Airborne Transmission Route of COVID-19: Why 2 Meters/6 Feet of Inter-Personal Distance Could Not Be Enough
Abstract
:1. COVID-19: What Evidence Is There about a Possible Airborne Route of Transmission?
2. Beyond 2 m/6 Feet
Author Contributions
Funding
Conflicts of Interest
References
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Lloyd-Smith, J.O. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Cao, J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 2020, 139, 105730. [Google Scholar] [CrossRef] [PubMed]
- Paules, C.I.; Marston, H.D.; Fauci, A.S. Coronavirus infections—More than just the common cold. JAMA 2020, 323, 707–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharfman, B.E.; Techet, A.H.; Bush, J.W.M.; Bourouiba, L. Visualization of sneeze ejecta: Steps of fluid fragmentation leading to respiratory droplets. Exp. Fluids 2016, 57, 24. [Google Scholar] [CrossRef] [PubMed]
- Asadi, S.; Bouvier, N.; Wexler, A.S.; Ristenpart, W.D. The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol Sci. Tech. 2020, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anfinrud, P.; Bax, C.E.; Stadnytskyi, V.; Bax, A. Could SARS-CoV-2 be transmitted via speech droplets? medRxiv 2020. [Google Scholar] [CrossRef]
- Bourouiba, L. Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-19. J. Am. Med. Assoc. 2020. [Google Scholar] [CrossRef]
- Hosotani, N.; Yamakawa, M.; Matsuno, K. Numerical simulation for behavior of virus in an indoor environment. Jpn. Soc. Mech. Eng. 2013, G0401-01. [Google Scholar] [CrossRef]
- Iwasaki, R.; Yamakawa, M.; Matsuno, K. G613 Transmission Simulation of virus droplet under the indoor environment. In Proceedings of the Fluids Engineering Conference, Incheon, Korea, 18–21 March 2012; pp. 549–550. [Google Scholar] [CrossRef]
- Parshina-Kottas, Y.; Saget, B.; Patanjali, K.; Fleisher, O.; Gianordoli, G. This 3-D Simulation Shows Why Social Distancing Is So Important” NY Times. Available online: https://www.nytimes.com/interactive/2020/04/14/science/coronavirus-transmission-cough-6-feet-ar-ul.html (accessed on 14 April 2020).
- Blocken, B.; Malizia, F.; van, Druenen, T.; Marchal, T. Towards Aerodynamically Equivalent COVID19 1.5 m Social Distancing for Walking and Running. 2020. Available online: http://www.urbanphysics.net/Social%20Distancing%20v20_White_Paper.pdf (accessed on 14 April 2020).
- Yang, W.; Elankumaran, S.; Marr, L.C. Concentrations and size distributions of airborne influenza A viruses measured indoors at a health centre, a day-care centre and on aeroplanes. J. R. Soc. Interface 2011, 8, 1176–1184. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Elankumaran, S.; Marr, L.C. Relationship between Humidity and Influenza A Viability in Droplets and Implications for Influenza’s Seasonality. PLoS ONE 2012, 7, e46789. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Fu, J.-F.; Mao, J.-H.; Shang, S.-Q. Haze is a risk factor contributing to the rapid spread of respiratory syncytial virus in children. Environ. Sci. Poll. Res. 2016, 23, 20178–20185. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhang, W.; Li, S.; Williams, G.; Liu, C.; Morgan, G.G.; Jaakkola, J.J.K.; Guo, Y. Is short-term exposure to ambient fine particles associated with measles incidence in China? A multi-city study. Environ. Res. 2010, 156, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Zhao, X.; Tao, Y.; Mi, S.; Huang, J.; Zhang, Q. The effects of air pollution and meteorological factors on measles cases in Lanzhou, China. Environ. Sci. Pollut. Res. 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Qin, N.; Liang, P.; Wu, C.; Wang, G.; Xu, Q.; Xiong, X.; Knight, R. Longitudinal survey of microbiome associated with particulate matter in a megacity. Genome Biol. 2020, 21, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedlmaier, N.; Hoppenheidt, K.; Lehmann, S.; Lang, H.; Büttner, M. Generation of avian influenza virus (AIV) contaminated fecal fine particulate matter (PM2.5): Genome and infectivity detection and calculation of immission. Vet. Microbiol. 2009, 139, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Ficetola, G.F.; Rubolini, D. Climate Affects Global Patterns of Covid-19 Early Outbreak Dynamics. Preprint 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.03.23.20040501v2 (accessed on 14 April 2020).
- Reche, I.; D’Orta, G.; Mladenov, N.; Winget, D.M.; Suttle, C.A. Deposition rates of viruses and bacteria above the atmosperic boundary layer. ISME J. 2018, 12, 1154–1162. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Zhang, W.; Li, S.; Zhang, Y.; Williams, G.; Huxley, R.; Guo, Y. The impact of ambient fine particles on influenza transmission and the modification effects of temperature in China: A multi-city study. Environ. Int. 2017, 98, 82–88. [Google Scholar] [CrossRef]
- Zhao, Y.; Richardson, B.; Takle, E.; Chai, L.; Schmitt, D.; Win, H. Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States. Sci Rep. 2019, 9, 11755. [Google Scholar] [CrossRef] [Green Version]
- DasDarma, P.; Antunes, A.; Simoes, M.F.; DasDarma, S. Earth’s stratosphere amd microbial life. Curr. Issue Mol. Biol. 2020, 38, 197–244. [Google Scholar] [CrossRef] [Green Version]
- Milling, A.; Kehr, R.; Wulf, A.; Smalla, K. Survival of bacteria on wood and plastic particles: Dependence on wood species and environmental conditions. Holzforschung 2005, 59, 72–81. [Google Scholar] [CrossRef]
- Liu, Y.; Ning, Z.; Chen, Y.; Guo, M.; Liu, Y.; Gali, N.K.; Sun, L.; Duan, Y.; Cai, J.; Westerdahl, D.; et al. Aerodynamic characteristics and RNA concentration of SARS-CoV-2 aerosol in Wuhan hospitals during COVID-19 outbreak. BioXRiv 2020. Available online: https://www.biorxiv.org/content/10.1101/2020.03.08.982637v1 (accessed on 14 April 2020). [CrossRef]
- Santarpia, J.L.; Rivera, D.N.; Herrera, V.; Morwitzer, J.M.; Creager, H.; Santarpia, G.W.; Crown, K.K.; Brett-Major, D.; Schnaubelt, E.; Broadhurst, M.J.; et al. Transmission potential of SARS-CoV-2 in viral shedding observed at the university of nebraska medical center. medRxiv 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.03.23.20039446v2 (accessed on 14 April 2020). [CrossRef] [Green Version]
- Ong, S.W.X.; Tan, Y.K.; Chia, P.Y.; Lee, T.H.; Ng, O.T.; Wong, M.S.Y.; Marimuthu, K. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M.G.; Piazzalunga, A.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Piscitelli, P.; et al. The Potential Role of Particulate Matter in the Spreading of COVID-19 in Northern Italy: First Evidence-Based Research Hypotheses. 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.04.11.20061713v1 (accessed on 14 April 2020).
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M.G.; Piazzalunga, A.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Piscitelli, P.; et al. Is There a Plausible Role for Particulate Matter in the spreading of COVID-19 in Northern Italy? BMJ Rapid Responses. Available online: https://www.bmj.com/content/368/bmj.m1103/rapid-responses (accessed on 8 April 2020).
- Xiao, W.; Rachel, C.; Nethery, M. Benjamin Sabath, Danielle Braun, Francesca Dominici, Exposure to Air Pollution and COVID-19 Mortality in the United States. Available online: https://projects.iq.harvard.edu/files/covid-pm/files/pm_and_covid_mortality.pdf (accessed on 14 April 2020).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M.G.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Piscitelli, P.; Miani, A. Airborne Transmission Route of COVID-19: Why 2 Meters/6 Feet of Inter-Personal Distance Could Not Be Enough. Int. J. Environ. Res. Public Health 2020, 17, 2932. https://doi.org/10.3390/ijerph17082932
Setti L, Passarini F, De Gennaro G, Barbieri P, Perrone MG, Borelli M, Palmisani J, Di Gilio A, Piscitelli P, Miani A. Airborne Transmission Route of COVID-19: Why 2 Meters/6 Feet of Inter-Personal Distance Could Not Be Enough. International Journal of Environmental Research and Public Health. 2020; 17(8):2932. https://doi.org/10.3390/ijerph17082932
Chicago/Turabian StyleSetti, Leonardo, Fabrizio Passarini, Gianluigi De Gennaro, Pierluigi Barbieri, Maria Grazia Perrone, Massimo Borelli, Jolanda Palmisani, Alessia Di Gilio, Prisco Piscitelli, and Alessandro Miani. 2020. "Airborne Transmission Route of COVID-19: Why 2 Meters/6 Feet of Inter-Personal Distance Could Not Be Enough" International Journal of Environmental Research and Public Health 17, no. 8: 2932. https://doi.org/10.3390/ijerph17082932