Performance and Biomass Characteristics of SBRs Treating High-Salinity Wastewater at Presence of Anionic Surfactants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Sample Configuration
2.2. Operation of Reactors
3. Results and Discussion
3.1. Removal Performance Analysis
3.2. Activated Sludge Performance Analysis
3.3. Microbial Community Structure Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Soliman, M.; Eldyasti, A. Long-term dynamic and pseudo-state modeling of complete partial nitrification process at high nitrogen loading rates in a sequential batch reactor (SBR). Bioresour. Technol. 2017, 233, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.Q.; Liu, Y.G.; Zhang, T.; Li, J.; Wang, X.H.; Zhang, W.; Zeng, G.M.; Liu, S.B.; Guan, L. Acute Toxicity of Divalent Mercury Ion to Anguilla japonica from Seawater and Freshwater Aquaculture and Its Effects on Tissue Structure. Int. J. Environ. Res. Public Health 2019, 16, 1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefebvre, O.; Quentin, S.; Torrijos, M.; Godon, J.J.; Delgenès, J.P.; Moletta, R. Impact of increasing NaCl concentrations on the performance and community composition of two anaerobic reactors. Appl. Microbiol. Biotechnol. 2007, 75, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, W.L.; He, H.J.; Wu, S.H.; Zhou, Q.; Yang, C.P.; Zeng, G.M.; Luo, L.; Lou, W. Responses of microalgae Coelastrella sp. to stress of cupric ions in treatment of anaerobically digested swine wastewater. Bioresour. Technol. 2018, 251, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.N.; Oh, S. Impacts of antiseptic cetylpyridinium chloride on microbiome and its removal efficiency in aerobic activated sludge. Int. Biodeterior. Biodegrad. 2019, 137, 23–29. [Google Scholar] [CrossRef]
- Saha, S.; Badhe, N.; Pal, S.; Biswas, R.; Nandy, T. Carbon and nutrient-limiting conditions stimulate biodegradation of low concentration of phenol. Biochem. Eng. J. 2017, 126, 40–49. [Google Scholar] [CrossRef]
- Schievano, A.; Pepé Sciarria, T.; Vanbroekhoven, K.; De Wever, H.; Puig, S.; Andersen, S.J.; Rabaey, K.; Pant, D. Electro-Fermentation—Merging Electrochemistry with Fermentation in Industrial Applications. Trends Biotechnol. 2016, 34, 866–878. [Google Scholar] [CrossRef]
- Phan, H.V.; Hai, F.I.; Zhang, R.; Kang, J.; Price, W.E.; Nghiem, L.D. Bacterial community dynamics in an anoxic-aerobic membrane bioreactor—Impact on nutrient and trace organic contaminant removal. Int. Biodeterior. Biodegrad. 2016, 109, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Tadkaew, N.; Hai, F.I.; McDonald, J.A.; Khan, S.J.; Nghiem, L.D. Removal of trace organics by MBR treatment: The role of molecular properties. Water Res. 2011, 45, 2439–2451. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Chen, Y.; Li, X.; Cheng, Y.; Yang, C.P.; Zeng, G.M. Influence of salinity on microorganisms in activated sludge processes: A review. Int. Biodeterior. Biodegrad. 2017, 119, 520–527. [Google Scholar] [CrossRef]
- Salmanikhas, N.; Tizghadam, M. Rashidi Mehrabadi A: Treatment of saline municipal wastewater using hybrid growth system. J. Biol. Eng. 2016, 10, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, M.; Jorfi, S.; Kujlu, R.; Ghafari, S. Darvishi Cheshmeh Soltani R, Jaafarzadeh Haghighifard N: A novel salt-tolerant bacterial consortium for biodegradation of saline and recalcitrant petrochemical wastewater. J. Environ. Manag. 2017, 191, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, O.; Moletta, R. Treatment of organic pollution in industrial saline wastewater: A literature review. Water Res. 2006, 40, 3671–3682. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Li, W.; Lin, B.; Zhan, M.; Liu, C.; Chen, B.Y. Deciphering the effect of salinity on the performance of submerged membrane bioreactor for aquaculture of bacterial community. Desalination 2013, 316, 23–30. [Google Scholar] [CrossRef]
- Bassin, J.P.; Dezotti, M.; Sant’Anna, G.L. Nitrification of industrial and domestic saline wastewaters in moving bed biofilm reactor and sequencing batch reactor. J. Hazard. Mater. 2011, 185, 242–248. [Google Scholar] [CrossRef]
- Yan, Z.; He, H.J.; Yang, C.P.; Zeng, G.M.; Luo, L.; Jiao, P.; Li, H.R.; Lu, L. Biodegradation of 3,5-dimethyl-2,4-dichlorophenol in saline wastewater by newly isolated Penicillium sp. yz11-22N2. J. Environ. Sci. 2017, 57, 211–220. [Google Scholar] [CrossRef]
- Corsino, S.F.; Campo, R.; Di Bella, G.; Torregrossa, M.; Viviani, G. Cultivation of granular sludge with hypersaline oily wastewater. Int. Biodeterior. Biodegrad. 2015, 105, 192–202. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.J.; He, H.J.; Liu, H.Y.; Li, H.R.; Zeng, G.M.; Xia, X.; Yang, C.P. Effect of salinity on removal performance and activated sludge characteristics in sequencing batch reactors. Bioresour. Technol. 2018, 249, 890–899. [Google Scholar] [CrossRef]
- Hu, G.X.; Yang, H.; Hou, Q.F.; Guo, D.H.; Chen, G.; Liu, F.H.; Chen, T.; Shi, X.F.; Su, Y.; Wang, J.B. A pH and salt dually responsive emulsion in the presence of amphiphilic macromolecules. Soft Matter 2018, 14, 405–410. [Google Scholar] [CrossRef]
- Kumar, M.K.; Ghosh, P. Coalescence of Air Bubbles in Aqueous Solutions of Ionic Surfactants in Presence of Inorganic Salt. Chem. Eng. Res. Des. 2006, 84, 703–710. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L.; Dai, F.; Tao, M.; Li, X.; Tan, Z. Biostimulants application for bacterial metabolic activity promotion and sodium dodecyl sulfate degradation under copper stress. Chemosphere 2019, 226, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Abboud, M.M.; Khleifat, K.M.; Batarseh, M.; Tarawneh, K.A.; Al-Mustafa, A.; Al-Madadhah, M. Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactants by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzym. Microb. Technol. 2007, 41, 432–439. [Google Scholar] [CrossRef]
- Freeling, F.; Alygizakis, N.A.; von der Ohe, P.C.; Slobodnik, J.; Oswald, P.; Aalizadeh, R.; Cirka, L.; Thomaidis, N.S.; Scheurer, M. Occurrence and potential environmental risk of surfactants and their transformation products discharged by wastewater treatment plants. Sci. Total Environ. 2019, 681, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Qiao, S.; Zheng, N.; Tian, T.; Yu, C.; Zhou, J. Effects of short-term exposure to linear anionic surfactants (SDBS, SLS and SDS) on anammox biomass activity. RSC Adv. 2016, 6, 53004–53011. [Google Scholar] [CrossRef]
- Yang, Q.; Jing, X.L.; Luo, K.; Yi, J.; Zhong, Q.; Li, X.M.; Liu, Y.; Zeng, G.M. Hydrolase activity during microaerobic thermophilic digestion of sludge affected by sodium dodecylbenzene sulfonate (SDBS). Environ. Eng. Manag. J. 2016, 15, 367–373. [Google Scholar] [CrossRef]
- Li, H.R.; Li, Z.Q.; Song, X.W.; Li, C.B.; Guo, L.L.; Zhang, L.; Zhang, L.; Zhao, S. Effect of Organic Alkalis on Interfacial Tensions of Surfactant/Polymer Solutions against Hydrocarbons. Energy Fuels 2015, 29, 459–466. [Google Scholar] [CrossRef]
- Wang, D.B.; Li, X.M.; Yang, Q.; Zeng, G.M.; Liao, D.X.; Zhang, J. Biological phosphorus removal in sequencing batch reactor with single-stage oxic process. Bioresour. Technol. 2008, 99, 5466–5473. [Google Scholar] [CrossRef]
- Li, X.; Yang, C.P.; Zeng, G.M.; Wu, S.H.; Lin, Y.; Zhou, Q.; Lou, W.; Du, C.; Nie, L.J.; Zhong, Y.Y. Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations. Algal Res. 2020, 46, 101804. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, KS. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Li, C.; Liu, S.; Ma, T.; Zheng, M.; Ni, J. Simultaneous nitrification, denitrification and phosphorus removal in a sequencing batch reactor (SBR) under low temperature. Chemosphere 2019, 229, 132–141. [Google Scholar] [CrossRef]
- Capodici, M.; Corsino, S.F.; Torregrossa, M.; Viviani, G. Shortcut nitrification-denitrification by means of autochthonous halophilic biomass in an SBR treating fish-canning wastewater. J. Environ. Manag. 2018, 208, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, P.; Liu, Q.; Cao, H. Microwave enhanced chemical reduction process for nitrite-containing wastewater treatment using sulfaminic acid. J. Environ. Sci. 2010, 22, 56–61. [Google Scholar] [CrossRef]
- Cheng, Y.; He, H.J.; Yang, C.P.; Yan, Z.; Zeng, G.M.; Qian, H. Effects of anionic surfactant on n-hexane removal in biofilters. Chemosphere 2016, 150, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Lv, K.; Huang, P.; Liang, Y.; Lian, P.; Yan, H.; Jia, H. The great improvement of the surfactant interfacial activity via the intermolecular interaction with the additional appropriate salt. Colloids Surf. A Physicochem. Eng. Asp. 2018, 554, 142–148. [Google Scholar] [CrossRef]
- Semerci, N.; Hasılcı, N.B. Fate of carbon, nitrogen and phosphorus removal in a post-anoxic system treating low strength wastewater. Int. Biodeterior. Biodegrad. 2016, 108, 166–174. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, J.; Ningyuan, Z.; Jun, T.; Liu, J.; Sun, P.; Wong, P.K. Phosphorus and Cu 2+ removal by periphytic biofilm stimulated by upconversion phosphors doped with Pr 3+ -Li +. Bioresour. Technol. 2017, 248, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Wang, J. Changes in microbial community structure during dark fermentative hydrogen production. Int. J. Hydrog. Energy 2019, 44, 25542–25550. [Google Scholar] [CrossRef]
- Amorim, C.L.; Maia, A.S.; Mesquita, R.B.; Rangel, A.O.; van Loosdrecht, M.C.; Tiritan, M.E.; Castro, P.M. Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin. Water Res. 2014, 50, 101–113. [Google Scholar] [CrossRef]
- Yusoff, N.; Ong, S.A.; Ho, L.N.; Wong, Y.S.; Saad, F.N.M.; Khalik, W.; Lee, S.L. Performance of the hybrid growth sequencing batch reactor (HG-SBR) for biodegradation of phenol under various toxicity conditions. J. Environ. Sci. 2019, 75, 64–72. [Google Scholar] [CrossRef]
- Khursheed, A.; Gaur, R.Z.; Sharma, M.K.; Tyagi, V.K.; Khan, A.A.; Kazmi, A.A. Dependence of enhanced biological nitrogen removal on carbon to nitrogen and rbCOD to sbCOD ratios during sewage treatment in sequencing batch reactor. J. Clean. Prod. 2018, 171, 1244–1254. [Google Scholar] [CrossRef]
- Linares, R.V.; Li, Z.; Yangali-Quintanilla, V.; Li, Q.; Vrouwenvelder, J.S.; Amy, G.L.; Ghaffour, N. Hybrid SBR–FO system for wastewater treatment and reuse: Operation, fouling and cleaning. Desalination 2016, 393, 31–38. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, M.; Wang, Z.; She, Z.; Chang, Q.; Sun, C.; Zhang, J.; Ren, Y.; Yang, N. Effect of salinity on extracellular polymeric substances of activated sludge from an anoxic-aerobic sequencing batch reactor. Chemosphere 2013, 93, 2789–2795. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.H.; Liu, H.Y.; Yang, C.P.; Li, X.; Lin, Y.; Kai, Y.; Sun, J.T.; Teng, Q.; Du, C.; Zhong, Y.Y. High-performance porous carbon catalysts doped by iron and nitrogen for degradation of bisphenol F via peroxymonosulfate activation. Chem. Eng. J. 2020, 392, 123683. [Google Scholar] [CrossRef]
- Yang, C.; Chen, H.; Zeng, G.; Yu, G.; Luo, S. Biomass accumulation and control strategies in gas biofiltration. Biotechnol. Adv. 2010, 28, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Sheng, G.P.; Yu, H.Q.; Li, X.Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol. Adv. 2010, 28, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.; Klerks, P.; Heimann, K.; Waits, J. Effects of salinity, pH and temperature on the re-establishment of bioluminescence and copper or SDS toxicity in the marine dinoflagellate Pyrocystis lunula using bioluminescence as an endpoint. Environ. Pollution (Barking, Essex: 1987) 2003, 125, 267–275. [Google Scholar] [CrossRef]
- Hu, Y.Q.; Wei, W.; Gao, M.; Zhou, Y.; Wang, G.X.; Zhang, Y. Effect of pure oxygen aeration on extracellular polymeric substances (EPS) of activated sludge treating saline wastewater. Process Saf. Environ. Prot. 2019, 123, 344–350. [Google Scholar] [CrossRef]
- Wu, S.H.; Lin, Y.; Yang, C.; Du, C.; Teng, Q.; Ma, Y.; Zhang, D.; Nie, L.; Zhong, Y.Y. Enhanced activation of peroxymonosulfte by LaFeO3 perovskite supported on Al2O3 for degradation of organic pollutants. Chemosphere 2019, 237, 124478. [Google Scholar] [CrossRef]
- Singleton, D.R.; Furlong, M.A.; Rathbun, S.L.; Whitman, W.B. Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl. Environ. Microbiol. 2001, 67, 4374–4376. [Google Scholar] [CrossRef] [Green Version]
- Li, H.R.; Wu, S.H.; Du, C.; Zhong, Y.Y.; Yang, C.P. Preparation, Performances, and Mechanisms of Microbial Flocculants for Wastewater Treatment. Int. J. Environ. Res. Public Health 2020, 17, 1360. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Shen, M.; Li, J.; Huang, S.; Li, Z.; Yan, Z.; Peng, Y. Cooperation between partial-nitrification, complete ammonia oxidation (comammox), and anaerobic ammonia oxidation (anammox) in sludge digestion liquid for nitrogen removal. Environ. Pollut. 2019, 254, 112965. [Google Scholar] [CrossRef] [PubMed]
- Yi, K.; Wang, D.; Qi, Y.; Li, X.; Chen, H.; Sun, J.; An, H.; Wang, L.; Deng, Y.; Liu, J.; et al. Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater. Sci. Total Environ. 2017, 605–606, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; She, Z.; Gao, M.; Wang, Q.; Jin, C.; Zhao, Y.; Guo, L. Effect of anaerobic/aerobic duration on nitrogen removal and microbial community in a simultaneous partial nitrification and denitrification system under low salinity. Sci. Total Environ. 2019, 651, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Lebeau, T.; Braud, A.; Jezequel, K. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review. Environ. Pollut. 2008, 153, 497–522. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Observed Species | Shannon | Simpson | Chao1 | ACE | Goods’ Coverage |
---|---|---|---|---|---|---|
Control | 250 | 2.882 | 0.700 | 256.000 | 256.270 | 1 |
SDS | 139 | 2.652 | 0.702 | 145.067 | 147.287 | 1 |
SDBS | 195 | 3.450 | 0.828 | 206.875 | 205.442 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wu, S.; Yang, C. Performance and Biomass Characteristics of SBRs Treating High-Salinity Wastewater at Presence of Anionic Surfactants. Int. J. Environ. Res. Public Health 2020, 17, 2689. https://doi.org/10.3390/ijerph17082689
Li H, Wu S, Yang C. Performance and Biomass Characteristics of SBRs Treating High-Salinity Wastewater at Presence of Anionic Surfactants. International Journal of Environmental Research and Public Health. 2020; 17(8):2689. https://doi.org/10.3390/ijerph17082689
Chicago/Turabian StyleLi, Huiru, Shaohua Wu, and Chunping Yang. 2020. "Performance and Biomass Characteristics of SBRs Treating High-Salinity Wastewater at Presence of Anionic Surfactants" International Journal of Environmental Research and Public Health 17, no. 8: 2689. https://doi.org/10.3390/ijerph17082689
APA StyleLi, H., Wu, S., & Yang, C. (2020). Performance and Biomass Characteristics of SBRs Treating High-Salinity Wastewater at Presence of Anionic Surfactants. International Journal of Environmental Research and Public Health, 17(8), 2689. https://doi.org/10.3390/ijerph17082689