The Role of Sleep Quality, Trait Anxiety and Hypothalamic-Pituitary-Adrenal Axis Measures in Cognitive Abilities of Healthy Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Clinical Assessment
2.3. Neuropsychological Assessment
2.4. HPA Axis Measures
2.4.1. CAR
2.4.2. Diurnal Cortisol Slope
2.4.3. Cortisol Levels over the Day
2.5. Statistical Analyses
3. Results
3.1. Univariate Analyses
3.2. Exploratory Analysis by Gender and Age Range
3.3. Multiple Linear Regression Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lo, J.C.; Groeger, J.A.; Cheng, G.H.; Dijk, D.-J.; Chee, M.W. Self-reported sleep duration and cognitive performance in older adults: A systematic review and meta-analysis. Sleep Med. 2016, 17, 87–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rana, B.K.; Panizzon, M.S.; Franz, C.E.; Spoon, K.M.; Jacobson, K.C.; Xian, H.; Ancoli-Israel, S.; Lyons, M.; Kremen, W.S. Association of Sleep Quality on Memory-Related Executive Functions in Middle Age. J. Int. Neuropsychol. Soc. 2017, 24, 67–76. [Google Scholar] [CrossRef]
- Waller, K.L.; Mortensen, E.L.; Avlund, K.; Osler, M.; Fagerlund, B.; Lauritzen, M.; Jennum, P. Subjective sleep quality and daytime sleepiness in late midlife and their association with age-related changes in cognition. Sleep Med. 2016, 17, 165–173. [Google Scholar] [CrossRef]
- Johar, H.; Kawan, R.; Thwing, R.E.; Karl-Heinz, L.; Emeny, R.T.; Ladwig, K.-H. Impaired Sleep Predicts Cognitive Decline in Old People: Findings from the Prospective KORA Age Study. Sleep 2016, 39, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-B.; Myung, S.-K.; Lee, S.-M.; Park, Y.C. Longer Duration of Sleep and Risk of Cognitive Decline: A Meta-Analysis of Observational Studies. Neuroepidemiology 2016, 47, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Potvin, O.; Lorrain, D.; Forget, H.; Dubé, M.; Grenier, S.; Préville, M.; Hudon, C. Sleep Quality and 1-Year Incident Cognitive Impairment in Community-Dwelling Older Adults. Sleep 2012, 35, 491–499. [Google Scholar] [CrossRef] [Green Version]
- Gobin, C.M.; Banks, J.B.; Fins, A.I.; Tartar, J.L. Poor sleep quality is associated with a negative cognitive bias and decreased sustained attention. J. Sleep Res. 2015, 24, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Alvaro, P.K.; Roberts, R.M.; Harris, J.K. A Systematic Review Assessing Bidirectionality between Sleep Disturbances, Anxiety, and Depression. Sleep 2013, 36, 1059–1068. [Google Scholar] [CrossRef]
- Grupe, D.W.; Nitschke, J.B. Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective. Nat. Rev. Neurosci. 2013, 14, 488–501. [Google Scholar] [CrossRef]
- Basten, U.; Stelzel, C.; Fiebach, C.J. Trait anxiety and the neural efficiency of manipulation in working memory. Cogn. Affect. Behav. Neurosci. 2012, 12, 571–588. [Google Scholar] [CrossRef] [Green Version]
- Hobson, J.A.; Pace-Schott, E.F. The cognitive neuroscience of sleep: Neuronal systems, consciousness and learning. Nat. Rev. Neurosci. 2002, 3, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Pace-Schott, E.F.; Germain, A.; Milad, M.R. Effects of sleep on memory for conditioned fear and fear extinction. Psychol. Bull. 2015, 141, 835–857. [Google Scholar] [CrossRef] [PubMed]
- Stickgold, R.; Hobson, J.A.; Fosse, R.; Fosse, M. Sleep, Learning, and Dreams: Off-line Memory Reprocessing. Science 2001, 294, 1052–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vertes, R.; Eastman, K.E. The case against memory consolidation in REM sleep. Behav. Brain Sci. 2000, 23, 867–876. [Google Scholar] [CrossRef]
- Killgore, W.D.S. Effects of sleep deprivation on cognition. Prog. Brain Res. 2010, 185, 105–129. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.L.; Gunzelmann, G.; Whitney, P.; Hinson, J.M.; Belenky, G.; Rabat, A.; Van Dongen, H.P.A. Deconstructing and reconstructing cognitive performance in sleep deprivation. Sleep Med. Rev. 2012, 17, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Chambers, A.M. The role of sleep in cognitive processing: Focusing on memory consolidation. Wiley Interdiscip. Rev. Cogn. Sci. 2017, 8, e1433. [Google Scholar] [CrossRef] [PubMed]
- Genzel, L.; Spoormaker, V.; Konrad, B.; Dresler, M. The role of rapid eye movement sleep for amygdala-related memory processing. Neurobiol. Learn. Mem. 2015, 122, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Landmann, N.; Kuhn, M.; Piosczyk, H.; Feige, B.; Baglioni, C.; Spiegelhalder, K.; Frase, L.; Riemann, D.; Sterr, A.; Nissen, C. The reorganisation of memory during sleep. Sleep Med. Rev. 2014, 18, 531–541. [Google Scholar] [CrossRef]
- De Vivo, L.; Bellesi, M.; Marshall, W.; Bushong, E.A.; Ellisman, M.H.; Tononi, G.; Cirelli, C. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 2017, 355, 507–510. [Google Scholar] [CrossRef] [Green Version]
- Havekes, R.; Park, A.J.; Tudor, J.C.; Luczak, V.G.; Hansen, R.T.; Ferri, S.L.; Bruinenberg, V.M.; Poplawski, S.G.; Day, J.P.; Aton, S.J.; et al. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1. eLife 2016, 5, e13424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.M.; Choi, J.W.; Lee, C.; Lee, B.U.; Koo, Y.S.; Kim, K.H.; Jung, K.-Y. Working memory deficit in patients with restless legs syndrome: An event-related potential study. Sleep Med. 2014, 15, 808–815. [Google Scholar] [CrossRef]
- Thomas, R.J.; Rosen, B.R.; Stern, C.E.; Weiss, J.W.; Kwong, K.K. Functional imaging of working memory in obstructive sleep-disordered breathing. J. Appl. Physiol. 2005, 98, 2226–2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naëgelé, B.; Launois, S.H.; Mazza, S.; Feuerstein, C.; Pépin, J.-L.; Lévy, P. Which Memory Processes are Affected in Patients with Obstructive Sleep Apnea? An Evaluation of 3 Types of Memory. Sleep 2006, 29, 533–544. [Google Scholar] [CrossRef] [Green Version]
- Nicolaides, N.C.; Charmandari, E.; Chrousos, G.P.; Kino, T. Circadian endocrine rhythms: The hypothalamic-pituitary-adrenal axis and its actions. Ann. N. Y. Acad. Sci. 2014, 1318, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Clow, A.; Hucklebridge, F.; Stalder, T.; Evans, P.; Thorn, L. The cortisol awakening response: More than a measure of HPA axis function. Neurosci. Biobehav. Rev. 2010, 35, 97–103. [Google Scholar] [CrossRef]
- Lupien, S.; Fiocco, A.; Wan, N.; Maheu, F.; Lord, C.; Schramek, T.; Tu, M.T. Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology 2005, 30, 225–242. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.K.; Glass, T.A.; McAtee, M.J.; Wand, G.S.; Bandeen-Roche, K.; Bolla, K.I.; Schwartz, B.S. Associations of Salivary Cortisol with Cognitive Function in the Baltimore Memory Study. Arch. Gen. Psychiatry 2007, 64, 810–818. [Google Scholar] [CrossRef]
- Evans, P.; Fredhoi, C.; Loveday, C.; Hucklebridge, F.; Aitchison, E.; Forte, D.; Clow, A. The diurnal cortisol cycle and cognitive performance in the healthy old. Int. J. Psychophysiol. 2011, 79, 371–377. [Google Scholar] [CrossRef]
- Van Dalfsen, J.H.; Markus, C.R. The influence of sleep on human hypothalamic–pituitary–adrenal (HPA) axis reactivity: A systematic review. Sleep Med. Rev. 2018, 39, 187–194. [Google Scholar] [CrossRef]
- Huang, T.; Poole, E.M.; Vetter, C.; Rexrode, K.M.; Kubzansky, L.D.; Schernhammer, E.; Rohleder, N.; Hu, F.B.; Redline, S.; Tworoger, S.S. Habitual sleep quality and diurnal rhythms of salivary cortisol and dehydroepiandrosterone in postmenopausal women. Psychoneuroendocrinology 2017, 84, 172–180. [Google Scholar] [CrossRef]
- Pesonen, A.-K.; Martikainen, S.; Kajantie, E.; Heinonen, K.; Wehkalampi, K.; Lahti, J.; Strandberg, T.; Räikkönen, K. The associations between adolescent sleep, diurnal cortisol patterns and cortisol reactivity to dexamethasone suppression test. Psychoneuroendocrinology 2014, 49, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Balbo, M.; Leproult, R.; Van Cauter, E. Impact of Sleep and Its Disturbances on Hypothalamo-Pituitary-Adrenal Axis Activity. Int. J. Endocrinol. 2010, 2010, 759234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schüssler, P.; Kluge, M.; Gamringer, W.; Wetter, T.C.; Yassouridis, A.; Uhr, M.; Rupprecht, R.; Steiger, A. Corticotropin-releasing hormone induces depression-like changes of sleep electroencephalogram in healthy women. Psychoneuroendocrinology 2016, 74, 302–307. [Google Scholar] [CrossRef]
- Chrousos, G.; Vgontzas, A.N.; Kritikou, I. HPA Axis and Sleep; Endotext: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279071/ (accessed on 3 March 2020).
- Feld, G.B.; Born, J. Neurochemical mechanisms for memory processing during sleep: Basic findings in humans and neuropsychiatric implications. Neuropsychopharmacology 2019, 45, 31–44. [Google Scholar] [CrossRef]
- Stephan, Y.; Sutin, A.R.; Bayard, S.; Križan, Z.; Terracciano, A. Personality and sleep quality: Evidence from four prospective studies. Health Psychol. 2018, 37, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Polk, D.E.; Cohen, S.; Doyle, W.J.; Skoner, D.P.; Kirschbaum, C. State and trait affect as predictors of salivary cortisol in healthy adults. Psychoneuroendocrinology 2005, 30, 261–272. [Google Scholar] [CrossRef]
- Portella, M.J.; Harmer, C.J.; Flint, J.; Cowen, P.; Goodwin, G.M. Enhanced Early Morning Salivary Cortisol in Neuroticism. Am. J. Psychiatry 2005, 162, 807–809. [Google Scholar] [CrossRef]
- Montoliu, T.; Hidalgo, V.; Salvador, A. Personality and Hypothalamic–Pituitary–Adrenal Axis in Older Men and Women. Front. Psychol. 2020, 11, 983. [Google Scholar] [CrossRef] [PubMed]
- Doane, L.D.; Franz, C.E.; Prom-Wormley, E.C.; Eaves, L.J.; Mendoza, S.P.; Hellhammer, D.H.; Lupien, S.; Xian, H.; Lyons, M.J.; Kremen, W.S.; et al. Negative emotionality, depressive symptoms and cortisol diurnal rhythms: Analysis of a community sample of middle-aged males. Horm. Behav. 2011, 60, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Hauner, K.K.; Adam, E.K.; Mineka, S.; Doane, L.D.; DeSantis, A.S.; Zinbarg, R.; Craske, M.; Griffith, J.W. Neuroticism and introversion are associated with salivary cortisol patterns in adolescents. Psychoneuroendocrinology 2008, 33, 1344–1356. [Google Scholar] [CrossRef] [Green Version]
- Lobo, A.; Pérez-Echeverría, M.J.; Artal, J. Validity of the scaled version of the General Health Questionnaire (GHQ-28) in a Spanish population. Psychol. Med. 1986, 16, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Salvat-Pujol, N.; Labad, J.; Urretavizcaya, M.; De Arriba-Arnau, A.; Segalàs, C.; Real, E.; Ferrer, A.; Crespo, J.M.; Jiménez-Murcia, S.; Soriano-Mas, C.; et al. Hypothalamic-pituitary-adrenal axis activity and cognition in major depression: The role of remission status. Psychoneuroendocrinology 2017, 76, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Labad, J.; Soria, V.; Salvat-Pujol, N.; Segalàs, C.; Real, E.; Urretavizcaya, M.; De Arriba-Arnau, A.; Ferrer, À.; Crespo, J.M.; Jiménez-Murcia, S.; et al. Hypothalamic-pituitary-adrenal axis activity in the comorbidity between obsessive-compulsive disorder and major depression. Psychoneuroendocrinology 2018, 93, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Labad, J.; Gutiérrez-Zotes, A.; Creus, M.; Montalvo, I.; Cabezas, Á.; Solé, M.; Ortega, L.; Algora, M.J.; Sánchez-Gistau, V.; Vilella, E. Hypothalamic-pituitary-adrenal axis measures and cognitive abilities in early psychosis: Are there sex differences? Psychoneuroendocrinology 2016, 72, 54–62. [Google Scholar] [CrossRef]
- Spielberger, C. Manual for the State-Trait Anxiety Inventory (STAI); Consulting Psychologists Press: Palo Alto, CA, USA, 1983; pp. 4–26. [Google Scholar]
- Buela-Casal, G.; Guillén-Riquelme, A.; Seisdedos Cubero, N. Cuestionario de Ansiedad Estado-Rasgo. Manual, 9th ed.; TEA Ediciones: Madrid, Spain, 2015; pp. 7–37. [Google Scholar]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Mollayeva, T.; Thurairajah, P.; Burton, K.; Mollayeva, S.; Shapiro, C.M.; Colantonio, A. The Pittsburgh sleep quality index as a screening tool for sleep dysfunction in clinical and non-clinical samples: A systematic review and meta-analysis. Sleep Med. Rev. 2016, 25, 52–73. [Google Scholar] [CrossRef]
- Stalder, T.; Kirschbaum, C.; Kudielka, B.M.; Adam, E.K.; Pruessner, J.C.; Wüst, S.; Dockray, S.; Smyth, N.; Evans, P.; Hellhammer, D.H.; et al. Assessment of the cortisol awakening response: Expert consensus guidelines. Psychoneuroendocrinology 2016, 63, 414–432. [Google Scholar] [CrossRef]
- Pruessner, J.C.; Kirschbaum, C.; Meinlschmid, G.; Hellhammer, D.H. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology 2003, 28, 916–931. [Google Scholar] [CrossRef]
- Wüst, S.; Wolf, J.; Hellhammer, D.H.; Federenko, I.; Schommer, N.; Kirschbaum, C. The cortisol awakening response—Normal values and confounds. Noise Health 2000, 2, 79–88. [Google Scholar]
- Posener, J. Diurnal variation of plasma cortisol and homovanillic acid in healthy subjects. Psychoneuroendocrinology 1996, 21, 33–38. [Google Scholar] [CrossRef]
- Miller, R.; Plessow, F. Transformation techniques for cross-sectional and longitudinal endocrine data: Application to salivary cortisol concentrations. Psychoneuroendocrinology 2013, 38, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Nebes, R.D.; Buysse, D.J.; Halligan, E.M.; Houck, P.R.; Monk, T.H. Self-Reported Sleep Quality Predicts Poor Cognitive Performance in Healthy Older Adults. J. Gerontol. Ser. B 2009, 64, 180–187. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Lu, H.-J.; Chang, C.-F.; Liang, W.-K.; Muggleton, N.G.; Juan, C.-H. Electrophysiological and behavioral evidence reveals the effects of trait anxiety on contingent attentional capture. Cogn. Affect. Behav. Neurosci. 2017, 17, 973–983. [Google Scholar] [CrossRef]
- Arbune, A.; Lin, S.-H.; Chen, K.C.; Lee, I.H.; Chen, P.S.; Yang, Y.K. Positive association between neuroticism and working memory in healthy female volunteers. Int. J. Psychiatry Clin. Pract. 2014, 19, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Asplund, C.L.; Chee, M.W. Sleep deprivation reduces the rate of rapid picture processing. NeuroImage 2014, 91, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Montag, C.; Reuter, M.; Jurkiewicz, M.; Markett, S.; Panksepp, J. Imaging the structure of the human anxious brain: A review of findings from neuroscientific personality psychology. Rev. Neurosci. 2013, 24. [Google Scholar] [CrossRef]
- Takeuchi, H.; Taki, Y.; Nouchi, R.; Yokoyama, R.; Kotozaki, Y.; Nakagawa, S.; Sekiguchi, A.; Iizuka, K.; Yamamoto, Y.; Hanawa, S.; et al. Shorter sleep duration and better sleep quality are associated with greater tissue density in the brain. Sci. Rep. 2018, 8, 5833. [Google Scholar] [CrossRef]
- McKinnon, A.C.; Lagopoulos, J.; Terpening, Z.; Grunstein, R.; Hickie, I.B.; Batchelor, J.; Lewis, S.J.G.; Duffy, S.; Shine, J.M.; Naismith, S.L. Sleep disturbance in mild cognitive impairment is associated with alterations in the brain’s default mode network. Behav. Neurosci. 2016, 130, 305–315. [Google Scholar] [CrossRef]
- Bar, M. A Cortical Mechanism for Triggering Top-Down Facilitation in Visual Object Recognition. J. Cogn. Neurosci. 2003, 15, 600–609. [Google Scholar] [CrossRef]
- Buchanan, T.W.; Kern, S.; Allen, J.S.; Tranel, D.; Kirschbaum, C. Circadian regulation of cortisol after hippocampal damage in humans. Biol. Psychiatry 2004, 56, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Duran, E.; Oyanedel, C.N.; Niethard, N.; Inostroza, M.; Born, J. Sleep stage dynamics in neocortex and hippocampus. Sleep 2018, 41, zsy060. [Google Scholar] [CrossRef]
- Stomby, A.; Boraxbekk, C.-J.; Lundquist, A.; Nordin, A.; Nilsson, L.-G.; Adolfsson, R.; Nyberg, L.; Olsson, C.-J.; Adolfsson, A.N. Higher diurnal salivary cortisol levels are related to smaller prefrontal cortex surface area in elderly men and women. Eur. J. Endocrinol. 2016, 175, 117–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolkowitz, O.M.; Burke, H.; Epel, E.S.; Reus, V.I. Glucocorticoids: Mood, memory, and mechanisms. Ann. N. Y. Acad. Sci. 2009, 1179, 19–40. [Google Scholar] [CrossRef]
- Nee, D.E.; Wager, T.D.; Jonides, J. Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cogn. Affect. Behav. Neurosci. 2007, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Abell, J.; Shipley, M.J.; Ferrie, J.E.; Kivimäki, M.; Kumari, M. Recurrent short sleep, chronic insomnia symptoms and salivary cortisol: A 10-year follow-up in the Whitehall II study. Psychoneuroendocrinology 2016, 68, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro-Diehl, C.; Roux, A.V.D.; Redline, S.; Seeman, T.; Shrager, S.E.; Shea, S. Association of Sleep Duration and Quality with Alterations in the Hypothalamic-Pituitary Adrenocortical Axis: The Multi-Ethnic Study of Atherosclerosis (MESA). J. Clin. Endocrinol. Metab. 2015, 100, 3149–3158. [Google Scholar] [CrossRef]
- Hansen, Å.M.; Thomsen, J.F.; Kaergaard, A.; Kolstad, H.A.; Kaerlev, L.; Mors, O.; Rugulies, R.; Bonde, J.P.; Andersen, J.H.; Mikkelsen, S. Salivary cortisol and sleep problems among civil servants. Psychoneuroendocrinology 2012, 37, 1086–1095. [Google Scholar] [CrossRef]
- Lasikiewicz, N.; Hendrickx, H.; Talbot, D.; Dye, L. Exploration of basal diurnal salivary cortisol profiles in middle-aged adults: Associations with sleep quality and metabolic parameters. Psychoneuroendocrinology 2008, 33, 143–151. [Google Scholar] [CrossRef]
- Van Lenten, S.A.; Doane, L.D. Examining multiple sleep behaviors and diurnal salivary cortisol and alpha-amylase: Within- and between-person associations. Psychoneuroendocrinology 2016, 68, 100–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fekedulegn, D.; Innes, K.; Andrew, M.E.; Tinney-Zara, C.A.; Charles, L.E.; Allison, P.; Violanti, J.M.; Knox, S.S. Sleep quality and the cortisol awakening response (CAR) among law enforcement officers: The moderating role of leisure time physical activity. Psychoneuroendocrinology 2018, 95, 158–169. [Google Scholar] [CrossRef]
- Stalder, T.; Hucklebridge, F.; Evans, P.; Clow, A. Use of a single case study design to examine state variation in the cortisol awakening response: Relationship with time of awakening. Psychoneuroendocrinology 2009, 34, 607–614. [Google Scholar] [CrossRef] [PubMed]
- For the Osteoporotic Fractures in Men (MrOS) Study Group; Blackwell, T.; Yaffe, K.; Laffan, A.; Ancoli-Israel, S.; Redline, S.; Ensrud, K.E.; Song, Y.; Stone, K.L. Associations of Objectively and Subjectively Measured Sleep Quality with Subsequent Cognitive Decline in Older Community-Dwelling Men: The MrOS Sleep Study. Sleep 2014, 37, 655–663. [Google Scholar] [CrossRef]
- Beluche, I.; Carrière, I.; Ritchie, K.; Ancelin, M.-L. A prospective study of diurnal cortisol and cognitive function in community-dwelling elderly people. Psychol. Med. 2009, 40, 1039–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lupien, S.; Lecours, A.; Lussier, I.; Schwartz, G.; Nair, N.; Meaney, M. Basal cortisol levels and cognitive deficits in human aging. J. Neurosci. 1994, 14, 2893–2903. [Google Scholar] [CrossRef] [Green Version]
- Lo, J.C.; Loh, K.K.; Zheng, H.; Sim, S.K.; Chee, M.W. Sleep Duration and Age-Related Changes in Brain Structure and Cognitive Performance. Sleep 2014, 37, 821. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Nasca, C.; Gray, J.D. Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology 2015, 41, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Van Someren, E.J. Circadian Rhythms and Sleep in Human Aging. Chronobiol. Int. 2000, 17, 233–243. [Google Scholar] [CrossRef]
- Sexton, C.E.; Zsoldos, E.; Filippini, N.; Griffanti, L.; Winkler, A.M.; Mahmood, A.; Allan, C.L.; Topiwala, A.; Kyle, S.D.; Spiegelhalder, K.; et al. Associations between self-reported sleep quality and white matter in community-dwelling older adults: A prospective cohort study. Hum. Brain Mapp. 2017, 38, 5465–5473. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, R.K.; Desai, A.K. Healthy Brain Aging: What Has Sleep Got to Do with It? Clin. Geriatr. Med. 2010, 26, 45–56. [Google Scholar] [CrossRef]
- Maglione, J.E.; Ancoli-Israel, S.; Peters, K.W.; Paudel, M.L.; Yaffe, K.; Ensrud, K.E.; Stone, K.L. Subjective and Objective Sleep Disturbance and Longitudinal Risk of Depression in a Cohort of Older Women. Sleep 2014, 37, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuechterlein, K.H.; Green, M.F.; Kern, R.S.; Baade, L.E.; Barch, D.M.; Cohen, J.D.; Essock, S.; Fenton, W.S.; Frese, F.J.; Gold, J.M.; et al. The MATRICS Consensus Cognitive Battery, Part 1: Test Selection, Reliability, and Validity. Am. J. Psychiatry 2008, 165, 203–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Rheenen, T.E.; Rossell, S.L. An empirical evaluation of the MATRICS Consensus Cognitive Battery in bipolar disorder. Bipolar Disord. 2013, 16, 318–325. [Google Scholar] [CrossRef]
- Mohn, C.; Rund, B.R. Neurocognitive profile in major depressive disorders: Relationship to symptom level and subjective memory complaints. BMC Psychiatry 2016, 16, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total N = 203 | Good Sleep Quality (PSQI < 5) N = 108 | Poor Sleep Quality (PSQI ≥ 5) N = 73 | p Value | |
---|---|---|---|---|
Female gender | 102 (56.4%) | 60 (55.6%) | 42 (57.5%) | 0.792 |
Age | 40.8 (17.7) | 39.6 (17.6) | 42.6 (17.8) | 0.272 |
Education level (years of study) | 13.3 (3.7) | 13.7 (3.7) | 12.7 (3.5) | 0.055 |
Smoking | 33 (18.4%) | 17 (15.9%) | 16 (22.2%) | 0.284 |
Cigarettes/day (in smokers) | 11.8 (10.0) | 11.2 (10.4) | 12.5 (9.9) | 0.710 |
Alcohol intake | ||||
No | 99 (48.8%) | 50 (46.3%) | 39 (53.4%) | 0.340 |
Occasional | 76 (37.4%) | 44 (40.7%) | 22 (30.1%) | |
Daily | 28 (13.8%) | 14 (13.0%) | 12 (16.4%) | |
BMI (kg/m2) | 24.8 (4.8) | 24.3 (4.1) | 25.5 (5.6) | 0.130 |
Working status | ||||
Active (student or worker) | 122 (67.4%) | 75 (69.4%) | 47 (64.4%) | 0.770 |
Unemployed | 29 (16%) | 16 (14.8%) | 13 (17.8%) | |
Retired | 30 (16.6%) | 17 (15.7%) | 13 (17.8%) | |
Civil status | ||||
Single | 64 (35.4%) | 39 (36.1%) | 25 (34.2%) | 0.892 |
Married or with stable couple | 95 (52.5%) | 57 (52.8%) | 38 (52.1%) | |
Separated or divorced | 14 (7.7%) | 7 (6.5%) | 7 (9.6%) | |
Widow | 8 (4.4%) | 5 (4.6%) | 3 (4.1%) | |
Living | ||||
Alone | 51 (28.2%) | 28 (25.9%) | 23 (31.5%) | 0.547 |
With origin family | 37 (20.4%) | 25 (23.1%) | 12 (16.4%) | |
With own family or couple | 77 (42.5%) | 47 (43.5%) | 30 (41.1%) | |
With others (friends, other family) | 16 (8.8%) | 8 (7.4%) | 8 (11.0%) | |
Psychometric instruments | ||||
PSQI total score | 4.6 (2.9) | 2.7 (1.1) | 7.3 (2.6) | <0.001 |
STAI-State anxiety | 11.2 (7.2) | 10.8 (6.6) | 11.9 (7.9) | 0.303 |
STAI-Trait anxiety | 13.9 (8.3) | 12.0 (6.7) | 16.9 (9.6) | <0.001 |
Total N = 203 | Good Sleep Quality (PSQI < 5) N = 108 | Poor Sleep Quality (PSQI ≥ 5) N = 73 | p Value | |
---|---|---|---|---|
Cortisol values (nmol/L) | ||||
Cortisol at awakening | 16.8 (10.5) | 17.8 (11.0) | 15.5 (9.6) | 0.090 |
Cortisol 30’ post awakening | 25.0 (13.5) | 26.1 (13.7) | 23.5 (13.2) | 0.212 |
Cortisol 60’ post awakening | 20.6 (12.5) | 21.3 (13.1) | 19.7 (11.4) | 0.439 |
Cortisol at 10 a.m. | 12.9 (10.3) | 12.9 (11.0) | 12.7 (9.3) | 0.984 |
Cortisol at 11 p.m. | 3.4 (4.1) | 3.4 (5.0) | 3.3 (2.4) | 0.296 |
HPA axis measures | ||||
CAR (AUCi) | 31.1 (60.7) | 31.0 (57.9) | 31.0 (65.9) | 0.996 |
Diurnal cortisol slope | −0.73 (0.69) | −0.72 (0.68) | −0.73 (0.69) | 0.450 |
Cortisol levels during the day (AUCg) | 8593.2 (5944.5) | 8725.4 (6678.8) | 8409.3 (4780.0) | 0.737 |
Total N = 203 | Good Sleep Quality (PSQI < 5) N = 108 | Poor Sleep Quality (PSQI ≥ 5) N = 73 | p Value | |
---|---|---|---|---|
Verbal learning and memory | ||||
HVLT-R | 25.8 (5.0) | 26.6 (5.1) | 24.5 (4.7) | 0.007 |
Visual learning and memory | ||||
BVMT-R | 25.2 (7.1) | 26.3 (6.9) | 23.7 (7.1) | 0.016 |
RCFT-copy | 32.6 (5.6) | 32.7 (5.7) | 32.4 (5.3) | 0.664 |
RCFT-immediate recall | 19.9 (7.1) | 20.8 (7.1) | 18.7 (6.9) | 0.055 |
RCFT-delayed recall | 20.2 (7.1) | 21.1 (7.2) | 18.9 (6.9) | 0.041 |
Working memory | ||||
CBTT (nonverbal) | 15.7 (3.8) | 16.1 (4.0) | 15.2 (3.4) | 0.138 |
LNS (verbal) | 14.1 (3.2) | 14.4 (3.0) | 13.7 (3.4) | 0.196 |
Processing speed | ||||
TMT-A † (seconds) | 36.0 (20.8) | 33.9 (16.8) | 29.0 (25.3) | 0.104 |
BACS-SC | 54.8 (15.1) | 55.5 (15.4) | 53.7 (14.7) | 0.440 |
Category fluency | 24.5 (5.9) | 24.6 (5.8) | 24.5 (6.1) | 0.983 |
Stroop direct W | 105.9 (16.6) | 108.7 (17.0) | 102.0 (15.4) | 0.008 |
Stroop direct C | 71.9 (11.8) | 72.7 (11.9) | 70.6 (11.6) | 0.246 |
Attention/vigilance | ||||
CPT-IP | 2.66 (0.72) | 2.8 (0.7) | 2.5 (0.7) | 0.022 |
Executive function | ||||
TMT-B † (seconds) | 69.1 (41.3) | 66.1 (43.2) | 73.5 (38.2) | 0.085 |
NAB-mazes | 18.2 (6.8) | 18.9 (6.8) | 17.0 (6.5) | 0.061 |
Stroop direct WC | 47.2 (12.2) | 48.6 (11.6) | 45.3 (12.9) | 0.077 |
Stroop direct interference | 4.6 (8.8) | 5.2 (8.0) | 3.8 (9.8) | 0.291 |
Sleep Quality (PSQI) | CAR (AUCi) | Diurnal Cortisol Slope | Cortisol Levels during the Day (AUCg) | STAI-T | Significant Interactions | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
β | p | β | p | β | p | β | p | β | p | ||
Verbal learning and memory | |||||||||||
HVLT-R | −0.22 | 0.007 | −0.15 | 0.263 | −0.06 | 0.442 | −0.11 | 0.188 | −0.07 | 0.370 | PSQI × CAR (β = 0.26, p = 0.043) |
Visual learning and memory | |||||||||||
BVMT-R | −0.43 | 0.004 | −0.31 | 0.032 | −0.08 | 0.315 | −0.04 | 0.645 | −0.41 | 0.009 | PSQI × CAR (β = 0.29, p = 0.037); PSQI × STAI-T (β = 0.49, p = 0.034) |
RCFT-copy | 0.03 | 0.743 | 0.00 | 0.979 | −0.02 | 0.793 | −0.02 | 0.866 | −0.13 | 0.162 | NS |
RCFT-immediate recall | −0.08 | 0.298 | −0.04 | 0.697 | −0.16 | 0.050 | −0.07 | 0.403 | −0.17 | 0.039 | NS |
RCFT-delayed recall | −0.10 | 0.188 | −0.02 | 0.823 | −0.10 | 0.203 | −0.07 | 0.391 | −0.15 | 0.047 | NS |
Working memory | |||||||||||
CBTT (nonverbal) | 0.03 | 0.699 | −0.01 | 0.885 | −0.09 | 0.284 | −0.12 | 0.193 | −0.02 | 0.812 | NS |
LNS (verbal) | −0.14 | 0.113 | −0.37 | 0.018 | −0.11 | 0.208 | 0.00 | 0.995 | −0.12 | 0.157 | NS |
Processing speed | |||||||||||
TMT-A † | −0.26 | 0.028 | 0.25 | 0.051 | 0.04 | 0.543 | −0.26 | 0.030 | 0.08 | 0.247 | PSQI × AUCg all day (β = 0.51, p = 0.001); PSQI × CAR (β = −0.28, p = 0.025) |
BACS-SC | 0.05 | 0.371 | −0.04 | 0.536 | 0.00 | 0.993 | −0.03 | 0.592 | −0.10 | 0.091 | NS |
Category fluency | 0.07 | 0.386 | −0.10 | 0.303 | −0.15 | 0.091 | −0.03 | 0.739 | −0.11 | 0.193 | NS |
Stroop direct W | −0.09 | 0.290 | 0.06 | 0.573 | 0.03 | 0.734 | 0.07 | 0.465 | −0.04 | 0.660 | NS |
Stroop direct C | 0.04 | 0.626 | −0.05 | 0.653 | −0.04 | 0.677 | 0.02 | 0.866 | −0.16 | 0.080 | NS |
Attention/vigilance | |||||||||||
CPT-IP | −0.16 | 0.051 | 0.03 | 0.797 | 0.03 | 0.758 | 0.02 | 0.791 | 0.01 | 0.920 | NS |
Executive function | |||||||||||
TMT-B † | 0.31 | 0.039 | 0.06 | 0.687 | 0.04 | 0.530 | −0.07 | 0.774 | 0.44 | 0.004 | PSQI × STAI-T (β = −0.55, p = 0.017) |
NAB-mazes | −0.04 | 0.528 | 0.02 | 0.768 | −0.09 | 0.211 | 0.04 | 0.641 | −0.14 | 0.038 | NS |
Stroop direct WC | 0.34 | 0.027 | −0.09 | 0.400 | −0.15 | 0.115 | 0.36 | 0.019 | −0.09 | 0.312 | PSQI × CAR (β = −0.52, p = 0.007) |
Stroop direct interference | 0.31 | 0.049 | −0.13 | 0.243 | −0.17 | 0.084 | 0.31 | 0.047 | −0.03 | 0.704 | PSQI × CAR (β = −0.47, p = 0.017) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labad, J.; Salvat-Pujol, N.; Armario, A.; Cabezas, Á.; de Arriba-Arnau, A.; Nadal, R.; Martorell, L.; Urretavizcaya, M.; Monreal, J.A.; Crespo, J.M.; et al. The Role of Sleep Quality, Trait Anxiety and Hypothalamic-Pituitary-Adrenal Axis Measures in Cognitive Abilities of Healthy Individuals. Int. J. Environ. Res. Public Health 2020, 17, 7600. https://doi.org/10.3390/ijerph17207600
Labad J, Salvat-Pujol N, Armario A, Cabezas Á, de Arriba-Arnau A, Nadal R, Martorell L, Urretavizcaya M, Monreal JA, Crespo JM, et al. The Role of Sleep Quality, Trait Anxiety and Hypothalamic-Pituitary-Adrenal Axis Measures in Cognitive Abilities of Healthy Individuals. International Journal of Environmental Research and Public Health. 2020; 17(20):7600. https://doi.org/10.3390/ijerph17207600
Chicago/Turabian StyleLabad, Javier, Neus Salvat-Pujol, Antonio Armario, Ángel Cabezas, Aida de Arriba-Arnau, Roser Nadal, Lourdes Martorell, Mikel Urretavizcaya, José Antonio Monreal, José Manuel Crespo, and et al. 2020. "The Role of Sleep Quality, Trait Anxiety and Hypothalamic-Pituitary-Adrenal Axis Measures in Cognitive Abilities of Healthy Individuals" International Journal of Environmental Research and Public Health 17, no. 20: 7600. https://doi.org/10.3390/ijerph17207600
APA StyleLabad, J., Salvat-Pujol, N., Armario, A., Cabezas, Á., de Arriba-Arnau, A., Nadal, R., Martorell, L., Urretavizcaya, M., Monreal, J. A., Crespo, J. M., Vilella, E., Palao, D. J., Menchón, J. M., & Soria, V. (2020). The Role of Sleep Quality, Trait Anxiety and Hypothalamic-Pituitary-Adrenal Axis Measures in Cognitive Abilities of Healthy Individuals. International Journal of Environmental Research and Public Health, 17(20), 7600. https://doi.org/10.3390/ijerph17207600