Impact of Varied Factors on Iron, Nickel, Molybdenum and Vanadium Concentrations in the Knee Joint
Abstract
1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gaffney-Stomberg, E. The Impact of trace minerals on bone metabolism. Biol. Trace Elem. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Glimcher, M.J. Bone: Nature of the Calcium Phosphate Crystals and Cellular, Structural, and Physical Chemical Mechanisms in Their Formation. Rev. Miner. Geochem. 2006, 64, 223–282. [Google Scholar] [CrossRef]
- Zaichick, S.; Zaichick, V.; Karandashev, V.K.; Moskvina, I.R. The effect of age and gender on 59 trace-element contents in human rib bone investigated by inductively coupled plasma mass spectrometry. Biol. Trace Elem. Res. 2011. [Google Scholar] [CrossRef] [PubMed]
- Roczniak, W.; Brodziak-Dopierała, B.; Cipora, E.; Jakóbik-Kolon, A.; Kluczka, J.; Babuśka-Roczniak, M. Factors that Affect the Content of Cadmium, Nickel, Copper and Zinc in Tissues of the Knee Joint. Boil. Trace Element Res. 2017, 178, 201–209. [Google Scholar] [CrossRef]
- Ganz, T.; Nemeth, E. Hepcidin and iron homeostasis. Biochim. Biophys. Acta (BBA) Bioenerg. 2012, 1823, 1434–1443. [Google Scholar] [CrossRef]
- Blanco-Rojo, R.; Pérez-Granados, A.M.; Toxqui, L.; Zazo, P.; de la Piedra, C.; Vaquero, M.P. Relationship between vitamin D deficiency, bone remodelling and iron status in iron-deficient young women consuming an iron-fortified food. Eur. J. Nutr. 2013. [Google Scholar] [CrossRef]
- Balogh, E.; Paragh, G.; Jeney, V. Influence of Iron on Bone Homeostasis. Pharm. 2018, 11, 107. [Google Scholar] [CrossRef]
- Katsumata, S.; Katsumata-Tsuboi, R.; Uehara, M.; Suzuki, K. Severe iron deficiency decreases both bone formation and bone resorption in rats. J. Nutr. 2009. [Google Scholar] [CrossRef]
- Medeiros, D.M.; Stoecker, B.; Plattner, A.; Jennings, D.; Haub, M. Iron deficiency negatively affects vertebrae and femurs of rats independently of energy intake and body weight. J. Nutr. 2004, 134, 3061–3067. [Google Scholar] [CrossRef]
- Parelman, M.; Stoecker, B.; Baker, A.; Medeiros, D. Iron Restriction Negatively Affects Bone in Female Rats and Mineralization of hFOB Osteoblast Cells. Exp. Boil. Med. 2006, 231, 378–386. [Google Scholar] [CrossRef]
- Yamasaki, K.; Hagiwara, H. Excess iron inhibits osteoblast metabolism. Toxicol. Lett. 2009, 191, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Jian, J.; Abramson, S.B.; Huang, X. Inhibitory effects of iron on bone morphogenetic protein 2-induced osteoblastogenesis. J. Bone Miner. Res. 2011, 26, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Messer, J.G.; Kilbarger, A.K.; Erikson, K.M.; Kipp, D.E. Iron overload alters iron-regulatory genes and proteins, down-regulates osteoblastic phenotype, and is associated with apoptosis in fetal rat calvaria cultures. Bone 2009, 45, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-J.; Lee, S.H.; Koh, J.-M.; Kim, G.S. The association between higher serum ferritin level and lower bone mineral density is prominent in women ≥45 years of age (KNHANES 2008–2010). Osteoporos. Int. 2013, 24, 2627–2637. [Google Scholar] [CrossRef]
- Kim, B.-J.; Ahn, S.H.; Bae, S.J.; Kim, E.H.; Lee, S.-H.; Kim, H.-K.; Choe, J.W.; Koh, J.-M.; Kim, G.S. Iron overload accelerates bone loss in healthy postmenopausal women and middle-aged men: A 3-year retrospective longitudinal study. J. Bone Miner. Res. 2012, 27, 2279–2290. [Google Scholar] [CrossRef]
- Tsay, J.; Yang, Z.; Ross, F.P.; Cunningham-Rundles, S.; Lin, H.; Coleman, R.; Mayer-Kuckuk, P.; Doty, S.B.; Grady, R.W.; Giardina, P.J.; et al. Bone loss caused by iron overload in a murine model: Importance of oxidative stress. Blood 2010, 116, 2582–2589. [Google Scholar] [CrossRef]
- Zarjou, A.; Jeney, V.; Arosio, P.; Poli, M.; Zavaczki, E.; Balla, G.; Balla, J. Ferritin ferroxidase activity: A potent inhibitor of osteogenesis. J. Bone Miner. Res. 2010. [Google Scholar] [CrossRef]
- Cempel, M.; Nikel, G. Nickel: A review of its sources and environmental toxicology. Pol. J. Environ. Stud. 2006, 15, 375–382. [Google Scholar]
- Fowler, B.A.; Nordberg, G.F.; Nordberg, M.; Friberg, L. Handbook on the Toxicology of Metals; Elsevier: New York, NY, USA, 2011. [Google Scholar]
- Brodziak-Dopierała, B.; Kwapuliński, J.; Sobczyk, K.; Kowol, J. The occurrence of nickel and other elements in tissues of the hip joint. Ecotoxicol. Environ. Saf. 2011, 74, 630–635. [Google Scholar] [CrossRef]
- Morais, S.; Sousa, J.; Fernandes, M.; Carvalho, G. In vitro biomineralization by osteoblast-like cells. I. Retardation of tissue mineralization by metal salts. Biomater. 1998, 19, 13–21. [Google Scholar] [CrossRef]
- Kanaji, A.; Orhue, V.; Caicedo, M.S.; Virdi, A.S.; Sumner, D.R.; Hallab, N.J.; Yoshiaki, T.; Sena, K. Cytotoxic effects of cobalt and nickel ions on osteocytes in vitro. J. Orthop. Surg. Res. 2014, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.; Mandalunis, P.M. A Review of Metal Exposure and Its Effects on Bone Health. J. Toxicol. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C.; Caballero, B.; Cousins, R.J.; Tucker, K.L.; Ziegler, T.R. Modern Nutrition in Health and Disease; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012. [Google Scholar]
- Hathcock, J.N. Vitamin and Mineral Safety, 2nd ed.; Council for Responsible Nutrition: Washington, DC, USA, 2004. [Google Scholar]
- Parry, N.M.A.; Phillippo, M.; Reid, M.D.; McGaw, B.A.; Flint, D.J.; Loveridge, N. Molybdenum-induced changes in the epiphyseal growth plate. Calcif. Tissue Int. 1993, 53, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Barrio, D.; Etcheverry, S. Vanadium and bone development: Putative signaling pathwaysThis paper is one of a selection of papers published in this Special issue, entitled Second Messengers and Phosphoproteins—12th International Conference. Can. J. Physiol. Pharmacol. 2006, 84, 677–686. [Google Scholar] [CrossRef]
- Dziga, D. Influence of vanadium on sugar metabolism and other processes in the cell. Post. Biol. Kom. 2002, 29, 579–594. [Google Scholar]
- Armour, K.E. Defective Bone Formation and Anabolic Response to Exogenous Estrogen in Mice with Targeted Disruption of Endothelial Nitric Oxide Synthase. Endocrinology 2001, 142, 760–766. [Google Scholar] [CrossRef]
- Carnevale, V.; Romagnoli, E.; D’Erasmo, E. Skeletal involvement in patients with diabetes mellitus. Diabetes/Metabolism Res. Rev. 2004, 20, 196–204. [Google Scholar] [CrossRef]
- Lau, K.-H.W.; Tanimoto, H.; Baylink, D.J. Vanadate Stimulates Bone Cell Proliferation and Bone Collagen Synthesis in Vitro *. Endocrinology 1988, 123, 2858–2867. [Google Scholar] [CrossRef]
- Laizé, V.; Tiago, D.M.; Aureliano, M.; Cancela, M.L. New insights into mineralogenic effects of vanadate. Cell. Mol. Life Sci. 2009, 66, 3831–3836. [Google Scholar] [CrossRef]
- Dermience, M.; Lognay, G.; Mathieu, F.; Goyens, P. Effects of thirty elements on bone metabolism. J. Trace Elements Med. Boil. 2015, 32, 86–106. [Google Scholar] [CrossRef]
- Senczuk, W. Toxicology; Państwowy Zakład Wydawnictw Lekarskich: Warsaw, Poland, 2012. [Google Scholar]
- Korbecki, J.; Baranowska-Bosiacka, I.; Gutowska, I.; Chlubek, D. Biochemical and medical importance of vanadium compounds. Acta Biochim. Pol. 2012, 59, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Kosik-Bogacka, D.I.; Lanocha-Arendarczyk, N.; Kot, K.; Ciosek, Z.; Zietek, P.; Karaczun, M.; Pilarczyk, B.; Tomza-Marciniak, A.; Podlasinska, J.; Kalisinska, E.; et al. Effects of biological factors and health condition on mercury and selenium concentrations in the cartilage, meniscus and anterior cruciate ligament. J. Trace Elements Med. Boil. 2017, 44, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Kosik-Bogacka, D.I.; Lanocha-Arendarczyk, N.; Kot, K.; Zietek, P.; Karaczun, M.; Prokopowicz, A.; Kupnicka, P.; Ciosek, Z. Calcium, magnesium, zinc and lead concentrations in the structures forming knee joint in patients with osteoarthritis. J. Trace Elements Med. Boil. 2018, 50, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Ciosek, Ż.; Kosik-Bogacka, D.; Łanocha-Arendarczyk, N.; Kot, K.; Karaczun, M.; Ziętek, P.; Kupnicka, P.; Szylińska, A.; Bosiacki, M.; Rotter, I. Phosphorus concentration in knee joint structures of patients following knee replacement surgery. Int. J. Environ. Res. Public Health 2019, 16, 525. [Google Scholar] [CrossRef]
- MacMullan, P.; McCarthy, G.M. The meniscus, calcification and osteoarthritis: A pathologic team. Arthritis Res. Ther. 2010, 12, 116. [Google Scholar] [CrossRef] [PubMed]
- Kaabar, W.; Daar, E.; Gundogdu, O.; Jenneson, P.; Farquharson, M.; Webb, M.; Jeynes, C.; Bradley, D. Metal deposition at the bone–cartilage interface in articular cartilage. Appl. Radiat. Isot. 2009, 67, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Perkhulyn, N.V.; Rovenko, B.M.; Lushchak, O.V.; Storey, J.M.; Storey, K.B.; Lushchak, V.I. Exposure to sodium molybdate results in mild oxidative stress inDrosophila melanogaster. Redox Rep. 2017, 22, 137–146. [Google Scholar] [CrossRef]
- Terpilowska, S.; Siwicki, A.K. Pro- and antioxidant activity of chromium(III), iron(III), molybdenum(III) or nickel(II) and their mixtures. Chem. Interactions 2019, 298, 43–51. [Google Scholar] [CrossRef]
- Lepetsos, P.; Papavassiliou, A.G. ROS/oxidative stress signaling in osteoarthritis. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2016, 1862, 576–591. [Google Scholar] [CrossRef]
- Zambelli, B.; Uversky, V.N.; Ciurli, S. Nickel impact on human health: An intrinsic disorder perspective. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2016, 1864, 1714–1731. [Google Scholar] [CrossRef]
- Dąbrowski, M.; Zioła-Frankowska, A.; Kubaszewski, Ł.; Rogala, P.; Frankowski, M. Urban and rural area differences in the interaction between oxidative process elements in human femoral bone. Environ. Sci. Pollut. Res. 2018, 25, 30475–30487. [Google Scholar]
- Zaichick, S.; Zaichick, V. The effect of age and gender on 38 chemical element contents in human femoral neck investigated by instrumental neutron activation analysis. Biol. Trace Elem. Res. 2010. [Google Scholar] [CrossRef]
- Lanocha, N.; Kalisinska, E.; Kosik-Bogacka, D.I.; Budis, H.; Sokolowski, S.; Bohatyrewicz, A. Concentrations of trace elements in bones of the hip joint from patients after hip replacement surgery. J. Trace Elements Med. Boil. 2012, 26, 20–25. [Google Scholar] [CrossRef]
- Budis, H.; Kalisinska, E.; Lanocha, N.; Kosik-Bogacka, D.; Sokolowski, S.; Dobiecki, K.; Kolodziej, L.; Bohatyrewicz, A. The concentration of manganese, iron, and strontium in hip joint bone obtained from patients undergoing hip replacement surgery. J. Trace Elements Med. Boil. 2014, 28, 39–44. [Google Scholar] [CrossRef]
- Brodziak-Dopierała, B.; Roczniak, W.; Jakóbik-Kolon, A.; Kluczka, J.; Koczy, B.; Kwapuliński, J.; Babuśka-Roczniak, M. Correlations between iron content in knee joint tissues and chosen indices of peripheral blood morphology. Adv. Clin. Exp. Med. 2017, 26, 1077–1083. [Google Scholar] [CrossRef]
- Kuo, H.W.; Kuo, S.M.; Wu, C.C.; Chiu, M.C. Determination of fourteen elements in bone samples using inductively coupled plasma (ICP) analysis. Mid. Taiwan J. Med. 2001, 6, 125–132. [Google Scholar]
- Brodziak-Dopierała, B.; Kwapuliński, J.; Sobczyk, K.; Wiechuła, D. The content of manganese and iron in hip joint tissue. J. Trace Elements Med. Boil. 2013, 27, 208–212. [Google Scholar] [CrossRef]
- Brodziak-Dopierała, B.; Kwapulinski, J.; Okrajni, J.; Kowol, J.; Kosterska, E.; Suchy, A.; Sobczyk, K. The estimation of nickel interaction with other elements in an osseous tissue of femur head. Acta Toxicol. 2007, 15, 69–74. [Google Scholar]
- Zioła-Frankowska, A.; Kubaszewski, Ł.; Dąbrowski, M.; Kowalski, A.; Rogala, P.; Strzyzewski, W.; Łabędź, W.; Uklejewski, R.; Novotný, K.; Kanický, V.; et al. The Content of the 14 Metals in Cancellous and Cortical Bone of the Hip Joint Affected by Osteoarthritis. BioMed Res. Int. 2015, 2015, 1–23. [Google Scholar]
- Łanocha-Arendarczyk, N.; Kalisinska, E.; Kosik-Bogacka, D.; Budis, H.; Lewicka, K.; Sokołowski, S.; Dobiecki, K.; Kołodziej, Ł. Effect of environmental parameters on the concentration of nickel (Ni) in bones of the hip joint from patients with osteoarthritis. J. Pre-Clin. Clin. Res. 2016, 10, 6–11. [Google Scholar] [CrossRef][Green Version]
- Kubaszewski, Ł.; Zioła-Frankowska, A.; Frankowski, M.; Rogala, P.; Gasik, Z.; Kaczmarczyk, J.; Nowakowski, A.; Dabrowski, M.; Labedz, W.; Miekisiak, G.; et al. Comparison of trace element concentration in bone and intervertebral disc tissue by atomic absorption spectrometry techniques. J. Orthop. Surg. Res. 2014, 9, 99. [Google Scholar] [CrossRef]
- Li, Y.H. A Compendium of Geochemistry: From Solar Nebula to the Human Brain; Princeton University Press: New York, NY, USA, 2000. [Google Scholar]
- Lewis, R.C.; Johns, L.E.; Meeker, J.D. Exploratory analysis of the potential relationship between urinary molybdenum and bone mineral density among adult men and women from NHANES 2007–2010. Chemosphere 2016, 164, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Al-Bashaireh, A.M.; Haddad, L.G.; Weaver, M.; Chengguo, X.; Kelly, D.L.; Yoon, S. The Effect of Tobacco Smoking on Bone Mass: An Overview of Pathophysiologic Mechanisms. J. Osteoporos. 2018, 2018, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Compston, J. Editorial: Smoking and the skeleton. J. Clin. Endocrinol. Metab. 2007, 92, 428–429. [Google Scholar] [CrossRef] [PubMed][Green Version]
- General, U.S.S. The Health Consequences of Smoking—50 Years of progress: A Report of the Surgeon General. In PsycEXTRA Dataset; American Psychological Association (APA): Washington, DC, USA, 2014; Volume 17. [Google Scholar]
- Kwapulinski, J.; Nogaj, E.; Babula, M.; Suflita, M. The effect of passive smoking on the nickel content in the pharyngeal tonsils in children. Environ. Med. 2010, 13, 23–30. [Google Scholar]
- Sampson, H.W. Alcohol, osteoporosis, and bone regulating hormones. Alcohol. Clin. Exp. Res. 1997, 21, 400–403. [Google Scholar] [CrossRef]
- Kupraszewicz, E.; Brzóska, M.M. Excessive ethanol consumption under exposure to lead intensifies disorders in bone metabolism: A study in a rat model. Chem. Interactions 2013, 203, 486–501. [Google Scholar] [CrossRef]
- Noor, Z.; Sumitro, S.B.; Hidayat, M.; Rahim, A.H.; Sabarudin, A.; Umemura, T. Atomic Mineral Characteristics of Indonesian Osteoporosis by High-Resolution Inductively Coupled Plasma Mass Spectrometry. Sci. World J. 2012, 2012, 1–6. [Google Scholar] [CrossRef]
- Lanocha-Arendarczyk, N.; Kosik-Bogacka, D.I.; Kalisinska, E.; Sokolowski, S.; Kolodziej, L.; Budis, H.; Safranow, K.; Kot, K.; Ciosek, Z.; Tomska, N.; et al. Influence of Environmental Factors and Relationships between Vanadium, Chromium, and Calcium in Human Bone. BioMed Res. Int. 2016, 2016, 1–11. [Google Scholar] [CrossRef]
- Rahil-Khazen, R.; Bolann, B.J.; Myking, A.; Ulvik, R.J. Multielement analysis of trace element levels in huan autopsy tissues by using inductivelyZ coupled atomic emission spectrometry technique (ICP_AES). J. Trace Elem. Med. Biol. 2002, 16, 15–25. [Google Scholar] [CrossRef]
Chemical Elements | NIST 8414 (Bovine Muscle) | ||
---|---|---|---|
Certified | Measured (n = 9) | Recovery (%) | |
Fe | 71.20 ± 9.20 | 64.27 ± 2.45 | 90% |
Ni | 0.05 ± 0.04 | 0.04 ± 0.01 | 80% |
Mo | 0.08 ± 0.06 | 0.10 ± 0.02 | 125% |
V | 0.005 | 0.0045 ± 0.005 | 90% |
Concentration of Elements Expressed as mg/kg dw | ||||
---|---|---|---|---|
Fe | Ni | Mo | V | |
Total (n = 46) | ||||
Spongy bone (n = 44) | ||||
AM ± SD | 56.032 ± 37.011 | 4.752 ± 14.600 | 0.935 ± 0.505 | 0.022 ± 0.001 |
Med | 44.885 | 1.920 | 0.928 | 0.022 |
Range | 14.191–169.957 | 0.018–98.180 | 0.021–2.377 | 0.020–0.028 |
Cartilage (n = 46) | ||||
AM ± SD | 72.483 ± 63.779 | 3.909 ± 3.895 | 1.918 ± 5.541 | 0.025 ± 0.009 |
Med | 55.086 | 2.405 | 1.014 | 0.022 |
Range | 10.444–393.624 | 0.020–19.402 | 0.020–38.419 | 0.020–0.067 |
Meniscus (n = 46) | ||||
AM ± SD | 38.163 ± 28.686 | 18.708 ± 14.291 | 51.383 ± 46.872 | 0.101 ± 0.059 |
Med | 29.592 | 14.970 | 41.182 | 0.082 |
Range | 7.792–166.180 | 0.080–71.738 | 0.063–274.449 | 0.052–0.338 |
Anterior cruciate ligament (n = 46) | ||||
AM ± SD | 89.771 ± 57.648 | 15.833 ± 8.998 | 42.410 ± 26.214 | 0.086 ± 0.030 |
Med | 72.919 | 14.984 | 43.393 | 0.086 |
Range | 23.598–243.982 | 0.075–43.887 | 0.280–104.450 | 0.045–0.163 |
Infrapatellar fat pad (n = 46) | ||||
AM ± SD | 50.156 ± 59.632 | 8.310 ± 13.796 | 7.498 ± 14.621 | 0.077 ± 0.067 |
Med | 30.612 | 2.245 | 2.166 | 0.065 |
Range | 12.530–367.259 | 0.034–82.599 | 0.051–58.665 | 0.034–0.505 |
K–W test | ||||
H | 45 | 81 | 118 | 164 |
p | <0.01 | <0.01 | <0.01 | <0.01 |
Female (n = 34) | ||||
Spongy bone (n = 32) | ||||
AM ± SD | 55.004 ± 32.727 | 2.338 ± 2.338 | 0.871 ± 0.497 | 0.022 ± 0.001 |
Med | 51.708 | 1.492 | 0.822 | 0.021 |
Range | 14.191–157.291 | 0.018–7.360 | 0.021–2.377 | 0.020–0.024 |
Cartilage (n = 34) | ||||
AM ± SD | 72.217 ± 70.332 | 3.559 ± 4.089 | 2.104 ± 6.349 | 0.025 ± 0.009 |
Med | 51.848 | 1.897 | 0.991 | 0.022 |
Range | 10.444–393.624 | 0.020–19.402 | 0.021–38.419 | 0.020–0.067 |
Meniscus (n = 34) | ||||
AM ± SD | 37.374 ± 31.420 | 18.707 ± 15.326 | 53.566 ± 49.187 | 0.100 ± 0.063 |
Med | 26.117 | 14.185 | 43.244 | 0.080 |
Range | 7.792–166.180 | 0.088–71.738 | 0.063–274.449 | 0.052–0.338 |
Anterior cruciate ligament (n = 34) | ||||
AM ± SD | 88.186 ± 58.304 | 16.436 ± 9.407 | 46.214 ± 27.829 | 0.089 ± 0.032 |
Med | 66.169 | 14.832 | 47.489 | 0.086 |
Range | 23.598–230.160 | 0.087–43.887 | 0.280–104.450 | 0.045–0.163 |
Infrapatellar fat pad (n = 34) | ||||
AM ± SD | 43.875 ± 37.787 | 5.794 ± 7.545 | 7.372 ± 15.292 | 0.070 ± 0.017 |
Med | 30.612 | 1.689 | 2.224 | 0.070 |
Range | 12.593–197.711 | 0.034–27.823 | 0.051–58.665 | 0.034–0.097 |
Male (n = 12) | ||||
Spongy bone (n = 12) | ||||
AM ± SD | 58.774 ± 45.189 | 11.187 ± 26.336 | 1.105 ± 0.466 | 0.023 ± 0.002 |
Med | 38.345 | 3.688 | 1.262 | 0.022 |
Range | 18.805–169.957 | 0.021–98.180 | 0.480–1.928 | 0.020–0.028 |
Cartilage (n = 12) | ||||
AM ± SD | 73.236 ± 35.188 | 4.903 ± 2.864 | 1.391 ± 0.746 | 0.023 ± 0.005 |
Med | 68.112 | 6.496 | 1.739 | 0.021 |
Range | 26.987–146.683 | 0.081–8.353 | 0.020–2.168 | 0.020–0.039 |
Meniscus (n = 12) | ||||
AM ± SD | 40.398 ± 16.790 | 18.713 ± 10.021 | 45.198 ± 36.501 | 0.102 ± 0.041 |
Med | 35.061 | 20.759 | 41.182 | 0.096 |
Range | 16.844–70.850 | 0.080–38.693 | 0.414–105.537 | 0.065–0.222 |
Anterior cruciate ligament (n = 12) | ||||
AM ± SD | 94.263 ± 52.949 | 14.126 ± 6.993 | 31.633 ± 15.014 | 0.078 ± 0.017 |
Med | 52.949 | 15.264 | 38.677 | 0.081 |
Range | 45.687–243.982 | 0.075–23.409 | 0.479–49.297 | 0.053–0.102 |
Infrapatellar fat pad (n = 12) | ||||
AM ± SD | 67.952 ± 94.132 | 15.439 ± 21.993 | 7.888 ± 12.306 | 0.098 ± 0.124 |
Med | 33.608 | 11.044 | 2.166 | 0.057 |
Range | 12.529–367.259 | 0.036–82.599 | 0.474–39.848 | 0.036–0.505 |
Female vs. Male | ||||
Spongy bone | ||||
U | NS | NS | NS | NS |
p | ||||
Cartilage | ||||
U | NS | NS | NS | NS |
p | ||||
Meniscus | ||||
U | NS | NS | NS | NS |
p | ||||
Anterior cruciate ligament | ||||
U | NS | NS | 119 | NS |
p | 0.03 | |||
Infrapatellar fat pad | ||||
U | NS | NS | NS | NS |
SB | C | ACL | M | IFP | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fe | Ni | Mo | V | Fe | Ni | Mo | V | Fe | Ni | Mo | V | Fe | Ni | Mo | V | Fe | Ni | Mo | V | ||
SB | Fe | - | |||||||||||||||||||
Ni | 0.37 | - | |||||||||||||||||||
Mo | NS | 0.37 | - | ||||||||||||||||||
V | NS | NS | NS | - | |||||||||||||||||
C | Fe | NS | NS | NS | NS | - | |||||||||||||||
Ni | NS | NS | 0.37 | NS | 0.74 | - | |||||||||||||||
Mo | NS | NS | NS | NS | NS | 0.31 | - | ||||||||||||||
V | NS | NS | NS | NS | NS | NS | 0.53 | - | |||||||||||||
ACL | Fe | NS | NS | NS | NS | 0.66 | 0.40 | NS | NS | - | |||||||||||
Ni | NS | NS | NS | NS | NS | NS | NS | NS | NS | - | |||||||||||
Mo | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.90 | - | ||||||||||
V | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.91 | 0.85 | - | |||||||||
M | Fe | 0.37 | NS | NS | NS | NS | NS | NS | NS | 0.37 | NS | NS | NS | - | |||||||
Ni | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | - | |||||||
Mo | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.41 | 0.35 | 0.35 | NS | 0.73 | - | ||||||
V | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.63 | 0.50 | - | |||||
IFP | Fe | NS | NS | NS | NS | NS | NS | NS | NS | 0.38 | NS | NS | NS | NS | NS | 0.31 | NS | - | |||
Ni | NS | 0.32 | 0.45 | NS | NS | 0.46 | 0.38 | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.36 | - | |||
Mo | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.45 | 0.42 | - | ||
V | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.34 | 0.36 | NS | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kot, K.; Kosik-Bogacka, D.; Ziętek, P.; Karaczun, M.; Ciosek, Ż.; Łanocha-Arendarczyk, N. Impact of Varied Factors on Iron, Nickel, Molybdenum and Vanadium Concentrations in the Knee Joint. Int. J. Environ. Res. Public Health 2020, 17, 813. https://doi.org/10.3390/ijerph17030813
Kot K, Kosik-Bogacka D, Ziętek P, Karaczun M, Ciosek Ż, Łanocha-Arendarczyk N. Impact of Varied Factors on Iron, Nickel, Molybdenum and Vanadium Concentrations in the Knee Joint. International Journal of Environmental Research and Public Health. 2020; 17(3):813. https://doi.org/10.3390/ijerph17030813
Chicago/Turabian StyleKot, Karolina, Danuta Kosik-Bogacka, Paweł Ziętek, Maciej Karaczun, Żaneta Ciosek, and Natalia Łanocha-Arendarczyk. 2020. "Impact of Varied Factors on Iron, Nickel, Molybdenum and Vanadium Concentrations in the Knee Joint" International Journal of Environmental Research and Public Health 17, no. 3: 813. https://doi.org/10.3390/ijerph17030813
APA StyleKot, K., Kosik-Bogacka, D., Ziętek, P., Karaczun, M., Ciosek, Ż., & Łanocha-Arendarczyk, N. (2020). Impact of Varied Factors on Iron, Nickel, Molybdenum and Vanadium Concentrations in the Knee Joint. International Journal of Environmental Research and Public Health, 17(3), 813. https://doi.org/10.3390/ijerph17030813