Influences of Blood Lactate Levels on Cognitive Domains and Physical Health during a Sports Stress. Brief Review
Abstract
:1. Introduction
2. Materials and Methods
3. Lactate as a Possible Neuromodulator
4. Studies on Cognition
5. Studies with Transcranial Magnetic Stimulation
6. Studies with Sensory Evoked Potentials
7. Limitation and Future Proposal
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fletcher, W.M.; Hopkins, F.G. Lactic acid in amphibian muscle. J. Physiol. 1907, 35, 247–309. [Google Scholar] [CrossRef]
- Hermansen, L. Effect of metabolic changes on force generation in skeletal muscle during maximal exercise. Ciba Found Symp. 1981, 82, 75–88. [Google Scholar] [PubMed]
- Brooks, G.A. Lactate doesn’t necessarily cause fatigue: Why are we surprised? J. Physiol. 2001, 536, 1. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, T.H.; Nielsen, O.B.; Lamb, G.D.; Stephenson, D.G. Intracellular acidosis enhances the excitability of working muscle. Science 2004, 305, 1144–1147. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.V.; Lupton, H. Muscular exexcise, lactic acid, and the supply and utilization of oxygen. Quart. J. Med. 1924, 97, 84–138. [Google Scholar]
- Geers, C.; Gros, G. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol. Rev. 2000, 80, 681–715. [Google Scholar] [CrossRef] [Green Version]
- Brooks, G.A. Lactate production under fully aerobic conditions: The lactate shuttle during rest and exercise. Fed. Proc. 1986, 45, 2924–2929. [Google Scholar]
- Magistretti, P.J.; Pellerin, L. Metabolic coupling during activation. A cellular view. Adv. Exp. Med. Biol. 1997, 413, 161–166. [Google Scholar]
- Bittar, P.G.; Charnay, Y.; Pellerin, L.; Bouras, C.; Magistretti, P.J. Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocyte. J. Cereb. Blood Flow Metab. 1996, 16, 1079–1089. [Google Scholar] [CrossRef] [Green Version]
- Coco, M. The brain behaves as a muscle? Neurol. Sci. 2017, 38, 1865–1868. [Google Scholar] [CrossRef]
- Hertz, L.; Dienel, G.A. Lactate transport and transporters: General principles and functional roles in brain cells. J. Neurosci. Res. 2005, 79, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, D.; Setogawa, S.; Kitaoka, Y.; Masuda, H.; Tamura, Y.; Hatta, H.; Yanagihara, D. Exercise-induced expression of monocarboxylate transporter 2 in the cerebellum and its contribution to motor performance. Neurosci. Lett. 2016, 633, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.Q.; Ren, N.; Jin, L.; Cheng, K.; Kash, S.; Chen, R.; Wright, S.D.; Taggart, A.K.; Waters, M.G. Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochem. Biophys. Res. Commun. 2008, 377, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Morland, C.; Lauritzen, K.H.; Puchades, M.; Holm-Hansen, S.; Andersson, K.; Gjedde, A.; Attramadal, H.; Storm-Mathisen, J.; Bergersen, L.H. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain. J. Neurosci. Res. 2015, 93, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- Coco, M.; di Corrado, D.; Calogero, R.A.; Perciavalle, V.; Maci, T.; Perciavalle, V. Attentional processes and blood lactate levels. Brain Res. 2009, 1302, 205–211. [Google Scholar] [CrossRef]
- Parasuraman, R. The attentive brain: Issues and prospects. In The Attentive Brain; Parasuraman, R., Ed.; MIT: Cambridge, MA, USA, 1998; pp. 1–13. [Google Scholar]
- Van Zomeren, A.H.; Brouwer, W.H. Clinical Neuropsychology of Attention; Oxford University Press: New York, NY, USA, 1994; p. 264. [Google Scholar]
- Coco, M.; Buscemi, A.; Guerrera, C.S.; Di Corrado, D.; Cavallari, P.; Zappalà, A.; Di Nuovo, S.; Parenti, R.; Maci, T.; Razza, G.; et al. Effects of a bout of intense exercise on some executive functions. Int. J. Environ. Res. Public Health. 2020, 31, 898. [Google Scholar] [CrossRef] [Green Version]
- di Nuovo, S. Attenzione e Concentrazione; Erikson: Trento, Italy, 2002. [Google Scholar]
- Zimmermann, P.; Fimm, B. Testbatterie zur Aufmerksamkeitsprüfung (TAP); Psytest: Würselen, Germany, 1992. [Google Scholar]
- Buckley, J.D.; Bourdon, P.C.; Woolford, S.M. Effect of measuring blood lactate concentrations using different automated lactate analysers on blood lactate transition thresholds. J. Sci. Med. Sport 2003, 6, 408–421. [Google Scholar] [CrossRef]
- Coco, M.; Alagona, G.; Perciavalle, V.; Perciavalle, V.; Cavallari, P.; Caronni, A. Changes in cortical excitability and blood lactate after a fatiguing hand-grip exercise. Somat. Mot. Res. 2014, 31, 35–39. [Google Scholar] [CrossRef]
- Perciavalle, V.; di Corrado, D.; Scuto, C.; Perciavalle, V.; Coco, M. Attention and blood lactate levels in equestrians performing show jumping. Percept Mot. Skills 2014, 118, 733–745. [Google Scholar] [CrossRef]
- Coco, M.; Alagona, G.; Perciavalle, V.; Rapisarda, G.; Costanzo, E.; Perciavalle, V. Brainstem excitability is not influenced by blood lactate levels. Somat. Mot. Res. 2013, 30, 90–95. [Google Scholar] [CrossRef]
- Petralia, M.C.; Perciavalle, V.; Basile, M.S.; Alagona, G.; Monaca, A.; Buscemi, A.; Coco, M. The rise of lactic acid, from a pharmacist’s laboratory to entry into the central nervous system. Sport Sci. Health 2018, 14, 455–457. [Google Scholar] [CrossRef]
- Coco, M.; Platania, S.; Castellano, S.; Sagone, E.; Ramaci, T.; Petralia, M.C.; Agati, M.; Massimino, S.; di Corrado, D.; Guarnera, M.; et al. Memory, personality and blood lactate during a judo competition. Sport Sci. Health. 2018, 14, 547–553. [Google Scholar] [CrossRef]
- Perciavalle, V.; Blandini, M.; Fecarotta, P.; Buscemi, A.; di Corrado, D.; Bertolo, L.; Fichera, F.; Coco, M. The role of deep breathing on stress. Neurol. Sci. 2017, 38, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Coco, M.; Fiore, A.S.; Perciavalle, V.; Maci, T.; Petralia, M.C.; Perciavalle, V. Stress exposure and postural control in young females. Mol. Med. Rep. 2015, 11, 2135–2140. [Google Scholar] [CrossRef] [Green Version]
- Perciavalle, V.; Marchetta, N.S.; Giustiniani, S.; Borbone, C.; Perciavalle, V.; Petralia, M.C.; Buscemi, A.; Coco, M. Attentive processes, blood lactate and CrossFit®. Phys. Sportsmed. 2016, 44, 403–406. [Google Scholar] [CrossRef]
- Alagona, G.; Maci, T.; Petralia, M.C.; Costanzo, E.; Perciavalle, V.; Coco, M.; Perciavalle, V. Attentional processes during submaximal exercises. Somat. Mot. Res. 2014, 31, 1–6. [Google Scholar]
- Perciavalle, V.; Di Corrado, D.; Scuto, C.; Perciavalle, V.; Coco, M. Anthropometrics related to the performance of a sample of male swimmers. Percept. Mot. Skills 2014, 118, 940–950. [Google Scholar] [CrossRef]
- Sjodin, B.; Jacobs, I.; Karlsson, J. Onset of blood lactate accumulation and marathon running performance. Int. J. Sports Med. 1981, 2, 23–26. [Google Scholar] [CrossRef]
- Rojas Vega, S.; Strüder, H.K.; Vera Wahrmann, B.; Schmidt, A.; Bloch, W.; Hollmann, W. Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Res. 2006, 1121, 59–65. [Google Scholar] [CrossRef]
- Fabel, K.; Wolf, S.A.; Ehninger, D.; Babu, H.; Leal-Galicia, P.; Kempermann, G. Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front. Neurosci. 2009, 3, 50. [Google Scholar] [CrossRef] [Green Version]
- McHughen, S.A.; Rodriguez, P.F.; Kleim, J.A.; Kleim, E.D.; Marchal Crespo, L.; Procaccio, V.; Cramer, S.C. BDNF Val66Met polymorphism influences motor system function in the human brain. Cereb. Cortex. 2010, 20, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Cantarero, G.; Tang, B.; O’Malley, R.; Salas, R.; Celnik, P. Motor learning interference is proportional to occlusion of LTP-like plasticity. J. Neurosci. 2013, 33, 4634–4641. [Google Scholar] [CrossRef] [PubMed]
- Perciavalle, V.; Maci, T.; Perciavalle, V.; Massimino, S.; Coco, M. Working memory and blood lactate levels. Neurol. Sci. 2015, 36, 2129–2136. [Google Scholar] [CrossRef] [PubMed]
- Rottschy, C.; Kleiman, A.; Dogan, I.; Langner, R.; Mirzazade, S.; Kronenbuerger, M.; Werner, C.; Shah, N.J.; Schulz, J.B.; Eickhoff, S.B.; et al. Diminished activation of motor working-memory networks in Parkinson’s disease. PLoS ONE. 2013, 8, e61786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coco, M.; Perciavalle, V.; Cavallari, P.; Perciavalle, V. Effects of an exhaustive exercise on motor skill learning and on the excitability of primary motor cortex and supplementary motor area. Medicine 2016, 95, e2978. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Shin, S.H. Comparison of effects of transcranial magnetic stimulation on primary motor cortex and supplementary motor area in motor skill learning (randomized, crossover study). Front. Hum. Neurosci. 2014, 8, 937. [Google Scholar] [CrossRef] [Green Version]
- Coco, M.; Alagona, G.; Perciavalle, V.; Cicirata, V.; Perciavalle, V. Spinal cord excitability is not influenced by elevated blood lactate levels. Somat. Mot. Res. 2011, 28, 19–24. [Google Scholar] [CrossRef]
- Moscatelli, F.; Valenzano, A.; Petito, A.; Triggiani, A.I.; Ciliberti, M.A.P.; Luongo, L.; Carotenuto, M.; Esposito, M.; Messina, A.; Monda, V.; et al. Relationship between blood lactate and cortical excitability between taekwondo athletes and non-athletes after handgrip exercise. Somat. Mot. Res. 2016, 33, 137–144. [Google Scholar] [CrossRef]
- O’Leary, T.J.; Collett, J.; Morris, M.G. High-intensity exhaustive exercise reduces long-interval intracortical inhibition. Exp. Brain Res. 2018, 25, 3149–3158. [Google Scholar] [CrossRef]
- Di Russo, F.; Pitzalis, S.; Spitoni, G.; Aprile, T.; Patria, F.; Spinelli, D.; Hillyard, S.A. Identification of the neural sources of the pattern-reversal VEP. Neuroimage 2005, 24, 874–886. [Google Scholar] [CrossRef]
- Perciavalle, V.; Alagona, G.; De Maria, G.; Rapisarda, G.; Costanzo, E.; Perciavalle, V.; Coco, M. Somatosensory evoked potentials and blood lactate levels. Neurol. Sci. 2015, 36, 1597–1601. [Google Scholar] [CrossRef] [PubMed]
- Coco, M.; Alagona, G.; de Maria, G.; Rapisarda, G.; Costanzo, E.; Perciavalle, V.; Perciavalle, V. Relationship of high blood lactate levels with latency of visual-evoked potentials. Neurol. Sci. 2015, 36, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Buscemi, A.; Rapisarda, A.; Platania, S.; Maida, F.; Brancati, D.; Petralia, M.C.; di Nuovo, S.; Giustiniani, S.; Caldarella, L.; Blandino, M.G.; et al. The woman in pregnancy: Body care by knowing of alternative medicine. Acta Med. Mediterr. 2016, 32, 953. [Google Scholar]
- Perciavalle, V.; Buscemi, A.; Borbone, C.; Catania, A.; Buscemi, B.; Petralia, M.C.; Puglisi, M.L.; Coco, L.S.G.; Coco, M. Exhaustive exercise and short term memory. Acta Med. Mediterr. 2016, 32, 23. [Google Scholar]
- Coco, M.; Ramaci, T.; Sagone, E.; Galati Sardo, M.; Brachina, P.; Buscemi, B.; Coco, L.S.G.; Papotto, G.; Papotto, G.M.F.; di Gregorio, G.; et al. Brain and memory: A pilot study on the experience of rebirth and the present life quality of adult subjects. Acta Med. Mediterr. 2017, 33, 901. [Google Scholar]
- Coco, M.; Di Corrado, D.; Ramaci, T.; Di Nuovo, S.; Perciavalle, V.; Puglisi, A.; Cavallari, P.; Bellomo, M.; Buscemi, A. Role of lactic acid on cognitive functions. Phys. Sportsmed. 2019, 47, 329–335. [Google Scholar] [CrossRef]
- Coco, M.; Buscemi, A.; Sagone, E.; Pellerone, M.; Ramaci, T.; Marchese, M.; Perciavalle, V.; Perciavalle, V.; Musumeci, G. Effects of yoga practice on personality, body image and lactate. Pilot study on a group of women from 40 years. Sustainability 2020, 12, 6719. [Google Scholar] [CrossRef]
- Coco, M.; Buscemi, A.; Pennisi, E.; Cavallari, P.; Papotto, G.; Papotto, G.M.F.; Perciavalle, V.; di Corrado, D.; Perciavalle, V. Postural control and stress exposure in young men: Changes in cortisol awakening response and blood lactate. Int. J. Environ. Res. Public Health. 2020, 17, 7222. [Google Scholar] [CrossRef]
- Coco, M.; Buscemi, A.; Cavallari, P.; Massimino, S.; Rinella, S.; Tortorici, M.M.; Maci, T.; Perciavalle, V.; Tusak, M.; di Corrado, D.; et al. Executive functions during submaximal exercises in male athletes: Role of blood lactate. Front. Psychol. 2020, 11, 537922. [Google Scholar] [CrossRef]
- Tornero-Aguilera, J.F.; Robles-Pérez, J.J.; Clemente-Suárez, V.J. Use of psychophysiological portable devices to analyse stress response in different experienced soldiers. J. Med. Syst. 2018, 42, 75. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coco, M.; Buscemi, A.; Ramaci, T.; Tusak, M.; Corrado, D.D.; Perciavalle, V.; Maugeri, G.; Perciavalle, V.; Musumeci, G. Influences of Blood Lactate Levels on Cognitive Domains and Physical Health during a Sports Stress. Brief Review. Int. J. Environ. Res. Public Health 2020, 17, 9043. https://doi.org/10.3390/ijerph17239043
Coco M, Buscemi A, Ramaci T, Tusak M, Corrado DD, Perciavalle V, Maugeri G, Perciavalle V, Musumeci G. Influences of Blood Lactate Levels on Cognitive Domains and Physical Health during a Sports Stress. Brief Review. International Journal of Environmental Research and Public Health. 2020; 17(23):9043. https://doi.org/10.3390/ijerph17239043
Chicago/Turabian StyleCoco, Marinella, Andrea Buscemi, Tiziana Ramaci, Matej Tusak, Donatella Di Corrado, Vincenzo Perciavalle, Grazia Maugeri, Valentina Perciavalle, and Giuseppe Musumeci. 2020. "Influences of Blood Lactate Levels on Cognitive Domains and Physical Health during a Sports Stress. Brief Review" International Journal of Environmental Research and Public Health 17, no. 23: 9043. https://doi.org/10.3390/ijerph17239043
APA StyleCoco, M., Buscemi, A., Ramaci, T., Tusak, M., Corrado, D. D., Perciavalle, V., Maugeri, G., Perciavalle, V., & Musumeci, G. (2020). Influences of Blood Lactate Levels on Cognitive Domains and Physical Health during a Sports Stress. Brief Review. International Journal of Environmental Research and Public Health, 17(23), 9043. https://doi.org/10.3390/ijerph17239043