Can Neurocognitive Function Predict Lower Extremity Injuries in Male Collegiate Athletes?
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Experimental Design
2.2.1. Standardized Assessment of Concussion
2.2.2. Postural Control of the Lower Extremity
2.3. Data Processing
2.4. Statistical Analysis
3. Results
3.1. The Correlation between SAC and Evaluation Tool for Postural Control of Lower Limb
3.2. Injury History for 6 Months after Testing
3.3. Predicting Injury Occurrence
3.4. Difference between Injured and Healthy Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Theadom, A.; Starkey, N.J.; Dowell, T.; Hume, P.A.; Kahan, M.; McPherson, K.; Feigin, V.; BIONIC Research Group. Sports-related brain injury in the general population: An epidemiological study. J. Sci. Med. Sport 2014, 17, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Ingebrigtsen, T.; Waterloo, K.; Marup-Jensen, S.; Attner, E.; Romner, B. Quantification of post-concussion symptoms 3 months after minor head injury in 100 consecutive patients. J. Neurol. 1998, 245, 609–612. [Google Scholar] [CrossRef] [PubMed]
- Servadei, F.; Verlicchi, A.; Soldano, F.; Zanotti, B.; Piffer, S. Descriptive epidemiology of head injury in Romagna and Trentino. Comparison between two geographically different Italian regions. Neuroepidemiology 2002, 21, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Theadom, A.; Mahon, S.; Hume, P.; Starkey, N.; Barker-Collo, S.; Jones, K.; Majdan, M.; Feigin, V.L. Incidence of sports-related traumatic brain injury of all severities: A systematic review. Neuroepidemiology 2020, 54, 192–199. [Google Scholar] [CrossRef] [PubMed]
- King, D.; Hume, P.; Gissane, C.; Brughelli, M.; Clark, T. The influence of head impact threshold for reporting data in contact and collision sports: Systematic review and original data analysis. Sports Med. 2016, 46, 151–169. [Google Scholar] [CrossRef]
- Kim, G.H.; Kang, I.; Jeong, H.; Park, S.; Hong, H.; Kim, J.; Kim, J.Y.; Edden, R.A.E.; Lyoo, I.K.; Yoon, S. Low prefrontal GABA levels are associated with poor cognitive functions in professional boxers. Front. Hum. Neurosci. 2019, 13, 193. [Google Scholar] [CrossRef]
- Herman, D.C.; Zaremski, J.L.; Vincent, H.K.; Vincent, K.R. Effect of neurocognition and concussion on musculoskeletal injury risk. Curr. Sports Med. Rep. 2015, 14, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Swanik, C.B. Brains and sprains: The brain’s role in noncontact anterior cruciate ligament injuries. J. Athl. Train. 2015, 50, 1100–1102. [Google Scholar] [CrossRef] [Green Version]
- Wilkerson, G.B. Neurocognitive reaction time predicts lower extremity sprains and strains. Int. J. Athl. Ther. Train. 2012, 17, 4–9. [Google Scholar] [CrossRef]
- Brooks, M.A.; Peterson, K.; Biese, K.; Sanfilippo, J.; Heiderscheit, B.C.; Bell, D.R. Concussion increases odds of sustaining a lower extremity musculoskeletal injury after return to play among collegiate athletes. Am. J. Sports Med. 2016, 44, 742–747. [Google Scholar] [CrossRef]
- Nordstrom, A.; Nordstrom, P.; Ekstrand, J. Sports-related concussion increases the risk of subsequent injury by about 50% in elite male football players. Br. J. Sports Med. 2014, 48, 1447–1450. [Google Scholar] [CrossRef] [PubMed]
- Lohmander, L.S.; Ostenberg, A.; Englund, M.; Roos, H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004, 50, 3145–3152. [Google Scholar] [CrossRef] [PubMed]
- Secrist, E.S.; Bhat, S.B.; Dodson, C.C. The financial and professional impact of anterior cruciate ligament injuries in National Football League athletes. Orthop. J. Sports Med. 2016, 4, 2325967116663921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Paterno, M.V.; Quatman, C.E. Mechanisms, prediction, and prevention of ACL injuries: Cut risk with three sharpened and validated tools. J. Orthop. Res. 2016, 34, 1843–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gledhill, A.; Forsdyke, D. An ounce of prevention is better than a pound of cure: Shouldn’t we be doing EVERYTHING to reduce sports injury incidence and burden? Br. J. Sports Med. 2018, 52, 1292–1293. [Google Scholar] [CrossRef] [PubMed]
- Jacobsson, J.; Timpka, T. Classification of prevention in sports medicine and epidemiology. Sports Med. 2015, 45, 1483–1487. [Google Scholar] [CrossRef]
- Hutchison, M.; Comper, P.; Mainwaring, L.; Richards, D. The influence of musculoskeletal injury on cognition: Implications for concussion research. Am. J. Sports Med. 2011, 39, 2331–2337. [Google Scholar] [CrossRef]
- Swanik, C.B.; Covassin, T.; Stearne, D.J.; Schatz, P. The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am. J. Sports Med. 2007, 35, 943–948. [Google Scholar] [CrossRef]
- Kapreli, E.; Athanasopoulos, S.; Gliatis, J.; Papathanasiou, M.; Peeters, R.; Strimpakos, N.; Hecke, P.V.; Gouliamos, A.; Sunaert, S. Anterior cruciate ligament deficiency causes brain plasticity: A functional MRI study. Am. J. Sports Med. 2009, 37, 2419–2426. [Google Scholar] [CrossRef]
- Bonnette, S.; Diekfuss, J.A.; Grooms, D.R.; Kiefer, A.W.; Riley, M.A.; Riehm, C.; Moore, C.; Foss, K.D.B.; DiCesare, C.A.; Baumeister, J.; et al. Electrocortical dynamics differentiate athletes exhibiting low-and high-ACL injury risk biomechanics. Psychophysiology 2020, 57, e13530. [Google Scholar] [CrossRef]
- McCrea, M. Standardized mental status testing on the sideline after sport-related concussion. J. Athl. Train. 2001, 36, 274–279. [Google Scholar]
- Dessy, A.M.; Yuk, F.J.; Maniya, A.Y.; Gometz, A.; Rasouli, J.J.; Lovell, M.R.; Choudhri, T.F. Review of assessment scales for diagnosing and monitoring sports-related concussion. Cureus 2017, 9, e1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echemendia, R.J.; Meeuwisse, W.; McCrory, P.; Davis, G.A.; Putukian, M.; Leddy, J.; Makdissi, M.; Sullivan, S.J.; Broglio, S.P.; Raftery, M.; et al. The sport concussion assessment tool 5th edition (SCAT5): Background and rationale. Br. J. Sports Med. 2017, 51, 848–850. [Google Scholar] [PubMed]
- Murphy, A.; Kaufman, M.S.; Molton, I.; Coppel, D.B.; Benson, J.; Herring, S.A. Concussion evaluation methods among Washington State high school football coaches and athletic trainers. PM&R 2012, 4, 419–426. [Google Scholar]
- Diamond, A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000, 71, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Serrien, D.J.; Ivry, R.B.; Swinnen, S.P. Dynamics of hemispheric specialization and integration in the context of motor control. Nat. Rev. Neurosci. 2006, 7, 160–166. [Google Scholar] [CrossRef]
- Fuelscher, I.; Caeyenberghs, K.; Enticott, P.G.; Williams, J.; Lum, J.; Hyde, C. Differential activation of brain areas in children with developmental coordination disorder during tasks of manual dexterity: An ALE meta-analysis. Neurosci. Biobehav. Rev. 2018, 86, 77–84. [Google Scholar] [CrossRef]
- Alsalaheen, B.A.; Whitney, S.L.; Marchetti, G.F.; Furman, J.M.; Kontos, A.P.; Collins, M.W.; Sparto, P.J. Relationship between cognitive assessment and balance measures in adolescents referred for vestibular physical therapy after concussion. Clin. J. Sport Med. 2016, 26, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Parker, T.M.; Osternig, L.R.; van Donkelaar, P.; Chou, L.S. Recovery of cognitive and dynamic motor function following concussion. Br. J. Sports Med. 2007, 41, 868–873. [Google Scholar] [CrossRef] [Green Version]
- Padua, D.A.; Marshall, S.W.; Boling, M.C.; Thigpen, C.A.; Garrett Jr, W.E.; Beutler, A.I. The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: The JUMP-ACL study. Am. J. Sports Med. 2009, 37, 1996–2002. [Google Scholar] [CrossRef]
- Plisky, P.J.; Rauh, M.J.; Kaminski, T.W.; Underwood, F.B. Star Excursion Balance Test as a predictor of lower extremity injury in high school basketball players. J. Orthop. Sports Phys. Ther. 2006, 36, 911–919. [Google Scholar] [CrossRef] [PubMed]
- McGuine, T.A.; Greene, J.J.; Best, T.; Leverson, G. Balance as a predictor of ankle injuries in high school basketball players. Clin. J. Sport Med. 2000, 10, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Mun, J. Developement of a Concussion Assessment Instrument for the South Korean Soldiers. Ph.D. Thesis, Middle Tennessee State University, Murfreesboro, TN, USA, December 2017. [Google Scholar]
- Junge, A.; Engebretsen, L.; Alonso, J.M.; Renstrom, P.; Mountjoy, M.L.; Aubry, M.; Dvorak, J. Injury surveillance in multi-sport events: The International Olympic Committee approach. Br. J. Sports Med. 2008, 42, 413–421. [Google Scholar] [CrossRef]
- Starling, A.J.; Leong, D.F.; Bogle, J.M.; Vargas, B.B. Variability of the modified Balance Error Scoring System at baseline using objective and subjective balance measures. Concussion 2016, 1, CNC5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuhr, C.; Hughes, C.M.L.; Stöckel, T. Task-specific and variability-driven activation of cognitive control processes during motor performance. Sci. Rep. 2018, 8, 10811. [Google Scholar] [CrossRef] [Green Version]
- Norouzi, E.; Vaezmosavi, M.; Gerber, M.; Pühse, U.; Brand, S. Dual-task training on cognition and resistance training improved both balance and working memory in older people. Phys. Sportsmed. 2019, 47, 471–478. [Google Scholar] [CrossRef]
- Geertsen, S.S.; Thomas, R.; Larsen, M.N.; Dahn, I.M.; Andersen, J.N.; Krause-Jensen, M.; Korup, V.; Nielsen, C.M.; Wienecke, J.; Ritz, C. Motor skills and exercise capacity are associated with objective measures of cognitive functions and academic performance in preadolescent children. PLoS ONE 2016, 11, e0161960. [Google Scholar] [CrossRef]
- Diamond, A. Activities and programs that improve children’s executive functions. Curr. Dir. Psychol. Sci. 2012, 21, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Espy, K.A.; McDiarmid, M.M.; Cwik, M.F.; Stalets, M.M.; Hamby, A.; Senn, T.E. The contribution of executive functions to emergent mathematic skills in preschool children. Dev. Neuropsychol. 2004, 26, 465–486. [Google Scholar] [CrossRef] [PubMed]
- Poldrack, R.A.; Sabb, F.W.; Foerde, K.; Tom, S.M.; Asarnow, R.F.; Bookheimer, S.Y.; Knowlton, B.J. The neural correlates of motor skill automaticity. J. Neurosci. 2005, 25, 5356–5364. [Google Scholar] [CrossRef]
- Hegedus, E.J.; McDonough, S.M.; Bleakley, C.; Baxter, D.; Cook, C.E. Clinician-friendly lower extremity physical performance tests in athletes: A systematic review of measurement properties and correlation with injury. Part 2—The tests for the hip, thigh, foot and ankle including the star excursion balance test. Br. J. Sports Med. 2015, 49, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Gribble, P.A.; Hertel, J.; Plisky, P. Using the Star Excursion Balance Test to assess dynamic postural-control deficits and outcomes in lower extremity injury: A literature and systematic review. J. Athl. Train. 2012, 47, 339–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faltus, J.; Huntimer, B.; Kernozek, T.; Cole, J. Utilization of ImPACT testing to measure injury risk in Alpine ski and Snowboard athletes. Int. J. Sports Phys. Ther. 2016, 11, 498–506. [Google Scholar] [PubMed]
- Herman, D.C.; Barth, J.T. Drop-jump landing varies with baseline neurocognition: Implications for anterior cruciate ligament injury risk and prevention. Am. J. Sports Med. 2016, 44, 2347–2353. [Google Scholar] [CrossRef] [PubMed]
- Kirk, B.; Pugh, J.N.; Cousins, R.; Phillips, S.M. Concussion in university level sport: Knowledge and awareness of athletes and coaches. Sports 2018, 6, 102. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, E.; Molloy, M.G. Concussion in rugby: Knowledge and attitudes of players. Ir. J. Med. Sci. 2016, 185, 521–528. [Google Scholar] [CrossRef]
- Macciocchi, S.N.; Barth, J.T.; Alves, W.; Rimel, R.W.; Jane, J.A. Neuropsychological functioning and recovery after mild head injury in collegiate athletes. Neurosurgery 1996, 39, 510–514. [Google Scholar] [CrossRef]
- Maroon, J.C.; Lovell, M.R.; Norwig, J.; Podell, K.; Powell, J.W.; Hartl, R. Cerebral concussion in athletes: Evaluation and neuropsychological testing. Neurosurgery 2000, 47, 659–672. [Google Scholar]
- Kim, S.; Han, D.; Lee, J. Prevalence and correlates of impairments in activities of daily living in older Koreans: Comparison of young-old and old-old. J. Mens Health 2019, 15, e1–e10. [Google Scholar] [CrossRef] [Green Version]
- Ha, S. Effects of participation in contact sports on neurocognitive scores and dual-task walking in retired athletes. KJSB 2020, 30, 265–273. [Google Scholar]
- Thomas, A.G.; Dennis, A.; Rawlings, N.B.; Stagg, C.J.; Matthews, L.; Morrisc, M.; Kolind, S.H.; Foxley, S.; Jenkinson, M.; Nichols, T.E.; et al. Multi-modal characterization of rapid anterior hippocampal volume increase associated with aerobic exercise. Neuroimage 2016, 131, 162–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu-Ambrose, T.; Nagamatsu, L.S.; Voss, M.W.; Khan, K.M.; Handy, T.C. Resistance training and functional plasticity of the aging brain: A 12-month randomized controlled trial. Neurobiol. Aging 2012, 33, 1690–1698. [Google Scholar] [CrossRef] [PubMed]
- Green, G.A.; Pollack, K.M.; D’Angelo, J.; Schickendantz, M.S.; Caplinger, R.; Weber, K.; Valadka, A.; McAllister, T.W.; Dick, R.W.; Mandelbaum, B.; et al. Mild traumatic brain injury in Major and Minor League Baseball players. Am. J. Sports Med. 2015, 43, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, E.B.; Abar, B.; Shah, M.N.; Wasserman, D.; Bazarian, J.J. Concussions are associated with decreased batting performance among Major League Baseball players. Am. J. Sports Med. 2015, 43, 1127–1133. [Google Scholar] [CrossRef]
- Kioumourtzoglou, E.; Derri, V.; Tzetzls, G.; Theodorakis, Y. Cognitive, perceptual, and motor abilities in skilled basketball performance. Percept. Mot. Skills 1998, 86, 771–786. [Google Scholar] [CrossRef]
- Gessel, L.M.; Fields, S.K.; Collins, C.L.; Dick, R.W.; Comstock, R.D. Concussions among United States high school and collegiate athletes. J. Athl. Train. 2007, 42, 495–503. [Google Scholar]
Items | Dominant Leg | ||||||||
A | AM | M | PM | P | PL | L | AL | ||
Orientation | ρ | 0.127 | 0.126 | 0.077 | −0.078 | 0.023 | 0.030 | 0.086 | 0.099 |
p | 0.269 | 0.277 | 0.505 | 0.502 | 0.845 | 0.797 | 0.459 | 0.391 | |
Immediate memory | ρ | −0.058 | 0.169 | 0.125 | 0.210 | 0.341 | 0.359 | 0.216 | 0.018 |
p | 0.617 | 0.142 | 0.280 | 0.067 | 0.002 ** | 0.001 ** | 0.059 | 0.876 | |
Concentration | ρ | −0.253 | −0.120 | −0.192 | −0.101 | 0.017 | −0.060 | 0.009 | −0.193 |
p | 0.026 | 0.299 | 0.094 | 0.384 | 0.883 | 0.604 | 0.935 | 0.093 | |
Delayed memory | ρ | −0.029 | 0.243 | 0.194 | 0.318 | 0.397 | 0.414 | 0.336 | −0.023 |
p | 0.799 | 0.033 | 0.091 | 0.005 ** | <0.001 *** | <0.001 *** | 0.003 ** | 0.846 | |
Total score | ρ | −0.155 | 0.083 | 0.007 | 0.127 | 0.301 | 0.247 | 0.209 | −0.119 |
p | 0.178 | 0.472 | 0.951 | 0.272 | 0.008 ** | 0.030 * | 0.068 | 0.302 | |
Nondominant Leg | |||||||||
Orientation | ρ | 0.037 | 0.004 | −0.086 | −0.069 | −0.112 | 0.082 | 0.171 | 0.151 |
p | 0.750 | 0.971 | 0.459 | 0.549 | 0.332 | 0.480 | 0.137 | 0.189 | |
Immediate memory | ρ | 0.161 | 0.050 | −0.163 | 0.312 | 0.316 | 0.194 | 0.106 | 0.010 |
p | 0.162 | 0.668 | 0.158 | 0.006 ** | 0.005 ** | 0.090 | 0.357 | 0.928 | |
Concentration | ρ | −0.137 | −0.224 | −0.102 | −0.149 | −0.110 | −0.159 | −0.125 | −0.035 |
p | 0.233 | 0.051 | 0.379 | 0.196 | 0.340 | 0.168 | 0.279 | 0.762 | |
Delayed memory | ρ | 0.164 | 0.072 | 0.243 | 0.374 | 0.338 | 0.225 | 0.113 | 0.078 |
p | 0.154 | 0.533 | 0.034 * | 0.001 ** | 0.003 ** | 0.049 * | 0.326 | 0.498 | |
Total score | ρ | 0.054 | −0.077 | 0.099 | 0.161 | 0.177 | 0.065 | 0.016 | −0.013 |
p | 0.644 | 0.505 | 0.392 | 0.163 | 0.124 | 0.573 | 0.893 | 0.909 |
Domain | A | AM | M | PM | P | PL | L | AL | |
---|---|---|---|---|---|---|---|---|---|
Orientation | ρ | 0.075 | −0.133 | 0.006 | −0.213 | 0.086 | −0.077 | 0.060 | −0.137 |
p | 0.519 | 0.249 | 0.961 | 0.063 | 0.459 | 0.507 | 0.603 | 0.236 | |
Immediate memory | ρ | −0.175 | −0.023 | −0.186 | 0.189 | 0.006 | 0.045 | 0.020 | 0.019 |
p | 0.128 | 0.841 | 0.105 | 0.099 | 0.962 | 0.694 | 0.864 | 0.869 | |
Concentration | ρ | −0.081 | −0.094 | −0.215 | −0.069 | 0.217 | 0.025 | 0.106 | −0.130 |
p | 0.483 | 0.415 | 0.060 | 0.552 | 0.058 | 0.831 | 0.357 | 0.261 | |
Delayed memory | ρ | −0.042 | −0.001 | −0.229 | 0.024 | 0.145 | 0.076 | 0.075 | −0.138 |
p | 0.716 | 0.996 | 0.045 * | 0.838 | 0.209 | 0.511 | 0.518 | 0.231 | |
Total score | ρ | −0.150 | −0.034 | −0.253 | 0.050 | 0.199 | 0.054 | 0.123 | −0.169 |
p | 0.194 | 0.770 | 0.027 * | 0.669 | 0.083 | 0.640 | 0.287 | 0.143 |
Domain | β | p Value | OR | 95% CI for OR |
---|---|---|---|---|
SAC | ||||
Orientation | 0.840 | 0.272 | 2.317 | 0.518 to 10.366 |
Immediate memory | 0.273 | 0.502 | 1.314 | 0.592 to 2.920 |
Concentration | 0.051 | 0.814 | 1.052 | 0.687 to 1.613 |
Delayed memory | 0.305 | 0.426 | 1.356 | 0.641 to 2.871 |
Constant | −9.289 | 0.049 | <0.001 | |
−2 Loglikelihood = 59.442, χ2 = 5.083 (df = 4, p = 0.279), Nagerkerke R2 = 0.114 | ||||
LESS | −0.022 | 0.923 | 0.978 | 0.628 to 1.524 |
Constant | −1.694 | 0.110 | 0.184 | |
−2 Loglikelihood = 63.149, χ2 = 0.009 (df = 1, p = 0.923), Nagerkerke R2 < 0.001 | ||||
BESS | ||||
Single-leg stance | −0.061 | 0.540 | 0.941 | 0.775 to 1.143 |
Tandem stance | −0.003 | 0.980 | 0.997 | 0.779 to 1.276 |
Double-leg stance on foam | 0.392 | 0.219 | 1.480 | 0.792 to 2.766 |
Single-leg stance on foam | 15.772 | 0.998 | 7,071,554.032 | - |
Tandem stance on foam | 0.283 | 0.301 | 1.327 | 0.776 to 2.270 |
Constant | −161.821 | 0.998 | <0.001 | |
−2 Loglikelihood = 57.640, χ2 = 5.517 (df = 5, p = 0.356), Nagerkerke R2 = 0.124 | ||||
Normalized reaching distance of dominant leg in SEBT | ||||
Anterior | −0.023 | 0.690 | 0.977 | 0.871 to 1.096 |
Anteromedial | 0.019 | 0.803 | 1.019 | 0.880 to 1.179 |
Medial | −0.018 | 0.492 | 0.982 | 0.934 to 1.033 |
Posteromedial | −0.049 | 0.293 | 0.952 | 0.869 to 1.043 |
Posterior | 0.006 | 0.848 | 1.006 | 0.947 to 1.068 |
Posterolateral | 0.079 | 0.098 | 1.082 | 0.985 to 1.189 |
Lateral | −0.020 | 0.652 | 0.980 | 0.898 to 1.070 |
Anterolateral | <0.001 | 0.997 | 1.000 | 0.934 to 1.071 |
Constant | −1.321 | 0.750 | 0.267 | |
−2 Loglikelihood = 59.442, χ2 = 3.716 (df = 8, p = 0.882), Nagerkerke R2 = 0.084 | ||||
Normalized reaching distance of nondominant leg in SEBT | ||||
Anterior | 0.002 | 0.966 | 1.002 | 0.897 to 1.120 |
Anteromedial | −0.021 | 0.752 | 0.979 | 0.860 to 1.115 |
Medial | −0.021 | 0.745 | 0.979 | 0.864 to 1.110 |
Posteromedial | 0.034 | 0.484 | 1.035 | 0.940 to 1.139 |
Posterior | −0.009 | 0.839 | 0.991 | 0.906 to 1.083 |
Posterolateral | 0.018 | 0.699 | 1.018 | 0.929 to 1.116 |
Lateral | −0.041 | 0.357 | 0.960 | 0.546 to 1.048 |
Anterolateral | 0.031 | 0.540 | 1.031 | 0.935 to 1.138 |
Constant | −1.485 | 0.635 | 0.226 | |
−2 Loglikelihood = 61.393, χ2 = 1.765 (df = 8, p = 0.987), Nagerkerke R2 = 0.040 | ||||
Differences of reaching distance in SEBT | ||||
Anterior | −0.014 | 0.879 | 0.986 | 0.826 to 1.178 |
Anteromedial | 0.051 | 0.595 | 1.052 | 0.872 to 1.270 |
Medial | −0.073 | 0.407 | 0.930 | 0.783 to 1.104 |
Posteromedial | <0.001 | 0.998 | 1.000 | 0.870 to 1.149 |
Posterior | −0.040 | 0.558 | 0.961 | 0.842 to 1.097 |
Posterolateral | −0.003 | 0.963 | 0.997 | 0.873 to 1.138 |
Lateral | −0.107 | 0.235 | 0.898 | 0.753 to 1.072 |
Anterolateral | 0.019 | 0.813 | 1.019 | 0.874 to 1.188 |
Constant | −0.821 | 0.455 | 0.440 | |
−2 Loglikelihood = 59.165, χ2 = 3.993 (df = 8, p = 0.858), Nagerkerke R2 = 0.090 |
Domain | Non-Injured (n = 66) | Injured (n = 11) | Z t (df) § | p Value |
---|---|---|---|---|
SAC | ||||
Orientation | 4.53 ± 0.56 | 4.73 ± 0.47 | 1.074 | 0.283 |
Immediate memory | 5.70 ± 1.21 | 6.27 ± 1.19 | 1.441 | 0.150 |
Concentration | 7.89 ± 1.70 | 8.27 ± 1.27 | 0.550 | 0.583 |
Delayed memory | 4.70 ± 1.14 | 5.45 ± 1.57 | 1.524 | 0.127 |
Total score | 22.82 ± 3.05 | 24.73 ± 3.07 | 1.923 (75) § | 0.058 |
LESS | ||||
Total error of LESS | 4.50 ± 1.38 | 4.45 ± 1.86 | 0.447 | 0.655 |
BESS | ||||
Double-leg stance | 0.00 ± 0.00 | 0.00 ± 0.00 | ||
Single-leg stance | 6.53 ± 3.50 | 6.00 ± 3.46 | −0.536 | 0.592 |
Tandem stance | 2.29 ± 2.68 | 2.73 ± 3.00 | 0.657 | 0.511 |
Double-leg stance on foam | 0.23 ± 0.65 | 0.64 ± 1.43 | 0.586 | 0.558 |
Single-leg stance on foam | 9.70 ±1.35 | 10.00 ± 0.00 | 1.034 | 0.301 |
Tandem stance on foam | 8.67 ± 2.45 | 9.64 ± 0.92 | 0.956 | 0.339 |
Total error of BESS | 27.41 ± 6.25 | 29.00 ± 5.78 | 0.789 (75) § | 0.433 |
Normalized reaching distance of dominant leg in SEBT | ||||
Anterior | 80.77 ± 10.35 | 79.05 ± 6.42 | 0.533 (75) § | 0.596 |
Anteromedial | 86.65 ± 12.28 | 85.39 ± 6.48 | 0.262 | 0.793 |
Medial | 88.20 ± 15.64 | 85.95 ± 8.36 | −0.742 | 0.458 |
Posteromedial | 94.66 ± 13.91 | 93.28 ± 10.14 | 0.316 (75) § | 0.753 |
Posterior | 86.90 ± 14.29 | 88.14 ± 7.16 | −0.282 (75) § | 0.779 |
Posterolateral | 86.09 ± 14.51 | 89.73 ± 8.99 | 1.121 | 0.262 |
Lateral | 75.30 ± 15.23 | 76.34 ± 8.26 | <0.001 | 1.000 |
Anterolateral | 72.68 ± 12.93 | 72.60 ± 11.28 | 0.020 (75) § | 0.984 |
Normalized reaching distance of nondominant leg in SEBT | ||||
Anterior | 80.94 ± 11.48 | 80.42 ± 6.85 | 0.102 | 0.919 |
Anteromedial | 88.37 ± 11.77 | 86.80 ± 8.04 | 0.425 (75) § | 0.672 |
Medial | 90.10 ± 12.29 | 88.94 ± 7.59 | −0.480 | 0.631 |
Posteromedial | 96.45 ± 14.76 | 97.12 ± 11.51 | 0.269 | 0.788 |
Posterior | 88.24 ± 14.90 | 87.29 ± 6.21 | 0.335 | 0.738 |
Posterolateral | 83.43 ± 14.18 | 83.37 ± 6.02 | 0.015 (75) § | 0.988 |
Lateral | 73.99 ± 14.31 | 71.53 ± 8.54 | 0.552 (75) § | 0.582 |
Anterolateral | 71.05 ± 11.46 | 71.15 ± 8.54 | −0.027 (75) § | 0.978 |
Differences of reaching distance in SEBT | ||||
Anterior | 4.70 ± 3.95 | 4.12 ± 3.86 | −0.655 | 0.512 |
Anteromedial | 4.83 ± 3.85 | 5.41 ± 4.48 | 0.291 | 0.771 |
Medial | 7.52 ± 10.70 | 5.40 ± 3.33 | −0.524 | 0.600 |
Posteromedial | 6.40 ± 5.58 | 6.53 ± 4.12 | 0.590 | 0.555 |
Posterior | 6.06 ± 9.80 | 4.54 ± 2.90 | 0.029 | 0.977 |
Posterolateral | 7.53 ± 6.04 | 6.87 ± 5.43 | −0.175 | 0.861 |
Lateral | 6.87 ± 5.00 | 4.73 ± 3.71 | −1.310 | 0.190 |
Anterolateral | 5.19 ± 4.76 | 6.68 ± 2.77 | 1.791 | 0.073 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, S.; Jeong, H.S.; Park, S.-K.; Lee, S.Y. Can Neurocognitive Function Predict Lower Extremity Injuries in Male Collegiate Athletes? Int. J. Environ. Res. Public Health 2020, 17, 9061. https://doi.org/10.3390/ijerph17239061
Ha S, Jeong HS, Park S-K, Lee SY. Can Neurocognitive Function Predict Lower Extremity Injuries in Male Collegiate Athletes? International Journal of Environmental Research and Public Health. 2020; 17(23):9061. https://doi.org/10.3390/ijerph17239061
Chicago/Turabian StyleHa, Sunghe, Hee Seong Jeong, Sang-Kyoon Park, and Sae Yong Lee. 2020. "Can Neurocognitive Function Predict Lower Extremity Injuries in Male Collegiate Athletes?" International Journal of Environmental Research and Public Health 17, no. 23: 9061. https://doi.org/10.3390/ijerph17239061
APA StyleHa, S., Jeong, H. S., Park, S. -K., & Lee, S. Y. (2020). Can Neurocognitive Function Predict Lower Extremity Injuries in Male Collegiate Athletes? International Journal of Environmental Research and Public Health, 17(23), 9061. https://doi.org/10.3390/ijerph17239061