Analyzing the Importance of Driver Behavior Criteria Related to Road Safety for Different Driving Cultures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Workflow
- finding the related criteria of DBQ and using in the questionnaires;
- designing required different levels of decision-making;
- applying the FAHP method for evaluating the criteria;
- evaluating the resulting weights by using Kendall’s agreement test.
2.2. Driver Behavior Questionnaire (DBQ) Characteristics
2.3. Significant Driver Behavior Criteria
2.4. Fuzzy Analytic Hierarchy Process (FAHP)
2.5. Kendall’s Agreement Test
3. Results
3.1. FAHP Ranking Results
3.2. Kendall’s Agreement Test Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. The Global Status Report on Road Safety; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- OECD/ITF. Road Safety Annual Report; OECD: Paris, France; ITF: London, UK, 2016. [Google Scholar]
- National Highway Traffic Safety Administration (NHTSA). National Motor Vehicle Crash Causation Survey; U.S Department of Transportation: Washington, DC, USA, 2008.
- De Oña, J.; De Oña, R.; Eboli, L.; Forciniti, C.; Mazzulla, G. How to identify the key factors that affect driver perception of accident risk, A comparison between Italian and Spanish driver behavior. Accid. Anal. Prev. 2014, 73, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Rumar, K. The Role of Perceptual and Cognitive Filters in Observed Behavior. In Human Behavior and Traffic Safety; Evans, L., Schwing, R.C., Eds.; Plenum Press: New York, NY, USA, 1985. [Google Scholar]
- Lewin, I. Driver training: A perceptual-motor skill approach. Ergonomics 1982, 25, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, T.; Lajunen, T.; Chliaoutakis, J.E.I.; Parker, D.; Summala, H. Cross-cultural differences in driving behaviors: A comparison of six countries. Transp. Res. Part F 2006, 9, 227–242. [Google Scholar] [CrossRef]
- Lajunen, T.; Corry, A.; Summala, H.; Hartley, L. Cross-cultural differences in Drivers’ self-assessments of their perceptual-motor and safety skills: Australians and Finns. Pers. Individ. Differ. 1998, 24, 539–550. [Google Scholar] [CrossRef]
- Hayakawa, H.; Fischbeck, P.S.; Fischhoff, B. Automobile risk perceptions and insurance-purchasing Decisions in Japan and the United States. J. Risk Res. 2000, 3, 51–67. [Google Scholar] [CrossRef]
- Lund, I.O.; Rundmo, T. Cross-cultural comparisons of traffic safety, risk perception, attitudes and behavior. Saf. Sci. 2009, 47, 547–553. [Google Scholar] [CrossRef]
- SWOV Fact Sheet. Naturalistic Driving: Observing Everyday Driving Behavior; SWOV Fact Sheet: Leidschendam, The Netherlands, 2010. [Google Scholar]
- Guo, F. Statistical Methods for Naturalistic Driving Studies. Annu. Rev. Stat. Its Appl. 2019, 6, 309–328. [Google Scholar] [CrossRef]
- Laureshyn, A.; Ardo, H.; Svensson, A.; Jonsson, T. Application of automated video analysis for behavioural studies: Concept and experience. IET Intell. Transp. Syst. 2009, 3, 345. [Google Scholar] [CrossRef] [Green Version]
- Young, K.L.; Bayly, M.; Lenné, M.G. Cross-regional in-vehicle information system design: The preferences and comprehension of Australian, US and Chinese drivers. IET Intell. Transp. Syst. 2012, 6, 36. [Google Scholar] [CrossRef]
- Furda, A.; Vlacic, L.B. Enabling Safe Autonomous Driving in Real-World City Traffic Using Multiple Criteria Decision Making. IEEE Intell. Transp. Syst. Mag. 2011, 3, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Li, X. Traffic safety Evaluation in the Rural-Urban Continuum Based on ANP. In Proceedings of the 2009 Second International Conference on Intelligent Computation Technology and Automation, Changsha, Hunan, 10–11 October 2009; pp. 853–858. [Google Scholar]
- Korhonen, P.; Wallenius, J. Behavioral Issues in MCDM: Neglected Research Questions. Multicriteria Analysis 1997, 5, 412–422. [Google Scholar]
- Nanda, S.; Singh, S. Evaluation of Factors Responsible for Road Accidents in India by Fuzzy AHP. In Networking Communication and Data Knowledge Engineering, Lecture Notes on Data Engineering and Communications Technologies; Springer: Singapore, 2018; Volume 3, pp. 179–188. [Google Scholar]
- Haghighat, F. Application of a Multi-criteria Approach to Road Safety Evaluation in the Bushehr Province, Iran. Promet Traffic Transp. 2012, 23, 341–352. [Google Scholar] [CrossRef]
- Shi, H. Fuzzy evaluation approach of road traffic safety based on AHP. In Proceedings of the International Conference on Future Bio Medical Information Engineering, Sanya, China, 13–14 December 2009; pp. 394–397. [Google Scholar]
- Hermans, E.; Bossche, F.V.D.; Wets, G. Combining road safety information in a performance index. Accid. Anal. Prev. 2008, 40, 1337–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirmohammadi, F.; Khorasani, G.; Tatari, A.; Yadollahi, A.; Taherian, H.; Motamed, H.; Fazelpour, S.; Khorasani, M.; Verki, M.R.M. Investigation of Road Accidents and Casualties Factors with MCDM Methods in Iran. J. Am. Sci. 2013, 9, 11–20. [Google Scholar]
- Ghorbanzadeh, O.; Feizizadeh, B.; Blaschke, T. An interval matrix method used to optimize the decision matrix in AHP technique for land subsidence susceptibility mapping. Environ. Earth Sci. 2018, 77, 584. [Google Scholar] [CrossRef]
- Cabrera-Barona, P.; Ghorbanzadeh, O. Comparing Classic and Interval Analytical Hierarchy Process Methodologies for Measuring Area-Level Deprivation to Analyze Health Inequalities. Int. J. Environ. Res. Public Health 2018, 15, 140. [Google Scholar] [CrossRef] [Green Version]
- Pirnazar, M.; Karimi, A.Z.; Feizizadeh, B.; Ostad-Ali-Askari, K.; Eslamian, S.; Hasheminasab, H.; Ghorbanzadeh, O.; Hamedani, M.H. Assessing flood hazard using GIS based multi-criteria decision making approach; study area: East-Azerbaijan province (Kaleybar Chay basin). J. Flood Eng. 2017, 8, 203–223. [Google Scholar]
- Chen, W.H.; Pourghasemi, R.; Panahi, M.; Kornejady, A.; Wang, J.; Xie, X.; Cao, S. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology 2017, 297, 69–85. [Google Scholar] [CrossRef]
- Shahabi, H.; Hashim, M. Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Sci. Rep. 2015, 5, 9899. [Google Scholar] [CrossRef] [Green Version]
- Shahabi, H.; Khezri, S.; Bin Ahmad, B.; Hashim, M. Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena 2014, 115, 55–70. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Kienberger, S. Spatially explicit sensitivity and uncertainty analysis for multicriteria-based vulnerability assessment. J. Environ. Plan. Manag 2017, 60, 2013–2035. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Beheshtirad, M.; Pradhan, B. A comparative assessment of prediction capabilities of modified analytical hierarchy process (M-AHP) and Mamdani fuzzy logic models using Netcad-GIS for forest fire susceptibility mapping. Geomatics Nat. Hazards Risk 2016, 7, 861–885. [Google Scholar] [CrossRef] [Green Version]
- Khosravi, K.; Nohani, E.; Maroufinia, E.; Pourghasemi, H.R. A GIS-based flood susceptibility assessment and its mapping in Iran: A comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Nat. Hazards 2016, 83, 947–987. [Google Scholar] [CrossRef]
- Duleba, S.; Moslem, S. Examining Pareto optimality in analytic hierarchy process on real Data: An application in public transport service development. Expert Syst. Appl. 2019, 116, 21–30. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Yao, J.; Li, Y.; Yang, S. Socially responsible supplier selection and sustainable supply chain development: A combined approach of total interpretive structural modeling and fuzzy analytic network process. Bus. Strat. Environ. 2018, 27, 1708–1719. [Google Scholar] [CrossRef]
- Keshavarz-Ghorabaee, M.; Amiri, M.; Zavadskas, E.K.; Turskis, Z.; Antuchevičienė, J. A new multi-criteria model based on interval type-2 fuzzy sets and EDAS method for supplier evaluation and order allocation with environmental considerations. Comput. Ind. Eng. 2017, 112, 156–174. [Google Scholar] [CrossRef]
- Fan, G.; Zhong, D.; Yan, F.; Yue, P. A hybrid fuzzy evaluation method for curtain grouting efficiency assessment based on an AHP method extended by D numbers. Expert Syst. Appl. 2016, 44, 289–303. [Google Scholar] [CrossRef]
- Deng, X.; Hu, Y.; Deng, Y.; Mahadevan, S. Supplier selection using AHP methodology extended by D numbers. Expert Syst. Appl. 2014, 41, 156–167. [Google Scholar] [CrossRef]
- Gumus, A.-T. Evaluation of hazardous waste transportation firms by using a twostep fuzzy-AHP and TOPSIS methodology. Expert Syst. Appl. 2009, 36, 4067–4074. [Google Scholar] [CrossRef]
- Kwong, C.K.; Bai, H. A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function deployment. J. Intell. Manuf. 2002, 13, 367–377. [Google Scholar] [CrossRef]
- Parker, D.; Manstead, A.S.R.; Stradling, S.G. Extending the theory of planned behavior: The role of personal norm. Br. J. Soc. Psychol. 1995, 34, 127–137. [Google Scholar] [CrossRef]
- Reason, J.T.; Manstead, A.S.R.; Stradling, S.; Baxter, J.; Campbell, K. Errors and violations on the roads. Ergonomics 1990, 33, 1315–1332. [Google Scholar] [CrossRef] [PubMed]
- Af Wåhlberg, A.; Dorn, L.; Kline, T. The Manchester driver behavior questionnaire as a predictor of road traffic accidents. Ergonomics 2011, 12, 66–86. [Google Scholar]
- De Winter, J.C.F.; Dodou, D. The Driver Behavior Questionnaire as a predictor of accidents: A meta-analysis. J. Saf. Res. 2010, 41, 463–470. [Google Scholar] [CrossRef]
- Parker, D.; Reason, J.T.; Manstead, A.S.R.; Stradling, S.G. Driving errors, driving violations and accident involvement. Ergonomics 1995, 38, 1036–1048. [Google Scholar] [CrossRef]
- Lajunen, T.; Parker, D.; Summala, H. The Manchester Driver Behavior Questionnaire: A cross-cultural study. Accid. Anal. Prev. 2004, 36, 231–238. [Google Scholar] [CrossRef]
- awton, R.; Parker, D.; Stradling, S.G.; Manstead, A. Predicting road traffic accidents: The role of social deviance and violations. Br. J. Psychol. 1997, 88, 249–262. [Google Scholar]
- Bener, A.; Özkan, T.; Lajunen, T. The driver behavior questionnaire in Arab gulf countries: Qatar and United Arab Emirates. Accid. Anal. Prev. 2008, 40, 1411–1417. [Google Scholar] [CrossRef]
- Farooq, D.; Moslem, S.; Duleba, S. Evaluation of Driver Behavior Criteria for Evolution of Sustainable Traffic Safety. Sustainability 2019, 11, 3142. [Google Scholar] [CrossRef] [Green Version]
- Evans, L. Traffic Safety; Science Serving Society, Inc.: Bloomfield Hills, MI, USA, 2004. [Google Scholar]
- Van Laarhoven, P.J.M.; Pedrycz, W. A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst. 1983, 11, 229–241. [Google Scholar] [CrossRef]
- Cheng, C.-H. Evaluating naval tactical missile systems by fuzzy AHP based on the grade value of membership function. Eur. J. Oper. Res. 1996, 96, 343–350. [Google Scholar] [CrossRef]
- Enea, M.; Piazza, T. Project Selection by Constrained Fuzzy AHP. Fuzzy Optim. Decis. Mak. 2004, 3, 39–62. [Google Scholar] [CrossRef]
- Ertuğrul, I.; Karakaşoğlu, N. Performance evaluation of Turkish cement firms with fuzzy analytic hierarchy process and TOPSIS methods. Expert Syst. Appl. 2009, 36, 702–715. [Google Scholar] [CrossRef]
- Haq, A.N.; Kannan, G. Fuzzy analytical hierarchy process for evaluating and selecting a vendor in a supply chain model. Int. J. Adv. Manuf. Technol. 2006, 29, 826–835. [Google Scholar]
- Dagdeviren, M.; Yüksel, I. Developing a fuzzy analytic hierarchy process (AHP) model for behavior-based safety management. Inf. Sci. 2008, 178, 1717–1733. [Google Scholar] [CrossRef]
- Naghadehi, M.Z.; Mikaeil, R.; Ataei, M. The application of fuzzy analytic hierarchy process (FAHP) approach to selection of optimum underground mining method for Jajarm Bauxite Mine, Iran. Expert Syst. Appl. 2009, 36, 8218–8226. [Google Scholar] [CrossRef]
- Manca, D.; Brambilla, S. A methodology based on the Analytic Hierarchy Process for the quantitative assessment of emergency preparedness and response in road tunnels. Transp. Policy 2011, 18, 657–664. [Google Scholar] [CrossRef]
- Hsieh, T.Y.; Lu, S.T.; Tzeng, G.H. Fuzzy MCDM approach for planning and design tender’s selection in public office buildings. Int. J. Proj. Manag. 2004, 22, 573–584. [Google Scholar] [CrossRef]
- Sun, C.-C. A performance evaluation model by integrating fuzzy AHP and fuzzy TOPSIS methods. Expert Syst. Appl. 2010, 37, 7745–7754. [Google Scholar] [CrossRef]
- Couso, I.; Strauss, O.; Saulnier, H. Kendall’s rank correlation on quantized data: An interval-valued approach. Fuzzy Sets Syst. 2018, 343, 50–64. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M.G.; Smith, B.B. The Problem of m Rankings. Ann. Math. Stat. 1939, 10, 275–287. [Google Scholar] [CrossRef]
- Gibbons, J.D.; Kendall, M. Rank Correlation Methods, 5th ed.; Edward Arnold: London, UK, 1990. [Google Scholar]
- Stradling, S.G.; Meadows, M.L.; Beatty, S. Driving as part of your work may damage your health. Behav. Res. Road Saf. 2000, 5, 1–9. [Google Scholar]
- Kashani, A.T.; Ravasani, M.S.; Ayazi, E. Analysis of Drivers’ Behavior using Manchester Driver Behavior Questionnaire Based on Roadside Interview in Iran. Int. J. Transp. Eng. 2016, 4, 61–74. [Google Scholar]
- World Health Organization (WHO). Legal BAC Limits by Country; WTO: Geneva, Switzerland, 2015. [Google Scholar]
- Arnedt, A.; Wilde, W.; Munt, M.; Maclean, M. Simulated driving performance following prolonged wakefulness and alcohol consumption: Separate and combined contributions to impairment. J. Sleep Res. 2000, 9, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Ning, J.; Tian, J.; Ma, S. The effectiveness and influencing factors of a penalty point system in China from the perspective of risky driving behaviors. Accid. Anal. Prev. 2019, 131, 171–179. [Google Scholar] [CrossRef]
- Kaçan, B.; Fındık, G.; Üzümcüoğlu, Y.; Azık, D.; Solmazer, G.; Ersan, Ö.; Özkan, T.; Lajunen, T.; Öz, B.; Pashkevich, A.; et al. Driver profiles based on values and traffic safety climate and their relationships with driver behaviors. Transp. Res. Part F Traffic Psychol. Behav. 2019, 64, 246–259. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Zhu, F.; Sui, X.; Wang, N.; Qu, X.; Green, P. Drivers’ visual scanning behavior at signalized and unsignalized intersections: A naturalistic driving study in China. J. Saf. Res. 2019, 71, 219–229. [Google Scholar] [CrossRef]
- Li, G.; Li, S.E.; Cheng, B.; Green, P.A. Estimation of driving style in naturalistic highway traffic using maneuver transition probabilities. Transp. Res. Part C Emerg. Technol. 2017, 74, 113–125. [Google Scholar] [CrossRef]
- Balsa-Barreiro, J.; Valero-Mora, P.M.; Pareja-Montoro, I.; Sánchez-García, M. Quality control procedure for naturalistic driving data using geographic information systems. Paper Presented at the 4th European Conference on Human Centred Design for Intelligent Transport Systems, Vienna, Austria, 5–6 June 2014. [Google Scholar]
- Balsa-Barreiro, J.; Valero-Mora, P.M.; Berné-Valero, J.L.; Varela-García, F.A. GIS mapping of driving behavior based on naturalistic driving data. ISPRS Int. J. Geo-Inf. 2019, 8, 226. [Google Scholar] [CrossRef] [Green Version]
Variables | Hungary | Turkey | Pakistan | China |
---|---|---|---|---|
N | 70 | 70 | 70 | 70 |
Age | ||||
Mean | 25.61 | 26.87 | 29.31 | 27.41 |
SD | 2.71 | 3.77 | 4.03 | 3.29 |
Gender (1 = male,0 = female) | ||||
Mean | 0.77 | 0.89 | 0.84 | 0.71 |
SD | 0.41 | 0.48 | 0.52 | 0.31 |
Driving Experience | ||||
Mean | 5.29 | 7.07 | 8.73 | 6.57 |
SD | 2.11 | 3.77 | 4.67 | 2.89 |
Driver Occupation (1 = job,0 = student) | ||||
Mean | 0.63 | 0.69 | 0.74 | 0.49 |
SD | 0.37 | 0.41 | 0.46 | 0.23 |
Fuzzy Number | Linguistic Variables | Triangular Fuzzy Numbers |
---|---|---|
9 | Perfect | (8, 9, 10) |
8 | Absolute | (7, 8, 9) |
7 | Very good | (6, 7, 8) |
6 | Fairly good | (5, 6, 7) |
5 | Good | (4, 5, 6) |
4 | Preferable | (3, 4, 5) |
3 | Not bad | (2, 3, 4) |
2 | Weak advantage | (1, 2, 3) |
1 | Equal | (1, 1, 1) |
Correlation Coefficient | Interpretation |
---|---|
1 | Perfect agreement |
0.9–1 | very high agreement |
0.7–0.9 | High agreement |
0.4–0.7 | Medium agreement |
0.2–0.4 | Low agreement |
0–0.2 | very low agreement |
0 | No agreement |
Criteria | Hungary | Turkey | Pakistan | China | Ri | |
---|---|---|---|---|---|---|
F1 | 2 | 1 | 1 | 1 | 5 | 9 |
F2 | 3 | 3 | 2 | 2 | 10 | 4 |
F3 | 1 | 2 | 3 | 3 | 9 | 1 |
n = 4 | m = 4 | K = 14 | R = 8 | W = 0.4375 |
Criteria | Hungary | Turkey | Pakistan | China | Ri | |
---|---|---|---|---|---|---|
F11 | 7 | 7 | 2 | 2 | 18 | 0 |
F12 | 1 | 2 | 1 | 1 | 5 | 169 |
F21 | 4 | 1 | 3 | 6 | 14 | 16 |
F22 | 8 | 5 | 6 | 3 | 22 | 16 |
F23 | 2 | 3 | 4 | 4 | 13 | 25 |
F31 | 5 | 8 | 8 | 7 | 28 | 100 |
F32 | 6 | 6 | 7 | 5 | 24 | 36 |
F33 | 3 | 4 | 5 | 8 | 20 | 4 |
n = 4 | m = 8 | K = 366 | R = 18 | W = 0.5446 |
Criteria | Hungary | Turkey | Pakistan | China | Ri | |
---|---|---|---|---|---|---|
F111 | 6 | 6 | 2 | 6 | 20 | 0 |
F112 | 9 | 9 | 7 | 4 | 29 | 81 |
F113 | 4 | 4 | 9 | 6 | 23 | 9 |
F121 | 8 | 8 | 5 | 2 | 23 | 9 |
F122 | 7 | 7 | 1 | 1 | 16 | 16 |
F123 | 2 | 2 | 3 | 8 | 15 | 25 |
F124 | 3 | 3 | 6 | 9 | 21 | 1 |
F125 | 5 | 5 | 8 | 4 | 22 | 4 |
F126 | 1 | 1 | 4 | 5 | 11 | 81 |
n = 4 | m = 9 | K = 226 | R = 20 | W = 0.2354 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farooq, D.; Moslem, S.; Faisal Tufail, R.; Ghorbanzadeh, O.; Duleba, S.; Maqsoom, A.; Blaschke, T. Analyzing the Importance of Driver Behavior Criteria Related to Road Safety for Different Driving Cultures. Int. J. Environ. Res. Public Health 2020, 17, 1893. https://doi.org/10.3390/ijerph17061893
Farooq D, Moslem S, Faisal Tufail R, Ghorbanzadeh O, Duleba S, Maqsoom A, Blaschke T. Analyzing the Importance of Driver Behavior Criteria Related to Road Safety for Different Driving Cultures. International Journal of Environmental Research and Public Health. 2020; 17(6):1893. https://doi.org/10.3390/ijerph17061893
Chicago/Turabian StyleFarooq, Danish, Sarbast Moslem, Rana Faisal Tufail, Omid Ghorbanzadeh, Szabolcs Duleba, Ahsen Maqsoom, and Thomas Blaschke. 2020. "Analyzing the Importance of Driver Behavior Criteria Related to Road Safety for Different Driving Cultures" International Journal of Environmental Research and Public Health 17, no. 6: 1893. https://doi.org/10.3390/ijerph17061893
APA StyleFarooq, D., Moslem, S., Faisal Tufail, R., Ghorbanzadeh, O., Duleba, S., Maqsoom, A., & Blaschke, T. (2020). Analyzing the Importance of Driver Behavior Criteria Related to Road Safety for Different Driving Cultures. International Journal of Environmental Research and Public Health, 17(6), 1893. https://doi.org/10.3390/ijerph17061893