Could Environment Affect the Mutation of H1N1 Influenza Virus?
Abstract
:1. Introduction
2. Methods
2.1. Outcome Data
2.2. HA Mutation
2.3. Environmental Variables
2.4. Socio-Economic Variables
2.5. Year Variables
2.6. Statistical Analyses
3. Results
H1N1 HA Mutation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hutchinson, E.C. Influenza Virus. Trends Microbiol. 2018, 26, 809–810. [Google Scholar] [CrossRef] [PubMed]
- Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Mol. Biol. Rev. 1992, 56, 152–179. [Google Scholar] [CrossRef]
- Czako, R.; Subbarao, K. Refining the approach to vaccines against influenza A viruses with pandemic potential. Future Virol. 2015, 10, 1033–1047. [Google Scholar] [CrossRef] [Green Version]
- Krammer, F. Novel universal influenza virus vaccine approaches. Curr. Opin. Virol. 2016, 17, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Kilbourne, E.D. Influenza pandemics of the 20th century. Emerg. Infect. Dis. 2006, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- McMichael, C. Climate change-related migration and infectious disease. Virulence 2015, 6, 548–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, N.H. Climate change and vector-borne diseases of public health significance. FEMS Microbiol. Lett. 2017, 364, fnx186. [Google Scholar] [CrossRef]
- Sharp, C.E.; Brady, A.L.; Sharp, G.H.; Grasby, S.E.; Stott, M.B.; Dunfield, P.F. Humboldt’s spa: Microbial diversity is controlled by temperature in geothermal environments. ISME J. 2014, 8, 1166–1174. [Google Scholar] [CrossRef] [Green Version]
- Bleuven, C.; Landry, C.R. Molecular and cellular bases of adaptation to a changing environment in microorganisms. Proc. R. Soc. B Biol. Sci. 2016, 283, 20161458. [Google Scholar] [CrossRef]
- Reiner, R.C., Jr.; Smith, D.L.; Gething, P.W. Climate change, urbanization and disease: Summer in the city …. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 171–172. [Google Scholar] [CrossRef]
- Jnawali, K.; Morsky, B.; Poore, K.; Bauch, C.T. Emergence and spread of drug resistant influenza: A two-population game theoretical model. Infect. Dis. Model. 2016, 1, 40–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauch, C.T.; Earn, D.J. Vaccination and the theory of games. Proc. Natl. Acad. Sci. USA 2004, 101, 13391–13394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leach, J.E.; Vera Cruz, C.M.; Bai, J.; Leung, H. Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu. Rev. Phytopathol. 2001, 39, 187–224. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.Q.; Wang, L.P.; de Vlas, S.J.; Liang, S.; Tong, S.L.; Li, Y.L.; Li, Y.P.; Qian, Q.; Yang, H.; Zhou, M.G.; et al. Distribution and risk factors of 2009 pandemic influenza A (H1N1) in mainland China. Am. J. Epidemiol. 2012, 175, 890–897. [Google Scholar] [CrossRef] [Green Version]
- Firestone, S.M.; Cogger, N.; Ward, M.P.; Toribio, J.A.; Moloney, B.J.; Dhand, N.K. The influence of meteorology on the spread of influenza: Survival analysis of an equine influenza (A/H3N8) outbreak. PLoS ONE 2012, 7, e35284. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Yun, H.; Lan, W.; Wang, W.; Sullivan, S.G.; Jia, S.; Bittles, A.H. A climatologic investigation of the SARS-CoV outbreak in Beijing, China. Am. J. Infect. Control 2006, 34, 234–236. [Google Scholar] [CrossRef]
- Fang, L.Q.; Li, X.L.; Liu, K.; Li, Y.J.; Yao, H.W.; Liang, S.; Yang, Y.; Feng, Z.J.; Gray, G.C.; Cao, W.C. Mapping spread and risk of avian influenza A (H7N9) in China. Sci. Rep. 2013, 3, 2722. [Google Scholar] [CrossRef] [Green Version]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K.; Klik, A.; Rousseva, S.; Tadić, M.P.; Michaelides, S.; Hrabalíková, M.; Olsen, P.; et al. Rainfall Erosivity in Europe. Sci. Total Environ. 2015, 511, 801–814. [Google Scholar] [CrossRef] [Green Version]
- Vines, R. European rainfall patterns. J. Climatol. 1985, 5, 607–616. [Google Scholar] [CrossRef]
- Yan, S.; Wu, G. Trends in global warming and evolution of nucleoproteins from influenza A viruses since 1918. Transbound. Emerg. Dis. 2010, 57, 404–413. [Google Scholar] [CrossRef]
- Galam, S. Public debates driven by incomplete scientific data: The cases of evolution theory, global warming and H1N1 pandemic influenza. Phys. A Stat. Mech. Appl. 2010, 389, 3619–3631. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.-M.; Wu, G. Trends in global warming and evolution of matrix protein 2 family from influenza A virus. Interdiscip. Sci. Comput. Life Sci. 2009, 1, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Rao, Y.; Sun, Q.; Wu, X.; Jin, J.; Bi, Y.; Chen, J.; Lei, F.; Liu, Q.; Duan, Z.; et al. Identification of climate factors related to human infection with avian influenza A H7N9 and H5N1 viruses in China. Sci. Rep. 2015, 5, 18094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Barroso, D.; León-Gómez, I.; Delgado-Sanz, C.; Larrauri, A. Climatic factors and influenza transmission, Spain, 2010–2015. Int. J. Environ. Res. Public Health 2017, 14, 1469. [Google Scholar] [CrossRef] [Green Version]
- Raupach, M.R.; Rayner, P.J.; Paget, M. Regional variations in spatial structure of nightlights, population density and fossil-fuel CO2 emissions. Energy Policy 2010, 38, 4756–4764. [Google Scholar] [CrossRef]
- Shao, W.; Li, X.; Goraya, M.U.; Wang, S.; Chen, J.L. Evolution of influenza a virus by mutation and re-assortment. Int. J. Mol. Sci. 2017, 18, 1650. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Yuan, H.; Gao, R.; Zhang, J.; Wang, D.; Xiong, Y.; Fan, G.; Yang, F.; Li, X.; Zhou, J.; et al. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: A descriptive study. Lancet 2014, 383, 714–721. [Google Scholar] [CrossRef]
- Ge, Y.; Chi, Y.; Min, X.; Zhao, K.; Wu, B.; Wu, T.; Zhu, X.; Shi, Z.; Zhu, F.; Cui, L. The evolution and characterization of influenza A (H7N9) virus under the selective pressure of peramivir. Virology 2019, 536, 58–67. [Google Scholar] [CrossRef]
- Rejmanek, D.; Hosseini, P.R.; Mazet, J.A.; Daszak, P.; Goldstein, T. Evolutionary dynamics and global diversity of influenza A virus. J. Virol. 2015, 89, 10993–11001. [Google Scholar] [CrossRef] [Green Version]
- Russell, C.J.; Hu, M.; Okda, F.A. Influenza hemagglutinin protein stability, activation, and pandemic risk. Trends Microbiol. 2018, 26, 841–853. [Google Scholar] [CrossRef]
- Mohebbi, A.; Fotouhi, F.; Jamali, A.; Yaghobi, R.; Farahmand, B.; Mohebbi, R. Molecular epidemiology of the hemagglutinin gene of prevalent influenza virus A/H1N1/pdm09 among patient in Iran. Virus Res. 2019, 259, 38–45. [Google Scholar] [CrossRef] [PubMed]
Materials | Data Source |
---|---|
Urban accessibility | European Commission Joint Research Center Global Environment Monitoring Unit |
Population density | Socioeconomic Data and Applications Center, NASA |
Urbanicity | |
Nighttime light | The Earth Observation Group, NOAA |
Annual cumulative precipitation | WorldClim database, version 2.0 |
Maximum annual temperature | |
Minimum annual temperature |
(a) GLM | (b) GAM Splines | ||||
---|---|---|---|---|---|
Estimate | z-Value | Estimate | p-Value | ||
(Intercept) | 0.055 | 0.000 *** | (Intercept) | 0.153 | 0.000 |
Precipitation | 0.000 | 0.255 | S (Precipitation) | 7.483 | 0.000 *** |
Maximum temperature | −0.000 | 0.000 *** | S (Maximum temperature) | 6.160 | 0.000 ** |
Minimum temperature | 0.000 | 0.000 *** | S (Minimum temperature) | 8.886 | 0.000 *** |
Nighttime light | −0.000 | 0.009 ** | S (Nighttime light) | 8.958 | 0.000 *** |
Population density | 0.000 | 0.000 *** | S (Population density) | 1.440 | 0.005 ** |
Urban accessibility | −0.000 | 0.611 | S (Urban accessibility) | 8.691 | 0.005 * |
Years | 0.002 | 0.000 *** | S (Years) | 8.973 | 0.000 *** |
Log-likelihood | 33,843.6 | - | Log-likelihood | 34,488.3 | - |
Deviance explained | 89.4% | - | Deviance explained | 90.5% | - |
AIC | −67,655.2 | - | AIC | −68,857.5 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, D.; Wang, Q.; Bai, Z.; Qi, H.; Ma, J.; Liu, W.; Ding, F.; Li, J. Could Environment Affect the Mutation of H1N1 Influenza Virus? Int. J. Environ. Res. Public Health 2020, 17, 3092. https://doi.org/10.3390/ijerph17093092
Jiang D, Wang Q, Bai Z, Qi H, Ma J, Liu W, Ding F, Li J. Could Environment Affect the Mutation of H1N1 Influenza Virus? International Journal of Environmental Research and Public Health. 2020; 17(9):3092. https://doi.org/10.3390/ijerph17093092
Chicago/Turabian StyleJiang, Dong, Qian Wang, Zhihua Bai, Heyuan Qi, Juncai Ma, Wenjun Liu, Fangyu Ding, and Jing Li. 2020. "Could Environment Affect the Mutation of H1N1 Influenza Virus?" International Journal of Environmental Research and Public Health 17, no. 9: 3092. https://doi.org/10.3390/ijerph17093092
APA StyleJiang, D., Wang, Q., Bai, Z., Qi, H., Ma, J., Liu, W., Ding, F., & Li, J. (2020). Could Environment Affect the Mutation of H1N1 Influenza Virus? International Journal of Environmental Research and Public Health, 17(9), 3092. https://doi.org/10.3390/ijerph17093092