Influence of Freeze–Thaw Cycles and Binder Dosage on the Engineering Properties of Compound Solidified/Stabilized Lead-Contaminated Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Preparation
2.3. Testing Methods
2.3.1. Freeze–Thaw Cycle Test
2.3.2. Unconfined Compression Strength (UCS) Test
2.3.3. Direct Shear Test
2.3.4. Permeability Test
3. Results
3.1. Influence of Freeze–Thaw Cycles and Binder Dosage on UCS
3.2. Influence of Freeze–Thaw Cycles and Binder Dosage on E50
3.3. Influence of Freeze–Thaw Cycles and Binder Dosage on Shear Index
3.4. Influence of Freeze–Thaw Cycles and Binder Dosage on K
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Han, F.; Mu, J. Solidification/stabilization mechanism of Pb(II), Cd(II), Mn(II) and Cr(III) in fly ash based geopolymers. Constr. Build. Mater. 2018, 160. [Google Scholar] [CrossRef]
- Bolan, N.; Adriano, D.; Mahimairaja, S. Distribution and bioavailability of trace elements in livestock and poultry manure by-products. J. Crit. Rev. Environ. Sci. Technol. 2004, 34, 291–338. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.H.; Parvez, L.; Islam, M.A.; Dampare, S.B.; Suzuki, S. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J. Hazard. Mater. 2009, 173, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Bech, J. Preface: Remediation of polluted soils-part 2. J. Geochem. Explor. 2017, 182, 121–122. [Google Scholar] [CrossRef]
- Eshetu, S. Review of heavy metals pollution in china in agricultural and urban soils. J. Health Pollut. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.; Ma, J.; Yang, Y.; Zhang, S.; Liu, G.-J.; Chen, F. Spatial assessment of farmland soil pollution and its potential human health risks in China. Sci. Total Environ. 2019, 687, 642–653. [Google Scholar] [CrossRef]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2009, 94, 99–107. [Google Scholar] [CrossRef]
- Fan, R.; Du, Y.J.; Songyu, L. Research status and development trend of urban industrial pollution site remediation technology. Ninth Natl. Eng. Geol. Congr. 2012, 6, 384–388. [Google Scholar]
- Marcos, L.; Legret, M.; Raimbault, G.; Le Cloirec, P. Experimental study and modelling of zinc and lead migration in sandy soils due to stormwater infiltration. Water Sci. Technol. 2002, 45, 57–64. [Google Scholar] [CrossRef]
- Li, J.S.; Xue, Q.; Wang, P.; Li, Z.Z. Effect of lead (II) on the mechanical behavior and microstructure development of a Chinese clay. Appl. Clay Sci. 2015, 105, 192–199. [Google Scholar] [CrossRef]
- Zheng, X.; Rong, X.; Luo, Z.; Huang, H.; Zhang, H. Research progress of heavy metal contamination in soil and remediation method. J. Agric. 2011, 10, 37–43. [Google Scholar]
- Xie, Y.; Fan, J.; Zhu, W.; Amombo, E.; Lou, Y.; Chen, L.; Fu, J. Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-S.; Chen, M.-H.; Lin, C.-C.; Liu, C.-Y.; Chen, P.-C. Children’s environmental health based on birth cohort studies of Asia (2)—Air pollution, pesticides, and heavy metals. Environ. Res. 2019, 179, 108754. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Yamauchi, H.; Sun, G.F. Chronic health effects in people exposed to arsenic via the drinking water: Dose-response relationships in review. Toxicol. Appl. Pharmacol. 2004, 198, 243–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, X.; Chen, X.; Liu, R.; Liu, H. Heavy metals in urban soils with various types of land use in Beijing, China. J. Hazard. Mater. 2011, 186, 2043–2050. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ge, H.; Lu, W.; Long, Y. Assessment of heavy metals contamination in near-surface dust. Pol. J. Environ. Stud. 2015, 24, 1817–1829. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Zha, F.S.; Liu, J.J.; Cui, K.R. Engineering Properties of Lead Contaminated Expansive Soil; Crc Press-Taylor & Francis Group: Boca Raton, FL, USA, 2016; pp. 807–810. [Google Scholar]
- Sharma, H.D.; Reddy, K.R. Geoenvironmental Engineering: Site Remediation, Waste Containment, and Emerging Waste Management Technologies; John Wily & Sons, Inc: Hoboken, NJ, USA, 2004. [Google Scholar]
- Wei, M.L.; Du, Y.J.; Reddy, K.R.; Wu, H.L. Effects of freeze-thaw on characteristics of new KMP binder stabilized Zn- and Pb-contaminated soils. Environ. Sci. Pollut. Res. 2015, 22, 19473–19484. [Google Scholar] [CrossRef]
- Gong, Y.; Zhao, D.; Wang, Q. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Res. 2018, 147, 440–460. [Google Scholar] [CrossRef]
- Al Tabbaa, A.; Perera. Stabilisation/Solidification Treatment and Remediation: Proceedings of the International Conference on Stabilisation/Solidification Treatment and Remediation. In Part I: Binders & Technologies–Basic Principles; CRC Press: Boca Ration, FL, USA, 2011. [Google Scholar]
- Hao, H.-Z.; Chen, T.-B.; Jin, M.-G.; Lei, M.; Liu, C.-W.; Zu, W.-P.; Huang, L.-M. Recent advance in solidification/stabilization technology for the remediation of heavy metals-contaminated soil. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2011, 22, 816–824. [Google Scholar]
- Baek, J.W.; Choi, A.E.S.; Park, H.S. Solidification/stabilization of ASR fly ash using Thiomer material: Optimization of compressive strength and heavy metals leaching. Waste Manag. 2017, 70, 139–148. [Google Scholar] [CrossRef]
- Cerbo, A.A.V.; Ballesteros, F.; Chen, T.C.; Lu, M.-C. Solidification/stabilization of fly ash from city refuse incinerator facility and heavy metal sludge with cement additives. Environ. Sci. Pollut. Res. 2017, 24, 1748–1756. [Google Scholar] [CrossRef] [PubMed]
- Wiles, C.C. A review of solidification/stabilization technology. J. Hazard. Mater. 1987, 14, 5–21. [Google Scholar] [CrossRef]
- Du, Y.J.; Jin, F.; Songyu, L.; Chen, L.; Zhang, F. Research progress on solidification/stable treatment of heavy metal industry contaminated sites. Geotech. Mech. 2011, 32, 116–124. [Google Scholar]
- Kogbara, R.B.; Yi, Y.; Al-Tabbaa, A. Process envelopes for stabilisation/solidification of contaminated soil using lime-slag blend. Environ. Sci. Pollut. Res. 2011, 18, 1286–1296. [Google Scholar] [CrossRef] [PubMed]
- Dell’Orso, M.; Mangialardi, T.; Paolini, A.E.; Piga, L. Evaluation of the leachability of heavy metals from cement-based materials. J. Hazard. Mater. 2012, 227–228, 1–8. [Google Scholar] [CrossRef]
- Fusheng, Z.; Chunjie, J.; Long, X.; Bo, K.; Chengbin, Y.; Chengfu, C. Assessment of strength and leaching characteristics of heavy metal-contaminated soils solidified/stabilized by cement/fly ash. Environ. Sci. Pollut. Res. Int. 2019, 26, 30206–30219. [Google Scholar]
- Wang, P.; Xue, Q.; Yang, Z.N.; Li, J.S.; Zhang, T.T.; Huang, Q. Factors affecting the leaching behaviors of magnesium phosphate cement-stabilized/solidified pb-contaminated Soil, Part II: Dosage and curing age. Environ. Prog. Sustain. Energy 2017, 36, 1351–1357. [Google Scholar] [CrossRef]
- Wang, F.; Cai, Z.; Xu, J. Effects of curing temperature and dosage on the performance of GGBS-MgO-CaO in stabilizing/solidifying heavy metal–contaminated site soil. J. Test. Eval. 2020. [Google Scholar] [CrossRef]
- Aldaood, A.; Bouasker, M.; Al-Mukhtar, M. Impact of freeze-thaw cycles on mechanical behaviour of lime stabilized gypseous soils. Cold Reg. Sci. Tech. 2014, 99, 38–45. [Google Scholar] [CrossRef]
- Du, Y.-J.; Wei, M.-L.; Reddy, K.R.; Liu, Z.-P.; Jin, F. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil. J. Hazard. Mater. 2014, 271, 131–140. [Google Scholar] [CrossRef]
- Li, J.S.; Xue, Q.; Wang, P.; Li, Z.Z.; Liu, L. Effect of drying-wetting cycles on leaching behavior of cement solidified lead-contaminated soil. Chemosphere 2014, 117, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Zaimoglu, A.S. Freezing–thawing behavior of fine-grained soils reinforced with polypropylene fibers. Cold Reg. Sci. Technol. 2010, 60, 63–65. [Google Scholar] [CrossRef]
- Xu, S.F.; Wu, X.H.; Cai, Y.Q.; Ding, Y.K.; Wang, Z. Strength and leaching characteristics of magnesium phosphate cement-solidified zinc-contaminated soil under the effect of acid rain. Soil. Sediment. Contam. 2018, 27, 161–174. [Google Scholar] [CrossRef]
- Xia, Z.-J. A review of the development of permafrost science in China. Land Nat. Resour. Res. 1984, 03, 67–74. [Google Scholar]
- Feng, X.J.; Nielsen, L.L.; Simpson, M.J. Responses of soil organic matter and microorganisms to freeze-thaw cycles. Soil Biol. Biochem. 2007, 39, 2027–2037. [Google Scholar] [CrossRef]
- Yao, X.; Qi, J.; Ma, W. Influence of freeze–thaw on the stored free energy in soils. Cold Reg. Sci. Tech. 2009, 56, 115–119. [Google Scholar] [CrossRef]
- Koponen, H.T.; Jaakkola, T.; Keinänen-Toivola, M.M.; Kaipainen, S.; Tuomainen, J.; Servomaa, K.; Martikainen, P.J. Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles. Soil Biol. Biochem. 2006, 38, 1861–1871. [Google Scholar] [CrossRef]
- Xue, Q.; Li, J.-S.; Liu, L. Effect of compaction degree on solidification characteristics of pb-contaminated soil treated by cement. CLEAN Soil Air Water 2014, 42, 1126–1132. [Google Scholar] [CrossRef]
- Roustaei, M.; Eslami, A.; Ghazavi, M. Effects of freeze-thaw cycles on a fiber reinforced fine grained soil in relation to geotechnical parameters. Cold Reg. Sci. Tech. 2015, 120, 127–137. [Google Scholar] [CrossRef]
- Wang, T.-L.; Liu, Y.-J.; Yan, H.; Xu, L. An experimental study on the mechanical properties of silty soils under repeated freeze-thaw cycles. Cold Reg. Sci. Tech. 2015, 112, 51–65. [Google Scholar] [CrossRef]
- Galiano, Y.L.; Pereira, C.F.; Vale, J. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. J. Hazard. Mater. 2011, 185, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.; Daugherty, K. The interaction of calcium nitrate and a Class C fly ash during hydration. Cement Concr. Res. 1996, 26, 1131–1143. [Google Scholar] [CrossRef]
- Cuisinier, O.; Le Borgne, T.; Deneele, D.; Masrouri, F. Quantification of the effects of nitrates, phosphates and chlorides on soil stabilization with lime and cement. Eng. Geol. 2011, 117, 229–235. [Google Scholar] [CrossRef]
- Kogbara, R.B. A review of the mechanical and leaching performance of stabilized/solidified contaminated soils. Environ. Rev. 2014, 22, 66–86. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Meng, S.J.; Sun, Y.Q.; Fu, H.Q. Shear strength of frozen clay under freezing-thawing cycles using triaxial tests. Earthq. Eng. Eng. Vib. 2018, 17, 761–769. [Google Scholar] [CrossRef]
- Yang, S.; Wenhui, Z. Geotechnical Engineering Testing Technology; Metallurgical Industry Press: Beijing, China, 2013. [Google Scholar]
- Spence, R.D. Chemistry and Microstructure of Solidified Waste Forms; Crc Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Wang, Q.; Cui, J.; Aguiar, J. Study on strength characteristics of solidified contaminated soil under freeze-thaw cycle conditions. Adv. Civ. Eng. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Dermatas, D.; Meng, X. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Eng. Geol. 2003, 70, 377–394. [Google Scholar] [CrossRef]
- Wang, D.; Abriak, N.E.; Zentar, R. Strength and deformation properties of Dunkirk marine sediments solidified with cement, lime and fly ash. Eng. Geol. 2013, 166, 90–99. [Google Scholar] [CrossRef]
- Pan, Y.; Rossabi, J.; Pan, C.; Xie, X. Stabilization/solidification characteristics of organic clay contaminated by lead when using cement. J. Hazard. Mater. 2019, 362, 132–139. [Google Scholar] [CrossRef]
- Kogbara, R.B.; Al-Tabbaa, A.; Yi, Y.; Stegemann, J.A. Cement–fly ash stabilisation/solidification of contaminated soil: Performance properties and initiation of operating envelopes. Appl. Geochem. 2013, 33, 64–75. [Google Scholar] [CrossRef]
- Zhou, M.; Wu, H.; Du, Y.; Yi, Y. Solidification characteristics and mechanisms of cement treated Pb/Zn contaminated soils from a mining site in Hunan Province, China. Int. J. Environ. Pollut. 2016, 59, 269–283. [Google Scholar] [CrossRef]
- Eskisar, T.; Altun, S.; Kalipcilar, I. Assessment of strength development and freeze-thaw performance of cement treated clays at different water contents. Cold Reg. Sci. Tech. 2015, 111, 50–59. [Google Scholar] [CrossRef]
- Hotineanu, A.; Bouasker, M.; Aldaood, A.; Al-Mukhtar, M. Effect of freeze-thaw cycling on the mechanical properties of lime-stabilized expansive clays. Cold Reg. Sci. Tech. 2015, 119, 151–157. [Google Scholar] [CrossRef]
- Paria, S.; Yuet, P.K. Solidification-stabilization of organic and inorganic contaminants using portland cement: A literature review. Environ. Rev. 2006, 14, 217–255. [Google Scholar] [CrossRef] [Green Version]
- Bone, B.D.; Barnard, L.H.; Boardman, D.I.; Carey, P.; Hills, C.; Jones, H.M.; Macleod, C.; Tyrer, M. Review of scientific literature on the use of stabilisation/solidification for the treatment of contaminated soil, solid waste and sludges (SC980003/SR2). Environ. Agency Bristol. 2004, 376, 1–375. [Google Scholar]
- Simonsen, E.; Janoo, V.C.; Isacsson, U. Resilient properties of unbound road materials during seasonal frost conditions. J. Cold Reg. Eng. 2002, 16, 28–50. [Google Scholar] [CrossRef]
- Chamberlain, E. Physical changes in clays due to frost action and their effect on engineering structures. In Proceedings of the International Symposium on Frost in Geotechnical Engineering, Saariselkä, Finland, 13–15 March 1989; pp. 863–893. [Google Scholar]
- Viklander, P. Permeability and volume changes in till due to cyclic freeze/thaw. Can. Geotech. J. 1998, 35, 471–477. [Google Scholar] [CrossRef]
- Oner, A.; Akyuz, S. An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cem. Concr. Compos. 2007, 29, 505–514. [Google Scholar] [CrossRef]
- Zhao, Z.R.; Yang, H.X. Strength and deformation characteristics of stabilized silty soil. In Advances in Industrial and Civil Engineering, Pts 1-4; Wang, L.H., Xu, G., Eds.; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2012; Volume 594–597, pp. 512–515. [Google Scholar]
- Damoerin, D.; Prakoso, W.A.; Utami, Y. Improving shear strength of clay by using cement column reinforcement under consolidated undrained test. Int. J. Technol. 2015, 6, 709–717. [Google Scholar] [CrossRef]
- Zhu, F.; Li, Z.C.; Dong, W.Z.; Ou, Y.Y. Geotechnical properties and microstructure of lime-stabilized silt clay. Bull. Eng. Geol. Environ. 2019, 78, 2345–2354. [Google Scholar] [CrossRef]
- Fatahi, B.; Khabbaz, H. Influence of fly ash and quicklime addition on behaviour of municipal solid wastes. J. Soils Sediments 2013, 13, 1201–1212. [Google Scholar] [CrossRef]
- Harichane, K.; Ghrici, M.; Kenai, S. Effect of curing time on shear strength of cohesive soils stabilized with combination of lime and natural pozzolana. Int. J. Civ. Eng. 2011, 9, 90–96. [Google Scholar]
- Ding, M.T.; Zhang, F.; Ling, X.Z.; Lin, B. Effects of freeze-thaw cycles on mechanical properties of polypropylene Fiber and cement stabilized clay. Cold Reg. Sci. Tech. 2018, 154, 155–165. [Google Scholar] [CrossRef]
- Kogbara, R.B.; Al-Tabbaa, A. Mechanical and leaching behaviour of slag-cement and lime-activated slag stabilised/solidified contaminated soil. Sci. Total Environ. 2011, 409, 2325–2335. [Google Scholar] [CrossRef]
- Elrawi, N.M.; Awad, A.A.A. Permeability of lime stabilized soils. Transp. Eng. J. 1981, 107, 25–35. [Google Scholar]
- Quigley, R. Clay minerals against contaminant migration. Geotech. News 1993, 11, 44–46. [Google Scholar]
- Rui, D.H.; Wu, Z.P.; Ji, M.C.; Li, J.F.; Wang, S.R.; Ito, Y. Remediation of Cd- and Pb- contaminated clay soils through combined freeze-thaw and soil washing. J. Hazard. Mater. 2019, 369, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, E.J.; Gow, A.J. Effect of freezing and thawing on the permeability and structure of soils. Eng. Geol. 1979, 13, 73–92. [Google Scholar] [CrossRef]
- Ito, Y.; Nii, K.; Aramoto, K. The On-Site Remediation of Contaminated Fine-Grained Soil Based on The Effect of Permeability Change after Freezing and Thawing; Aabalkema Publishers: Amsterdam, The Netherlands, 2006; p. 2383. [Google Scholar]
- Graham, J.; Au, V. Effects of freeze–thaw and softening on a natural clay at low stresses. Can. Geotech. J. 2011, 22, 69–78. [Google Scholar] [CrossRef]
- Wang, D.X.; Zhu, J.Y.; He, F.J. CO2 carbonation-induced improvement in strength and microstructure of reactive MgO-CaO-fly ash-solidified soils. Constr. Build. Mater. 2019, 229, 10. [Google Scholar] [CrossRef]
Physical Property Index | Liquid Limit/% | Plastic Limit/% | Optimum Moisture Content/% | ||
---|---|---|---|---|---|
soil sample | 28.6 | 16.7 | 11.9 | 13.65 | 1.842 |
Chemical Components | PbO | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Contents (%) | 65.24 | 17.27 | 5.14 | 3.32 | 3.46 | 0.04 | 3.47 | 0.74 | 0.83 | ND |
Molecular Formula | |
---|---|
Molecular Weight | 331.21 |
Content | ≥99.0% |
Cu | ≤0.0005% |
Fe | ≤0.001% |
Cl | ≤0.001% |
Hydrocarbon that does not precipitate (based on sulfate) | ≤0.05% |
Clarity experiment | qualified |
pH value (50 g/L,25 °C) | ≤0.003% |
Chemical Components | |||||||||
---|---|---|---|---|---|---|---|---|---|
Content (%) | Cement | 49.18 | 1.62 | 26.01 | 10.67 | 2.83 | 3.76 | 0.51 | 0.13 |
Quicklime | 84.23 | 4.32 | 3.10 | 3.10 | 0.29 | ND | ND | ND | |
Fly Ash | 5.73 | 3.68 | 39.65 | 21.42 | 9.17 | ND | ND | 2.03 |
Freeze–Thaw Cycles Time | Freeze–Thaw Strength | Test Program | Specimen Number |
---|---|---|---|
0,3,7,14 | −10 °C~20 °C | UCS test Direct shear test Permeability test | Pb1(for comparison) C2.5Pb1; S2.5Pb1; F2.5Pb1 C2.5F2.5Pb1; C2.5S2.5Pb1 C5S5Pb1; C5S2.5F2.5Pb1; C5F5Pb1 |
Mineral Name | Chemical Composition | Hydration Reaction Process |
---|---|---|
C3S | 3CaO·SiO2 | 2 + 6 + |
C2S | 2CaO·SiO2 | 2 + 6 + |
C3A | 3CaO·Al2O3 | |
C4AF | 4CaO·Al2O3·Fe2O3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Wang, Y.; Li, D.; Li, X.; Liu, X. Influence of Freeze–Thaw Cycles and Binder Dosage on the Engineering Properties of Compound Solidified/Stabilized Lead-Contaminated Soils. Int. J. Environ. Res. Public Health 2020, 17, 1077. https://doi.org/10.3390/ijerph17031077
Yang Z, Wang Y, Li D, Li X, Liu X. Influence of Freeze–Thaw Cycles and Binder Dosage on the Engineering Properties of Compound Solidified/Stabilized Lead-Contaminated Soils. International Journal of Environmental Research and Public Health. 2020; 17(3):1077. https://doi.org/10.3390/ijerph17031077
Chicago/Turabian StyleYang, Zhongping, Yao Wang, Denghua Li, Xuyong Li, and Xinrong Liu. 2020. "Influence of Freeze–Thaw Cycles and Binder Dosage on the Engineering Properties of Compound Solidified/Stabilized Lead-Contaminated Soils" International Journal of Environmental Research and Public Health 17, no. 3: 1077. https://doi.org/10.3390/ijerph17031077
APA StyleYang, Z., Wang, Y., Li, D., Li, X., & Liu, X. (2020). Influence of Freeze–Thaw Cycles and Binder Dosage on the Engineering Properties of Compound Solidified/Stabilized Lead-Contaminated Soils. International Journal of Environmental Research and Public Health, 17(3), 1077. https://doi.org/10.3390/ijerph17031077