An Innovative in Situ Monitoring of Sulfate Reduction within a Wastewater Biofilm by H2S and SO42− Microsensors
Abstract
:1. Introduction
2. Material and Methods
2.1. Set Up of Biofilm Reactor
2.2. Microelectrodes Preparation
2.2.1. H2S Microelectrode
2.2.2. SO42− Microelectrode
2.3. Microelectrodes Calibration
2.3.1. Calibration of H2S Microelectrodes
2.3.2. Calibration of SO42− Microelectrodes
2.3.3. QA/QC of H2S and SO42− Microelectrodes
2.4. Net Consumption and Production Rates Calculation
3. Results and Discussions
3.1. Reactor Performance
3.2. Microelectrodes Biofilm Measurement
3.3. Estimation of Consumption and Production Rate of H2S and SO42−
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Salama, Y.; Chennaoui, M.; Sylla, A.; Mountadar, M.; Rihani, M.; Assobhei, O. Characterization, structure, and function of extracellular polymeric substances (EPS) of microbial biofilm in biological wastewater treatment systems: A review. Desalin. Water Treat. 2016, 57, 16220–16237. [Google Scholar] [CrossRef]
- Huang, H.; Peng, C.; Peng, P.; Lin, Y.; Zhang, X.; Ren, H. Towards the biofilm characterization and regulation in biological wastewater treatment. Appl. Microbiol. Biotechnol. 2019, 103, 1115–1129. [Google Scholar] [CrossRef]
- Singh, R.; Paul, D.; Jain, R.K. Biofilms: Implications in bioremediation. Trends Microbiol. 2006, 14, 389–397. [Google Scholar] [CrossRef]
- Sehar, S.; Naz, I. Role of the biofilms in wastewater treatment. Microb. Biofilms Importance Appl. 2016, 121–144. [Google Scholar] [CrossRef] [Green Version]
- Dhanasekaran, D.; Thajuddin, N. (Eds.) Microbial Biofilms: Importance and Applications; BoD–Books on Demand: Norderstedt, Germany, 2016. [Google Scholar]
- Van Loosdrecht, M.C.; Heijnen, S.J. Biofilm bioreactors for wastewater treatment. Trends Biotechnol. 1993, 11, 117–121. [Google Scholar] [CrossRef]
- Debeer, D.; Stoodley, P.; Roe, F.; Lewandowski, Z. Effects of Biofilm Structures on Oxygen Distribution and Mass-Transport. Biotechnol. Bioeng. 1994, 43, 1131–1138. [Google Scholar] [CrossRef]
- Yu, T. Stratification of Microbial Process and Redox Potential Changes in Biofilm. Ph.D. Thesis, University of Cincinnati, Cincinnati, OH, USA, 2000. [Google Scholar]
- Liu, H.; Tan, S.; Sheng, Z.; Liu, Y.; Yu, T. Bacterial community structure and activity of sulfate reducing bacteria in a membrane aerated biofilm analyzed by microsensor and molecular techniques. Biotechnol. Bioeng. 2014, 111, 2155–2162. [Google Scholar] [CrossRef]
- Santegoeds, C.M.; Schramm, A.; de Beer, D. Microsensors as a tool to determine chemical microgradients and bacterial activity in wastewater biofilms and flocs. Biodegradation 1998, 9, 159–167. [Google Scholar] [CrossRef]
- Revsbech, N.P. An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 1989, 34, 474–478. [Google Scholar] [CrossRef]
- Jeroschewski, P.; Steuckart, C.; Kuhl, M. An amperometric microsensor for the determination of H2S in aquatic environments. Anal. Chem. 1996, 68, 4351–4357. [Google Scholar] [CrossRef]
- Ebert, A.; Brune, A. Hydrogen concentration profiles at the oxic-anoxic interface: A microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl. Environ. Microbiol. 1997, 63, 4039–4046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revsbech, N.P.; Nielsen, L.P.; Christensen, P.B.; Sorensen, J. Combined oxygen and nitrous-oxide microsesor for denitrification studies. Appl. Environ. Microbiol. 1988, 54, 2245–2249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohls, O.; Klimant, I.; Holst, G.; Kuhl, M. Development and comparision of pH microoptodes for use in marine systems. In Proceedings of the Micro and Nanofabricated Electro-Optical Mechanical Systems for Biomedical and Environmental Applications, San Jose, CA, USA, 10–11 February 1997; pp. 82–91. [Google Scholar]
- de beer, D.; Vandenheuvel, J.C. Reponse of ammonium-selective microelectrodes based on the neutral carrier nonactin. Talanta 1988, 35, 728–730. [Google Scholar] [CrossRef]
- de beer, D.; Sweerts, J.P.R. Measurement of nitrate gradients with an ion-selective microelectrode. Anal. Chim. Acta 1989, 219, 351–356. [Google Scholar] [CrossRef]
- de Beer, D.; Schramm, A.; Santegoeds, C.M.; Kuhl, M. A nitrite microsensor for profiling environmental biofilms. Appl. Environ. Microbiol. 1997, 63, 973–977. [Google Scholar] [CrossRef] [Green Version]
- Revsbech, N.P.; Jorgensen, B.B.; Blackburn, T.H.; Cohen, Y. Microelectrode studies of the photosynthesis and O2, H2S, and pH profile of a microbial mat. Limnol. Oceanogr. 1983, 28, 1062–1074. [Google Scholar] [CrossRef] [Green Version]
- Kuhl, M.; Jorgensen, B.B. Microsensor measurement of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl. Environ. Microbiol. 1992, 58, 1164–1174. [Google Scholar] [CrossRef] [Green Version]
- Steuckart, C.; Eickert, G.; Jeroschewski, P.A. H2S microsensor for profiling biofilms and sediments: Application in an acidic lake sediment. Aquat. Microb. Ecol. 1998, 15, 201–209. [Google Scholar]
- Yu, T.; Bishop, P.L. Stratification and oxidation-reduction potential change in an aerobic and sulfate-reducing biofilm studied using microelectrodes. Water Environ. Res. 2001, 73, 368–373. [Google Scholar] [CrossRef]
- Ramsing, N.B.; Kuhl, M.; Jorgensen, B.B. Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl. Environ. Microbiol. 1993, 59, 3840–3849. [Google Scholar] [CrossRef] [Green Version]
- Okabe, S.; Itoh, T.; Satoh, H.; Watanabe, Y. Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl. Environ. Microbiol. 1999, 65, 5107–5116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Yu, T.; Liu, Y. Sulfate reducing bacteria and their activities in oil sands process-affected wastewater biofilm. Sci. Total Environ. 2015, 536, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Okabe, S.; Satoh, H.; Watanabe, Y. Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Appl. Environ. Microbiol. 2002, 68, 1392–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Wahman, D.; Pressman, J. Penetration and activity of monochloramine in sediment from drinking water storage tank. Environ. Sci. Technol. 2019, 53, 9352–9360. [Google Scholar] [CrossRef] [PubMed]
- Odom, J.M.; Singleton, R.J. The Sulfate-Reducing Bacteria: Contemporary Perspectives; Springer: New York, NY, USA, 1993. [Google Scholar]
- Foti, M.; Sorokin, D.Y.; Lomans, B.; Mussman, M.; Zacharova, E.E.; Pimenov, N.V.; Kuenen, J.G.; Muyzer, G. Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl. Environ. Microbiol. 2007, 73, 2093–2100. [Google Scholar] [CrossRef] [Green Version]
- Jong, T.; Parry, D.L. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Res. 2006, 40, 2561–2571. [Google Scholar] [CrossRef]
- Liu, H.; Tan, S.; Sheng, Z.; Yu, T.; Liu, Y. Impact of oxygen on the co-existence of nitrification, denitrification, and sulfate reduction in oxygen based membrane aerated biofilm. Can. J. Microbiol. 2015, 61, 237–242. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Lee, D.J.; Yan, W.M. Highly heterogeneous interior structure of biofilm wastewater for enhanced pollutant removals. Bioresour. Technol. 2019, 291, 121919. [Google Scholar] [CrossRef]
- Ren, S.J. Development of a Sulfate Microelectrode for Profiling Environmental Biofilms. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2011. [Google Scholar]
- Sun, J.; Dai, X.; Liu, Y.; Peng, L.; Ni, B.J. Sulfide removal and sulfur production in a membrane aerated biofilm reactor: Model evaluation. Chem. Eng. J. 2017, 309, 454–462. [Google Scholar] [CrossRef]
- Gil-Garcia, C.; de Godoi, L.A.G.; Fuess, L.T.; Damianovic, M.H.R.Z. Performance improvement of a thermophilic sulfate-reducing bioreactor under acidogenic conditions: Effects of diversified operating strategies. J. Environ. Manag. 2018, 207, 303–312. [Google Scholar] [CrossRef]
- Suárez, J.I.; Aybar, M.; Nancucheo, I.; Poch, B.; Martínez, P.; Rittmann, B.E.; Schwarz, A. Influence of operating conditions on sulfate reduction from real mining process water by membrane biofilm reactors. Chemosphere 2020, 244, 125508. [Google Scholar] [CrossRef] [PubMed]
Components | Wt% | Chemical Formula |
---|---|---|
sulfate ionophore (Fluka 17892) | 2% wt | C22H22N4S2 (1,3-[Bis(3-phenylthioureidomethyl)] benzene) |
plasticizer (Fluka 73732) | 91.6% wt | o-NPOE (o-nitrophenyl-n-octylether) |
additive (Fluka 91661) | 1.4% wt | TDDMACl (tridodecylmethylammonium chloride) |
matrix PVC (Fluka 81392) | 5% wt | NA |
solvent (Sigma-Aldrich 83360) | Volumes relative to o-NPOE (2) | THF (tetrahydrofuran) |
Water Characteristics | Influent | Effluent |
---|---|---|
Dissolved Oxygen (DO) (mg/L) | 8.6 ± 0.5 | less than 0.85 |
Oxidation Reduction Potential (ORP) (mV) | 350 | −250~−350 |
Temperature (°C) | 23 | 23 |
pH | 7.6 ± 0.2 | 7.6 ± 0.2 |
SO42− (mg/L) | 227 ± 21 | 90 ± 17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Liu, X.; Ding, N. An Innovative in Situ Monitoring of Sulfate Reduction within a Wastewater Biofilm by H2S and SO42− Microsensors. Int. J. Environ. Res. Public Health 2020, 17, 2023. https://doi.org/10.3390/ijerph17062023
Liu H, Liu X, Ding N. An Innovative in Situ Monitoring of Sulfate Reduction within a Wastewater Biofilm by H2S and SO42− Microsensors. International Journal of Environmental Research and Public Health. 2020; 17(6):2023. https://doi.org/10.3390/ijerph17062023
Chicago/Turabian StyleLiu, Hong, Xun Liu, and Ning Ding. 2020. "An Innovative in Situ Monitoring of Sulfate Reduction within a Wastewater Biofilm by H2S and SO42− Microsensors" International Journal of Environmental Research and Public Health 17, no. 6: 2023. https://doi.org/10.3390/ijerph17062023
APA StyleLiu, H., Liu, X., & Ding, N. (2020). An Innovative in Situ Monitoring of Sulfate Reduction within a Wastewater Biofilm by H2S and SO42− Microsensors. International Journal of Environmental Research and Public Health, 17(6), 2023. https://doi.org/10.3390/ijerph17062023