Relationship of Body Composition with the Strength and Functional Capacity of People over 70 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design-Participants
2.2. Procedure-Data Collection
2.3. Main Outcomes-Instrument
2.4. Statistical Analysis
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Frontera, W.R.; Hughes, V.A.; Fielding, R.A.; Fiatarone, M.A.; Evans, W.J.; Roubenoff, R. Aging of skeletal muscle: A 12-yr longitudinal study. J. Appl. Physiol. 2000, 88, 1321–1326. [Google Scholar] [CrossRef]
- Castillo, E.M.; Goodman-Gruen, D.; Kritz-Silverstein, D.; Morton, D.J.; Wingard, D.L.; Barrett-Connor, E. Sarcopenia in elderly men and women: The Rancho Bernardo study. Am. J. Prev. Med. 2003, 25, 226–231. [Google Scholar] [CrossRef]
- Zoico, E.; Di Francesco, V.; Guralnik, J.M.; Mazzali, G.; Bortolani, A.; Guariento, S.; Sergi, G.; Bosello, O. Physical disability and muscular strength in relation to obesity and different body composition indexes in a sample of healthy elderly women. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 234–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzoli, R.; Stevenson, J.C.; Bauer, J.M.; van Loon, L.J.; Walrand, S.; Kanis, J.A.; Cooper, C.; Brandi, M.L. The role of dietary protein and vitamin D in maintaining musculoskeletal health in postmenopausal women: A consensus statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Maturitas 2014, 79, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Tachiki, T.; Kouda, K.; Dongmei, N.; Tamaki, J.; Iki, M.; Kitagawa, J.; Takahira, N.; Sato, Y.; Kajita, E.; Fujita, Y.; et al. Muscle strength is associated with bone health independently of muscle mass in postmenopausal women: The Japanese population-based osteoporosis study. J. Bone Miner. Metab. 2017, 37, 53–59. [Google Scholar] [CrossRef]
- Kotani, K.; Tokunaga, K.; Fujioka, S.; Kobatake, T.; Keno, Y.; Yoshida, S.; Shimomura, I.; Tarui, S.; Matsuzawa, Y. Sexual dimorphism of age-related changes in whole-body fat distribution in the obese. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 1994, 18, 207–212. [Google Scholar]
- Di-Monaco, M. Functional outcome and hip-fracture type: Moving beyond personal experience. Eur. J. Phys. Rehabil Med. 2008, 44, 368–369. [Google Scholar]
- Stenholm, S.; Harris, T.B.; Rantanen, T.; Visser, M.; Kritchevsky, S.B.; Ferrucci, L. Sarcopenic obesity: Definition, cause and consequences. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 693–700. [Google Scholar] [CrossRef] [Green Version]
- De Stefano, F.; Zambon, S.; Giacometti, L.; Sergi, G.; Corti, M.C.; Manzato, E.; Busetto, L. Obesity, muscular strength, muscle composition and physical performance in an elderly population. J. Nutr. Health Aging 2015, 19, 785–791. [Google Scholar] [CrossRef]
- Janssen, I.; Shepard, D.S.; Katzmarzyk, P.T.; Roubenoff, R. The Healthcare Costs of Sarcopenia in the United States. J. Am. Geriatr. Soc. 2004, 52, 80–85. [Google Scholar] [CrossRef]
- Pérez-Nuñez, M.I.; Riancho-del-Corral, J.A. Vertebroplastia y cifoplastia como tratamiento de las fracturas vertebrales osteoporóticas. Rev. Osteopor. Metab. Miner. 2010, 2, 27–33. [Google Scholar]
- Baumgartner, R.N.; Koehler, K.M.; Gallagher, D.; Romero, L.; Heymsfield, S.B.; Ross, R.R.; Garry, P.J.; Lindeman, R.D. Epidemiology of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 1998, 147, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zheng, L.; Wei, D.; Ye, M.; Li, X. Muscular strength measurements indicate bone mineral density loss in postmenopausal women. Clin. Interv. Aging 2013, 8, 1451–1459. [Google Scholar] [CrossRef] [Green Version]
- Calmels, P.; Vico, L.; Alexandre, C.; Minaire, P. Cross-sectional study of muscle strength and bone mineral density in a population of 106 women between the ages of 44 and 87 years: Relationship with age and menopause. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 70, 180–186. [Google Scholar] [CrossRef]
- Pal, L.; Hailpern, S.M.; Santoro, N.F.; Freeman, R.; Barad, D.; Kipersztok, S.; Barnabei, V.M.; Wassertheil-Smoller, S. Increased incident hip fractures in postmenopausal women with moderate to severe pelvic organ prolapse. Menopause 2011, 18, 967–973. [Google Scholar] [CrossRef] [Green Version]
- Bayramoğlu, M.; Sözay, S.; Karataş, M.; Kilinç, S. Relationships between muscle strength and bone mineral density of three body regions in sedentary postmenopausal women. Rheumatol. Int. 2005, 25, 513–517. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine Position Stand. Exercise and Physical Activity for Older Adults. Med. Sci. Sports Exerc. 1998, 30, 992–1008. [Google Scholar]
- Carter, M.I.; Hinton, P.S. Physical Activity and Bone Health. Mo. Med. 2014, 111, 59–64. [Google Scholar]
- Kohrt, W.M.; Bloomfield, S.A.; Little, K.D.; Nelson, M.E.; Yingling, V.R. American College of Sports Medicine Position Stand: Physical Activity and Bone Health. Med. Sci. Sports Exerc. 2004, 36, 1985–1996. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson, D.J.; Erskine, R.M.; Morse, C.I.; Winwood, K.; Onambélé-Pearson, G. The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology 2016, 17, 467–483. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson, D.J.; Erskine, R.M.; Morse, C.I.; Winwood, K.; Onambélé-Pearson, G.L. Combined effects of body composition and ageing on joint torque, muscle activation and co-contraction in sedentary women. Age (Dordr) 2014, 36, 9652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrager, M.A.; Metter, E.J.; Simonsick, E.; Ble, A.; Bandinelli, S.; Lauretani, F.; Ferrucci, L. Sarcopenic obesity and inflammation in the InCHIANTI study. J. Appl. Physiol. 2007, 102, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Akhmedov, D.; Berdeaux, R. The effects of obesity on skeletal muscle regeneration. Front Physiol. 2013, 4, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Instituto Nacional de Estadística (INE). Encuesta Personas Mayores 2019. Available online: https://www.ine.es/jaxiT3/Tabla.htm?t=1488 (accessed on 9 September 2020).
- Mokdad, A.H.; Ford, E.S.; Bowman, B.A.; Dietz, W.H.; Vinicor, F.; Bales, V.S.; Marks, J.S. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 2003, 289, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Barbat-Artigas, S.; Plouffe, S.; Pion, C.H.; Aubertin-Leheudre, M. Toward a sex-specific relationship between muscle strength and appendicular lean body mass index? J. Cachexia Sarcopenia Muscle 2013, 4, 137–144. [Google Scholar] [CrossRef]
- Rodríguez, F.A. Cuestionario de Aptitud para la Actividad Física (C-AAF), versión catalana/castellana del PAR-Q revisado. Apunt. Sport Med. 1994, 31, 301–310. [Google Scholar]
- Rikli, R.E.; Jones, C.J. Functional fitness normative scores for community-residing older adults, ages 60–94. J. Aging Phys. Act. 1999, 7, 161–181. [Google Scholar] [CrossRef]
- Rikli, R.E.; Jones, C.J. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologis 2013, 53, 255–267. [Google Scholar] [CrossRef]
- Rikli, R.E.; Jones, C.J. Senior Fitness Test Manual; Human Kinetics: Champaign, IL, USA, 2013. [Google Scholar]
- Cobo-Mejía, E.A.; Ochoa-González, M.E.; Ruiz-Castillo, L.Y.; Vargas-Niño, D.M.; Sáenz-Pacheco, A.M.; Sandoval-Cuellar, C. Confiabilidad del “Senior Fitness Test” versión en español, para población adulta mayor en Tunja-Colombia. Arch. Med. Deporte. 2016, 33, 382–386. [Google Scholar]
- Naranjo-Hernández, A.; Díaz-del-Campo-Fontecha, P.; Aguado-Acín, M.P.; Arboleya-Rodríguez, L.; Casado-Burgos, E.; Castañeda, S.; Fiter-Aresté, L.; Gifreh, L. Recommendations by the Spanish Society of Rheumatology on Osteoporosis. Reum. Clin. 2019, 15, 188–210. [Google Scholar] [CrossRef]
- Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Busetto, L.; Micic, D.; Toplak, H. European Guidelines for Obesity Management in Adults. Obes. Facts. 2015, 8, 402–424. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Keep Fit for Life. Meeting the Nutritional Needs of Older Persons; World Health Organization (WHO): Geneva, Switzerland, 2002. [Google Scholar]
- Hansen, R.D.; Allen, B.J. Fat-free mass components in active vs sedentary females aged 55–75 year. Appl. Radiat Isot. 1998, 49, 735–736. [Google Scholar] [CrossRef]
- Salvà, A.; Serra-Rexach, J.; Artaza, I.; Formiga, F.; Rojano-i-Luque, X.; Cuesta, F.; López-Soto, A.; Masanés, F. La prevalencia de sarcopenia en residencias de España: Comparación de los resultados del estudio multicéntrico ELLI con otras poblaciones. Rev. Esp. Geriatr. Gerontol. 2016, 51, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Ingle, L.; Carroll, S.; Stamatakis, E. Physical activity and cardiovascular mortality risk: Possible protective mechanisms? Med. Sci. Sports Exerc. 2011, 44, 84–88. [Google Scholar] [CrossRef]
- Lauretani, F.; Russo, C.R.; Bandinelli, S.; Bartali, B.; Cavazzini, C.; Di-Iorio, A.; Corsi, A.M.; Rantanen, T. Age-associated changes in skeletal muscles and their effect on mobility: An operational diagnosis of sarcopenia. J. Appl. Physiol. 2003, 95, 1851–1860. [Google Scholar] [CrossRef]
- García-Guajardo, V.; de-Arruda, M.; Arámguiz-Aburto, H.; Rojas-Díaz, S.; García-Krauss, P. Características antropométricas, composición corporal, somatotipo y rendimiento anaeróbico y aeróbico de mujeres juveniles baloncestistas chilenas. Educación Física Deporte 2010, 29, 255–265. [Google Scholar]
- Krause, K.E.; McIntosh, E.I.; Vallis, L.A. Sarcopenia and predictors of the fat free mass index in community-dwelling and assisted-li-ving older men and women. Gait Posture 2012, 35, 180–185. [Google Scholar] [CrossRef]
- Park, H.S.; Lim, J.S.; Lim, S.K. Determinants of Bone Mass and Insulin Resistance in Korean Postmenopausal Women: Muscle Area, Strength, or Composition? Yonsei Med. J. 2019, 60, 742–750. [Google Scholar] [CrossRef]
- Singh, H.; Kim, D.; Bemben, M.G.; Bemben, D.A. Relationship between Muscle Performance and DXA-Derived Bone Parameters in Community-Dwelling Older Adults. J. Musculoskelet Neuronal Interact. 2017, 17, 50–58. [Google Scholar]
- Parveen, B.; Parveen, A.; Vohora, D. Biomarkers of Osteoporosis: An Update. Endocr Metab Immune Disord Drug Targets 2019, 19, 895–912. [Google Scholar] [CrossRef]
- Pasco, J.A.; Holloway, K.A.; Brennan-Olsen, S.L.; Moloney, D.J.; Kotowicz, M.A. Muscle Strength and Area Bone Mineral Density at the Hip in Women: A Cross-Sectional Study. BMC Musculoskelet Disord. 2015, 16, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segev, D.; Hellerstein, D.; Dunsky, A. Physical Activity-does it Really Increase Bone Density in Postmenopausal Women? A Review of Articles Published between 2001–2016. Curr. Aging Sci. 2018, 11, 4–9. [Google Scholar] [CrossRef]
- Watson, S.L.; Weeks, B.K.; Weis, L.J.; Harding, A.T.; Horan, S.A.; Beck, B.R. High-Intensity Resistance and Impact Training Improves Bone Mineral Density and Physical Function in Postmenopausal Women with Osteopenia and Osteoporosis: The LIFTMOR Randomized Controlled Trial. J. Bone Miner Res. 2018, 33, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Villa-Marin, R.; Carneiro-Pedrosa, M.A.; Fernandes-Moreira-Pfrimer, L.D.; Macheca-Matsudo, S.M.; Lazaretti-Castro, M. Association between lean mass and handgrip strength with bone mineral density in physically active postmenopausal women. J. Clin. Densitom. 2010, 13, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Iki, M.; Saito, Y.; Dohi, Y.; Kajita, E.; Nishino, H.; Yonemasu, K.; Kusaka, Y. Greater trunk muscle torque reduces postmenopausal bone loss at the spine independently of age, body size, and vitamin D receptor genotype in Japanese women. Calcif. Tissue Int. 2002, 71, 300–307. [Google Scholar] [CrossRef]
- Sipila, S.; Suominen, H. Quantitative ultrasonography of muscle: Detection of adaptations to training in elderly women. Arch Phys. Med. Rehabil. 1996, 77, 1173–1178. [Google Scholar] [CrossRef]
- Kohrt, W.M.; Malley, M.T.; Dalsky, G.P.; Holloszy, J.O. Body composition of healthy sedentary and trained, young and older men and women. Med. Sci. Sports Exerc. 1992, 24, 832–837. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Agosti, F.; Proietti, M.; Riva, D.; Resnik, M.; Lafortuna, C.L.; Sartorio, A. Postural instability of extremely obese individuals improves after a body weight reduction program entailing specific balance training. J. Endocrinol. Investig. 2005, 28, 2–7. [Google Scholar] [CrossRef]
- Rolland, Y.; Lauwers-Cances, V.; Pahor, M.; Fillaux, J.; Grandjean, H.; Vellas, B. Muscle strength in obese elderly women: Effect of recreational physical activity in a cross-sectional study. Am. J. Clin. Nutr. 2004, 79, 552–557. [Google Scholar] [CrossRef] [Green Version]
- James, W.P. WHO recognition of the global obesity epidemic. Int. J. Obes. 2008, 32, S120–S126. [Google Scholar] [CrossRef] [Green Version]
- | Total (n = 143) | Female (n = 94) | Male (n = 49) | p-Value |
---|---|---|---|---|
Body Mass Index (BMI) (kg/m2) | 27.51 ± 3.57 | 27.41 ± 3.93 | 27.71 ± 2.79 | 0.633 # |
Total lean mass (kg) | 42.14 ± 8.42 | 36.93 ± 3.48 | 52.13 ± 5.59 | <0.001 # |
Appendicular lean mass (ALM) (kg) | 17.64 ± 3.92 | 15.26 ± 1.72 | 22.23 ± 2.66 | <0.001 # |
ALM adjusted for BMI (ALM/BMI) | 0.65 ± 0.14 | 0.56 ± 0.08 | 0.81 ± 0.09 | <0.001 # |
Fat mass (kg) | 23.41 ± 7.20 | 24.45 ± 7.20 | 21.44 ± 6.86 | 0.017 # |
Fat mass (%) | 34.31 ± 7093 | 37.83 ± 6.54 | 27.54 ± 5.65 | <0.001 # |
Bone mass (kg) | 2.29 ± 0.50 | 2.01 ± 0.32 | 2.82 ± 0.34 | <0.001 # |
Femoral neck bone mineral density (g/cm2) | 0.82 ± 0.11 | 0.79 ± 0.10 | 0.87 ± 0.11 | <0.001 # |
Lumbar spine bone mineral density (g/cm2) | 1.03 ± 0.16 | 0.98 ± 0.15 | 1.12 ± 0.15 | <0.001 # |
Femur neck T-score | −1.56 ± 0.84 | −1.58 ± 0.84 | −1.53 ± 0.83 | 0.713 # |
Lumbar spine T-score | −1.39 ± 1.30 | −1.68 ± 1.25 | −0.83 ± 1.23 | <0.001 # |
Femur neck Z-score | 0.15 ± 0.79 | 0.23 ± 0.79 | −0.01 ± 0.78 | 0.085 # |
Lumbar spine Z-score | 0.24 ± 1.30 | 0.51 ± 1.21 | −0.29 ± 1.31 | <0.001 # |
Lean mass based on ALM adjusted for BMI (n (%)) | ||||
• Low | 49 (34.3) | 27 (28.7) | 22 (44.9) | <0.001 & |
• Adequate | 94 (65.7) | 67 (71.3) | 27 (55.1) | |
Osteoporosis status (n (%)) | ||||
• No | 102 (71.3) | 62 (66.0) | 40 (81.6) | <0.001 & |
• Yes | 41 (28.7) | 32 (34.0) | 9 (18.4) | |
Obesity according body fat percentage (n (%)) | ||||
• Obese | 107 (74.8) | 75 (79.8) | 32 (65.3) | <0.001 & |
• Normal | 36 (25.2) | 19 (20.2) | 17 (34.7) |
Sex | ALM Adjusted for BMI | p-Value | η2 p | p-Value (Gxsex) | η2 p | |
---|---|---|---|---|---|---|
Low | Adequate | |||||
Maximal isometric biceps strength (kg) | ||||||
Women | 16.30 ± 4.25 | 21.26 ± 5.40 | <0.001 | 0.156 | 0.508 | 0.003 |
Men | 31.90 ± 7.34 | 35.45 ± 8.23 | 0.190 | 0.037 | ||
Maximal dynamic biceps strength—1 RM (kg) | ||||||
Women | 11.13 ± 3.55 | 14.98 ± 5.22 | 0.001 | 0.108 | 0.240 | 0.010 |
Men | 30.45 ± 8.75 | 36.96 ± 8.45 | 0.018 | 0.116 | ||
Maximal isometric leg extension strength (kg) | ||||||
Women | 47.91 ± 14.83 | 61.67 ± 14.49 | <0.001 | 0.147 | 0.755 | 0.001 |
Men | 78.52 ± 16.97 | 94.45 ± 26.25 | 0.031 | 0.097 | ||
Maximal dynamic leg extension strength—1 RM (kg) | ||||||
Women | 45.61 ± 12.78 | 54.98 ± 12.32 | 0.002 | 0.096 | 0.805 | 0.000 |
Men | 68.68 ± 15.02 | 79.41 ± 14.86 | 0.027 | 0.102 | ||
Maximum hand grip strength (left) (kg) | ||||||
Women | 18.76 ± 3.49 | 21.99 ± 3.86 | <0.001 | 0.126 | 0.914 | 0.000 |
Men | 32.14 ± 7.48 | 35.22 ± 6.78 | 0.235 | 0.030 | ||
Maximum hand grip strength (right) (kg) | ||||||
Women | 19.93 ± 3.79 | 23.06 ± 4.41 | 0.003 | 0.094 | 0.219 | 0.011 |
Men | 33.23 ± 7.16 | 38.70 ± 6.32 | 0.012 | 0.130 | ||
Maximum hand grip strength (the highest) (kg) | ||||||
Women | 20.33 ± 3.52 | 23.72 ± 4.08 | 0.001 | 0.125 | 0.341 | 0.007 |
Men | 33.95 ± 7.01 | 39.07 ± 6.09 | 0.016 | 0.120 | ||
Arm curl test (rep) | ||||||
Women | 15.85 ± 3.75 | 19.57 ± 3.54 | <0.001 | 0.175 | 0.018 | 0.040 |
Men | 16.23 ± 2.98 | 17.04 ± 2.78 | 0.448 | 0.013 | ||
Chair stand test (rep) | ||||||
Women | 17.11 ± 4.35 | 17.27 ± 2.73 | 0.940 | 0.000 | 0.262 | 0.009 |
Men | 17.50 ± 4.67 | 16.33 ± 3.17 | 0.140 | 0.047 | ||
Step-in-place (steps) | ||||||
Women | 96.44 ± 24.59 | 105.04 ± 12.61 | 0.043 | 0.044 | 0.758 | 0.001 |
Men | 105.18 ± 21.63 | 111.93 ± 18.00 | 0.301 | 0.023 | ||
8 foot up and go test (s) | ||||||
Women | 5.83 ± 1.52 | 5.11 ± 0.67 | 0.003 | 0.093 | 0.094 | 0.020 |
Men | 5.24 ± 1.10 | 5.14 ± 1.30 | 0.831 | 0.001 |
Sex | Osteoporosis | p-Value | η2 p | p-Value (Gxsex) | η2 p | |
---|---|---|---|---|---|---|
No | Yes | |||||
Maximal isometric biceps strength (kg) | ||||||
Women | 19.71 ± 5.42 | 20.08 ± 5.88 | 0.670 | 0.002 | 0.020 | 0.039 |
Men | 32.65 ± 7.29 | 39.23 ± 9.01 | 0.013 | 0.126 | ||
Maximal dynamic biceps strength—1 RM (kg) | ||||||
Women | 14.06 ± 5.15 | 13.51 ± 5.04 | 0.727 | 0.001 | 0.270 | 0.009 |
Men | 33.60 ± 5.99 | 36.00 ± 9.90 | 0.307 | 0.23 | ||
Maximal isometric leg extension strength (kg) | ||||||
Women | 58.65 ± 16.91 | 55.91 ± 13.47 | 0.505 | 0.005 | 0.627 | 0.002 |
Men | 87.10 ± 23.78 | 88.16 ± 24.97 | 0.808 | 0.001 | ||
Maximal dynamic leg extension strength—1 RM (kg) | ||||||
Women | 52.14 ± 14.58 | 52.59 ± 9.81 | 0.747 | 0.001 | 0.435 | 0.004 |
Men | 75.32 ± 15.49 | 71.36 ± 17.31 | 0.556 | 0.008 | ||
Maximum hand grip strength (left) (kg) | ||||||
Women | 21.06 ± 4.17 | 21.06 ± 3.76 | 0.923 | 0.000 | 0.051 | 0.027 |
Men | 33.05 ± 7.40 | 37.33 ± 5.22 | 0.055 | 0.078 | ||
Maximum hand grip strength (right) (kg) | ||||||
Women | 22.39 ± 4.63 | 27.72 ± 4.12 | 0.564 | 0.004 | 0.197 | 0.012 |
Men | 35.83 ± 7.20 | 38.11 ± 7.27 | 0.292 | 0.024 | ||
Maximum hand grip strength (the highest) (kg) | ||||||
Women | 22.84 ± 4.39 | 22.56 ± 3.86 | 0.856 | 0.000 | 0.090 | 0.021 |
Men | 36.15 ± 7.03 | 39.56 ± 6.13 | 0.114 | 0.053 | ||
Arm curl test (rep) | ||||||
Women | 18.60 ± 3.94 | 18.33 ± 4.06 | 0.818 | 0.001 | 0.336 | 0.007 |
Men | 16.45 ± 3.40 | 17.67 ± 1.73 | 0.213 | 0.034 | ||
Chair stand test (rep) | ||||||
Women | 17.26 ± 3.36 | 17.16 ± 3.10 | 0.993 | 0.000 | 0.153 | 0.015 |
Men | 16.50 ± 3.68 | 18.44 ± 4.75 | 0.122 | 0.051 | ||
Step-in-place (steps) | ||||||
Women | 102.34 ± 16.86 | 103.03 ± 18.20 | 0.759 | 0.001 | 0.503 | 0.003 |
Men | 107.83 ± 20.07 | 113.67 ± 18.83 | 0.398 | 0.016 | ||
8 foot up and go test (s) | ||||||
Women | 5.31 ± 1.10 | 5.33 ± 0.91 | 0.980 | 0.000 | 0.988 | 0.000 |
Men | 5.18 ± 1.25 | 5.20 ± 10.5 | 0.903 | 0.000 |
Sex | Fat Percentage | p-Value | η2 p | p-Value (Gxsex) | η2 p | |
---|---|---|---|---|---|---|
Normal | Obesity | |||||
Maximal isometric biceps strength (kg) | ||||||
Women | 21.26 ± 4.72 | 19.47 ± 5.72 | 0.174 | 0.020 | 0.358 | 0.006 |
Men | 36.17 ± 9.04 | 32.63 ± 7.17 | 0.043 | 0.086 | ||
Maximal dynamic biceps strength—1 RM (kg) | ||||||
Women | 12.58 ± 4.18 | 14.20 ± 5.27 | 0.246 | 0.015 | 0.601 | 0.002 |
Men | 33.32 ± 9.68 | 34.42 ± 8.91 | 0.718 | 0.003 | ||
Maximal isometric leg extension strength (kg) | ||||||
Women | 62.01 ± 17.08 | 56.62 ± 15.39 | 0.136 | 0.024 | 0.426 | 0.005 |
Men | 85.98 ± 26.10 | 88.00 ± 22.79 | 0.841 | 0.001 | ||
Maximal dynamic leg extension strength—1 RM (kg) | ||||||
Women | 53.87 ± 13.83 | 51.89 ± 12.97 | 0.464 | 0.006 | 0.472 | 0.004 |
Men | 72.43 ± 14.17 | 75.74 ± 15.73 | 0.994 | 0.000 | ||
Maximum hand grip strength (left) (kg) | ||||||
Women | 21.53 ± 2.63 | 20.94 ± 4.30 | 0.522 | 0.005 | 0.454 | 0.004 |
Men | 32.94 ± 5.33 | 34.31 ± 8.05 | 0.941 | 0.000 | ||
Maximum hand grip strength (right) (kg) | ||||||
Women | 23.11 ± 3.96 | 21.92 ± 4.56 | 0.250 | 0.014 | 0.145 | 0.015 |
Men | 34.71 ± 5.02 | 37.06 ± 8.06 | 0.542 | 0.008 | ||
Maximum hand grip strength (the highest) (kg) | ||||||
Women | 23.47 ± 3.51 | 22.56 ± 4.36 | 0.337 | 0.010 | 0.242 | 0.010 |
Men | 35.53 ± 4.76 | 37.44 ± 7.85 | 0.668 | 0.004 | ||
Arm curl test (rep) | ||||||
Women | 18.84 ± 3.06 | 18.42 ± 4.17 | 0.630 | 0.003 | 0.948 | 0.000 |
Men | 16.88 ± 2.89 | 16.56 ± 2.90 | 0.471 | 0.011 | ||
Chair stand test (rep) | ||||||
Women | 17.74 ± 2.23 | 17.09 ± 3.47 | 0.359 | 0.009 | 0.300 | 0.008 |
Men | 17.94 ± 4.09 | 16.28 ± 3.76 | 0.039 | 0.089 | ||
Step-in-place (steps) | ||||||
Women | 107.95 ± 11.15 | 101.21 ± 18.27 | 0.100 | 0.029 | 0.871 | 0.000 |
Men | 113.29 ± 18.97 | 106.56 ± 20.11 | 0.170 | 0.040 | ||
8 foot up and go test (s) | ||||||
Women | 4.97 ± 0.54 | 5.41 ± 1.12 | 0.085 | 0.032 | 0.513 | 0.003 |
Men | 5.15 ± 1.67 | 5.21 ± 0.90 | 0.333 | 0.020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patiño-Villada, F.A.; González-Bernal, J.J.; González-Santos, J.; de Paz, J.A.; Jahouh, M.; Mielgo-Ayuso, J.; Romero-Pérez, E.M.; Soto-Cámara, R. Relationship of Body Composition with the Strength and Functional Capacity of People over 70 Years. Int. J. Environ. Res. Public Health 2020, 17, 7767. https://doi.org/10.3390/ijerph17217767
Patiño-Villada FA, González-Bernal JJ, González-Santos J, de Paz JA, Jahouh M, Mielgo-Ayuso J, Romero-Pérez EM, Soto-Cámara R. Relationship of Body Composition with the Strength and Functional Capacity of People over 70 Years. International Journal of Environmental Research and Public Health. 2020; 17(21):7767. https://doi.org/10.3390/ijerph17217767
Chicago/Turabian StylePatiño-Villada, Fredy Alonso, Jerónimo J González-Bernal, Josefa González-Santos, José Antonio de Paz, Maha Jahouh, Juan Mielgo-Ayuso, Ena Monserrat Romero-Pérez, and Raúl Soto-Cámara. 2020. "Relationship of Body Composition with the Strength and Functional Capacity of People over 70 Years" International Journal of Environmental Research and Public Health 17, no. 21: 7767. https://doi.org/10.3390/ijerph17217767
APA StylePatiño-Villada, F. A., González-Bernal, J. J., González-Santos, J., de Paz, J. A., Jahouh, M., Mielgo-Ayuso, J., Romero-Pérez, E. M., & Soto-Cámara, R. (2020). Relationship of Body Composition with the Strength and Functional Capacity of People over 70 Years. International Journal of Environmental Research and Public Health, 17(21), 7767. https://doi.org/10.3390/ijerph17217767