar] [CrossRef]
- Bateman, R.C.; Eldrige, D.B.; Wade, S.; McCOY-MESSER, J.; Jester, E.L.E.; Mowdy, D.E. Copper Chelation Assay For Histamine in Tuna. J. Food Sci. 1994, 59, 517–518. [Google Scholar] [CrossRef]
- Hermann, K.; Frank, G.; Ring, J. Contamination of heparin by histamine: Measurement and characterization by high-performance liquid chromatography and radioimmunoassay. Allergy 1994, 49, 569–572. [Google Scholar] [CrossRef]
- Peng, J.; Fang, K.; Xie, D.; Ding, B.; Yin, J.-Y.; Cui, X.; Zhang, Y.; Liu, J. Development of an automated on-line pre-column derivatization procedure for sensitive determination of histamine in food with high-performance liquid chromatography–fluorescence detection. J. Chromatogr. A 2008, 1209, 70–75. [Google Scholar] [CrossRef]
- Evangelista, W.P.; Silva, T.M.; Guidi, L.R.; Tette, P.A.S.; Byrro, R.M.D.; Santiago-Silva, P.; Fernandes, C.; Gloria, M.B.A. Quality assurance of histamine analysis in fresh and canned fish. Food Chem. 2016, 211, 100–106. [Google Scholar] [CrossRef]
- Sentellas, S.; Núñez, Ó.; Saurina, J. Recent Advances in the Determination of Biogenic Amines in Food Samples by (U)HPLC. J. Agric. Food Chem. 2016, 64, 7667–7678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Deng, Y.; Yang, L.; Wang, J.; Xu, F. Determination of Histamine by High-Performance Liquid Chromatography After Precolumn Derivatization with o-Phthalaldehyde-Sulfite. J. Chromatogr. Sci. 2016, 54, 547–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maldonado, M.; Maeyama, K. Simultaneous electrochemical measurement method of histamine and Nτ-methylhistamine by high-performance liquid chromatography–amperometry with o-phthalaldehyde–sodium sulfite derivatization. Anal. Biochem. 2013, 432, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Liang, Y.; Li, S.; Guo, Q.; Wu, C. A Modified o-Phthalaldehyde Fluorometric Analytical Method for Ultratrace Ammonium in Natural Waters Using EDTA-NaOH as Buffer. J. Anal. Methods Chem. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Munir, M.A.; Badri, K.H. The Importance of Derivatizing Reagent in Chromatography Applications for Biogenic Amine Detection in Food and Beverages. J. Anal. Methods Chem. 2020, 2020. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Henderson, R.K.; Hill, A.P.; Redman, A.M.; Sneddon, H.F. Development of GSK’s acid and base selection guides. Green Chem. 2015, 17, 945–949. [Google Scholar] [CrossRef]
- Vieira, C.P.; da Costa, M.P.; Silva, V.L.M.; da Silva Frasao, B.; de Aquino, L.F.M.C.; de Oliveira Nunes, Y.E.C.; Conte-Junior, C.A. Development and validation of RP-HPLC-DAD method for biogenic amines determination in probiotic yogurts. Arab. J. Chem. 2020, 13, 1582–1597. [Google Scholar] [CrossRef]
- Zarei, M.; Fazlara, A.; Najafzadeh, H.; Karahroodi, F.Z. Efficiency of Different Extraction Solvents on Recovery of Histamine from Fresh, Frozen and Canned Fish. J. Food Qual. Hazards Control 2014, 1, 72–76. [Google Scholar]
- Shakila, R.J.; Vijayalakshmi, K.; Jeyasekaran, G. Changes in histamine and volatile amines in six commercially important species of fish of the Thoothukkudi coast of Tamil Nadu, India stored at ambient temperature. Food Chem. 2003, 82, 347–352. [Google Scholar] [CrossRef]
- Prestes, O.D.; Friggi, C.A.; Adaime, M.B.; Zanella, R. QuEChERS: A modern sample preparation method for pesticide multiresidue determination in food by chromatographic methods coupled to mass spectrometry. Quím. Nova 2009, 32, 1620–1634. [Google Scholar] [CrossRef]
- Deventer, K.; Pozo, O.J.; Verstraete, A.G.; Van Eenoo, P. Dilute-and-shoot-liquid chromatography-mass spectrometry for urine analysis in doping control and analytical toxicology. Trends Anal. Chem. 2014, 55, 1–13. [Google Scholar] [CrossRef]
- Jaikwang, P.; Junkuy, A.; Sapbamrer, R.; Seesen, M.; Khacha-ananda, S.; Mueangkhiao, P.; Wunnapuk, K. A Dilute-and-Shoot LC–MS/MS Method for Urinary Glyphosate and AMPA. Chromatographia 2020, 83, 467–475. [Google Scholar] [CrossRef]
- Vitali, L.; Valese, A.C.; Azevedo, M.S.; Gonzaga, L.V.; Costa, A.C.O.; Piovezan, M.; Vistuba, J.P.; Micke, G.A. Development of a fast and selective separation method to determine histamine in tuna fish samples using capillary zone electrophoresis. Talanta 2013, 106, 181–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mopper, B.; Sciacchttano, C.J. Capillary Zone Electrophoretic Determination of Histamine in Fish. J. AOAC Int. 1994, 77, 881–884. [Google Scholar] [CrossRef] [PubMed]
- Nishiwaki, F.; Kuroda, K.; Inoue, Y.; Endo, G. Determination of histamine, 1-methylhistamine and N-methylhistamine by capillary electrophoresis with micelles. Biomed. Chromatogr. 2000, 14, 184–187. [Google Scholar] [CrossRef]
- Cinquina, A.L.; Calì, A.; Longo, F.; Santis, L.D.; Severoni, A.; Abballe, F. Determination of biogenic amines in fish tissues by ion-exchange chromatography with conductivity detection. J. Chromatogr. A 2004, 1032, 73–77. [Google Scholar] [CrossRef]
- Barnes, K.A.; Fussell, R.J.; Startin, J.R.; Pegg, M.K.; Thorpe, S.A.; Reynolds, S.L. High-performance Liquid Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry with Ionization Polarity Switching for the Determination of Selected Pesticides. Rapid Commun. Mass. Spectrom. 1997, 11, 117–123. [Google Scholar] [CrossRef]
- Kim, J.-H.; Shin, I.S.; Lee, Y.K.; Oh, H.J.; Ban, S.J. Improved HPLC Method Using 2,3-naphthalenedicarboxaldehyde as Fluorescent Labeling Agent for Quantification of Histamine in Human Immunoglobulin Preparations. Osong Public Health Res. Perspect. 2011, 2, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Muscarella, M.; Lo Magro, S.; Campaniello, M.; Armentano, A.; Stacchini, P. Survey of histamine levels in fresh fish and fish products collected in Puglia (Italy) by ELISA and HPLC with fluorimetric detection. Food Control 2013, 31, 211–217. [Google Scholar] [CrossRef]
- Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem. 2007, 9, 927–934. [Google Scholar] [CrossRef]
- Garrigues, S.; Armenta, S.; de la Guardia, M. Challenges in Green Analytical Chemistry. In Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 1–9. [Google Scholar] [CrossRef]
- Jinadasa, B.K.K.K.; Jayasinghe, G.D.T.M.; Ahmad, S.B.N. Validation of high-performance liquid chromatography (HPLC) method for quantitative analysis of histamine in fish and fishery products. Cogent Chem. 2016, 2, 1156806. [Google Scholar] [CrossRef]
- Kounnoun, A.; EL Maadoudi, M.; Cacciola, F.; Mondello, L.; Bougtaib, H.; Alahlah, N.; Amajoud, N.; EL Baaboua, A.; Louajri, A. Development and Validation of a High-Performance Liquid Chromatography Method for the Determination of Histamine in Fish Samples Using Fluorescence Detection with Pre-column Derivatization. Chromatographia 2020, 83, 893–901. [Google Scholar] [CrossRef]
- Jensen, T.B.; Marley, P.D. Development of an assay for histamine using automated high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B Biomed. Sci. Appl. 1995, 670, 199–207. [Google Scholar] [CrossRef]
Histamine Level (mg kg−1) | Mean ± SD (mg kg−1) | RSD (%) | Expanded Uncertainty (%) | Recovery (%) |
---|---|---|---|---|
100 | 104.0 ± 0.9 | 0.9 | 16 | 104 |
200 | 200 ± 3 | 1.4 | 9.5 | 100 |
400 | 401 ± 2 | 0.5 | 5 | 100 |
Sample Type | N | >LOD (%) | Mean ± SD (mg kg−1) |
---|---|---|---|
Bluefin tuna fillets | 42 | 6 (14.3) | 14.62 ± 79.44 |
Anchovies | 27 | 2 (7.4) | 43.12 ± 10.5 |
Mackerel | 27 | 6 (22.2) | 5.26 ± 9.8 |
Mackerel in oil | 37 | - | - |
Tuna in oil | 37 | - | - |
Anchovy paste | 27 | 9 (33.3) | 20.86 ± 29.50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicero, A.; Galluzzo, F.G.; Cammilleri, G.; Pulvirenti, A.; Giangrosso, G.; Macaluso, A.; Vella, A.; Ferrantelli, V. Development of a Rapid and Eco-Friendly UHPLC Analytical Method for the Detection of Histamine in Fish Products. Int. J. Environ. Res. Public Health 2020, 17, 7453. https://doi.org/10.3390/ijerph17207453
Cicero A, Galluzzo FG, Cammilleri G, Pulvirenti A, Giangrosso G, Macaluso A, Vella A, Ferrantelli V. Development of a Rapid and Eco-Friendly UHPLC Analytical Method for the Detection of Histamine in Fish Products. International Journal of Environmental Research and Public Health. 2020; 17(20):7453. https://doi.org/10.3390/ijerph17207453
Chicago/Turabian StyleCicero, Antonello, Francesco Giuseppe Galluzzo, Gaetano Cammilleri, Andrea Pulvirenti, Giuseppe Giangrosso, Andrea Macaluso, Antonio Vella, and Vincenzo Ferrantelli. 2020. "Development of a Rapid and Eco-Friendly UHPLC Analytical Method for the Detection of Histamine in Fish Products" International Journal of Environmental Research and Public Health 17, no. 20: 7453. https://doi.org/10.3390/ijerph17207453
APA StyleCicero, A., Galluzzo, F. G., Cammilleri, G., Pulvirenti, A., Giangrosso, G., Macaluso, A., Vella, A., & Ferrantelli, V. (2020). Development of a Rapid and Eco-Friendly UHPLC Analytical Method for the Detection of Histamine in Fish Products. International Journal of Environmental Research and Public Health, 17(20), 7453. https://doi.org/10.3390/ijerph17207453