Impact of Wind Speed on Response of Diffusion-Type Radon-Thoron Detectors to Thoron
Abstract
:1. Introduction
2. Materials and Methods
2.1. Detectors
2.2. Experiment
2.3. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
A | Area of the air inlet(s) of the detector (RADUETs or AlphaGUARD) |
Cbg | Concentration indicated by AlphaGUARD before starting exposure to thoron |
Cex | Concentration indicated by AlphaGUARD during exposure to thoron |
CTn, in | Thoron concentration in diffusion chamber of the detector (RADUETs or AlphaGUARD) |
CTn, out | Thoron concentration in a thoron calibration chamber |
d | Thickness of a porous medium (filter or sponge) |
Dp | Diffusion coefficient in a porous medium (filter or sponge) |
Nbg | Background track density on CR-39 |
Nex | Track density on CR-39 formed after exposure of RADUETs to thoron is completed |
RA | Responses to thoron for AlphaGUARD |
RR | Responses to thoron for RADUETs |
t | Time |
T | Time for exposure of RADUETs to thoron |
u | Air velocity induced by pressure gradient in a porous medium |
V | Volume of the detector (RADUETs or AlphaGUARD) |
γ | Air exchange rate of the detector (RADUETs or AlphaGUARD) |
λ | Decay constant of thoron |
References
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and Effects of Ionizing Radiation, UNSCEAR 2008 Report to the General Assembly with Scientific Annexes; United Nations: New York, NY, USA, 2010; Volume 1. [Google Scholar]
- Omori, Y.; Hosoda, M.; Takahashi, F.; Sanada, T.; Hirao, S.; Ono, K.; Furukawa, M. Japanese population dose from natural radiation. J. Radiol. Prot. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Porstendörfer, J. Properties and behaviour of radon and thoron and their decay products in the air. J. Aerosol Sci. 1994, 25, 219–263. [Google Scholar] [CrossRef]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and Effects of Ionizing Radiation, UNSCEAR 2000 Report to the General Assembly with Scientific Annexes; United Nations: New York, NY, USA, 2000; Volume 1. [Google Scholar]
- World Health Organization (WHO). WHO Handbook on Indoor Radon: A Public Health Perspective; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- International Commission on Radiological Protection (ICRP). Radiological Protection against Radon Exposure. ICRP Publication 126. Annals of the ICRP 43(3); SAGE Publications: London, UK, 2014. [Google Scholar]
- Hosoda, M.; Kudo, H.; Iwaoka, K.; Yamada, R.; Suzuki, T.; Tamakuma, Y.; Tokonami, S. Characteristic of thoron (220Rn) in environment. Appl. Radiat. Isot. 2017, 120, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Harley, N.H. A review of indoor and outdoor radon equilibrium factors–part I: 222Rn. Health Phys. 2018, 115, 490–499. [Google Scholar] [CrossRef]
- Chen, J.; Harley, N.H. A review of indoor and outdoor radon equilibrium factors–part II: 220Rn. Health Phys. 2018, 115, 500–506. [Google Scholar] [CrossRef]
- Tokonami, S.; Sun, Q.; Akiba, S.; Zhuo, W.; Furukawa, M.; Ishikawa, T.; Hou, C.; Zhang, S.; Narazaki, Y.; Ohji, B.; et al. Radon and thoron exposures for cave residents in Shanxi and Shaanxi Provinces. Radiat. Res. 2004, 162, 390–396. [Google Scholar] [CrossRef]
- Kudo, H.; Tokonami, S.; Omori, Y.; Ishikawa, T.; Iwaoka, K.; Sahoo, S.K.; Akata, N.; Hosoda, M.; Wanabongse, P.; Pornnumpa, C.; et al. Comparative dosimetry for radon and thoron in high background radiation areas in China. Radiat. Prot. Dosim. 2015, 167, 155–159. [Google Scholar] [CrossRef]
- Omori, Y.; Prasad, G.; Sorimachi, A.; Sahoo, S.K.; Ishikawa, T.; Sagar, D.V.; Ramola, R.C.; Tokonami, S. Long-term measurements of residential radon, thoron, and thoron progeny concentrations around the Chhatrapur placer deposit, a high background radiation area in Odisha, India. J. Environ. Radioact. 2016, 162–163, 371–378. [Google Scholar] [CrossRef]
- Omori, Y.; Tokonami, S.; Sahoo, S.K.; Ishikawa, T.; Sorimachi, A.; Hosoda, M.; Kudo, H.; Pornnumpa, C.; Nair, R.R.K.; Jayalekshmi, P.A.; et al. Radiation dose due to radon and thoron progeny inhalation in high-level natural radiation areas of Kerala, India. J. Radiol. Prot. 2017, 37, 111–126. [Google Scholar] [CrossRef]
- Meisenberg, O.; Mishra, R.; Joshi, M.; Gierl, S.; Rout, R.; Guo, L.; Agarwal, T.; Kanse, S.; Irlinger, J.; Sapra, B.K.; et al. Radon and thoron inhalation doses in dwellings with earthen architecture: Comparison of measurement methods. Sci. Total Environ. 2017, 579, 1855–1862. [Google Scholar] [CrossRef]
- Semwal, P.; Agarwal, T.K.; Singh, K.; Joshi, M.; Gusain, G.S.; Sahoo, B.K.; Ramola, R.C. Indoor inhalation dose assessment for thoron-rich regions of Indian Himalayan belt. Environ. Sci. Pollut. Res. 2019, 26, 4855–4866. [Google Scholar] [CrossRef] [PubMed]
- Tokonami, S.; Yang, M.; Sanada, T. Contribution from thoron on the response of passive radon detectors. Health Phys. 2001, 80, 612–615. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T. Effects of thoron on a radon detector of pulse-ionization chamber type. Radiat. Prot. Dosim. 2004, 108, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, W.; Tokonami, S.; Yonehara, H.; Yamada, Y. A simple passive monitor for integrating measurements of indoor thoron concentrations. Rev. Sci. Instrum. 2002, 73, 2877–2881. [Google Scholar] [CrossRef]
- Tokonami, S.; Takahashi, H.; Kobayashi, Y.; Zhuo, W. Up-to-date radon-thoron discriminative detector for a large scale survey. Rev. Sci. Instrum. 2005, 76, 113505. [Google Scholar] [CrossRef]
- Sahoo, B.K.; Sapra, B.K.; Kanse, S.D.; Gaware, J.J.; Mayya, Y.S. A new pin-hole discriminated 222Rn/220Rn passive measurement device with single entry face. Radiat. Meas. 2013, 58, 52–60. [Google Scholar] [CrossRef]
- Ward, W.J., III; Fleischer, R.L.; Mogro-Campero, A. Barrier technique for separate measurement of radon isotopes. Rev. Sci. Instrum. 1977, 48, 1440–1441. [Google Scholar] [CrossRef]
- Iida, T.; Nurishi, R.; Okamoto, K. Passive integrating 222Rn and 220Rn cup monitors with CR-39 detectors. Environ. Int. 1996, 22 (Suppl. 1), 641–647. [Google Scholar] [CrossRef]
- Fleischer, R.L.; Giard, W.R.; Turner, L.G. Membrane-based thermal effects in 222Rn dosimetry. Radiat. Meas. 2000, 32, 325–328. [Google Scholar] [CrossRef]
- Pressyanov, D.; Dimitrov, D. The problem with temperature dependence of radon diffusion chambers with anti-thoron barrier. Rom. J. Phys. 2020, 65, 801. [Google Scholar]
- Sorimachi, A.; Tokonami, S.; Omori, Y.; Ishikawa, T. Performance test of passive radon-thoron discriminative detectors on environmental parameters. Radiat. Meas. 2012, 47, 438–442. [Google Scholar] [CrossRef]
- Omori, Y.; Shimo, M.; Janik, M.; Ishikawa, T.; Yonehara, H. Variable strength in thoron interference for a diffusion-type radon monitor depending on ventilation of the outer air. Int. J. Environ. Res. Public Health 2020, 17, 974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasuoka, Y.; Sorimachi, A.; Ishikawa, T.; Hosoda, M.; Tokonami, S.; Fukuhori, N.; Janik, M. Separately measuring radon and thoron concentrations exhaled from soil using AlphaGUARD and liquid scintillation counter methods. Radiat. Prot. Dosim. 2010, 141, 412–415. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, R.M.; Sumesh, C.G.; Vinod Kumar, A.; Puranik, V.D. Application of thoron interference as a tool for simultaneous measurement of radon and thoron with a pulse ionisation chamber. Radiat. Prot. Dosim. 2013, 155, 155–160. [Google Scholar] [CrossRef]
- Jónás, J.; Sas, Z.; Vaupotic, J.; Kocsis, E.; Somlai, J.; Kovács, T. Thoron emanation and exhalation of Slovenian soils determined by a PIC detector-equipped radon monitor. Nukleonika 2016, 61, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Kochowska, E.; Kozak, K.; Kozłowska, B.; Mazur, J.; Dorda, J. Test measurements of thoron concentration using two ionization chambers AlphaGUARD vs. radon monitor RAD7. Nukleonika 2009, 54, 189–192. [Google Scholar]
- Sumesh, C.G.; Vinod Kumar, A.; Tripathi, R.M.; Puranik, V.D. Comparison study and thoron interference test of different radon monitors. Radiat. Prot. Dosim. 2013, 153, 309–315. [Google Scholar] [CrossRef]
- Omori, Y.; Janik, M.; Sorimachi, A.; Ishikawa, T.; Tokonami, S. Effects of air exchange property of passive-type radon-thoron discriminative detectors on performance of radon and thoron measurements. Radiat. Prot. Dosim. 2012, 152, 140–145. [Google Scholar] [CrossRef]
- Pornnumpa, C.; Oyama, Y.; Iwaoka, K.; Hosoda, M.; Tokonami, S. Development of radon and thoron exposure systems at Hirosaki University. Radiat. Environ. Med. 2018, 7, 13–20. [Google Scholar]
- Sorimachi, A.; Sahoo, S.K.; Tokonami, S. Generation and control of thoron emanated from lantern mantles. Rev. Sci. Instrum. 2009, 80, 015104. [Google Scholar] [CrossRef]
- Tokonami, S.; Yang, M.; Yonehara, H.; Yamada, Y. Simple, discriminative measurement technique for radon and thoron concentrations with a single scintillation cell. Rev. Sci. Instrum. 2002, 73, 69–72. [Google Scholar] [CrossRef]
- Lorenzi, A. Laminar, turbulent, and transition flow in porous sintered media. Meccanica 1975, 10, 75–77. [Google Scholar] [CrossRef]
- Basak, P. Non-Darcy flow and its implications to seepage problems. J. Irrigation Drainage Div. 1977, 103, 459–473. [Google Scholar]
- Bear, J. Dynamics of Fluids in Porous Media; Dover Publications, Inc.: New York, NY, USA, 1988; pp. 119–194. [Google Scholar]
- Belforte, G.; Raparelli, T.; Viktorov, V.; Trivella, A. Permeability and inertial coefficients of porous media for air bearing feeding systems. J. Tribol. 2007, 129, 705–711. [Google Scholar] [CrossRef]
- Macini, P.; Mesini, E.; Viola, R. Laboratory measurements of non-Darcy flow coefficients in natural and artificial unconsolidated porous media. J. Petrol. Sci. Eng. 2011, 77, 365–374. [Google Scholar] [CrossRef]
- Gargioni, E.; Honig, A.; Röttger, A. Development of a calibration facility for measurements of the thoron activity concentration. Nucl. Instrum. Meth. Phys. Res. A 2003, 506, 166–172. [Google Scholar] [CrossRef]
- Sorimachi, A.; Ishikawa, T.; Janik, M.; Tokonami, S. Quality assurance and quality control for thoron measurement at NIRS. Radiat. Prot. Dosim. 2010, 141, 367–370. [Google Scholar] [CrossRef]
- Zhao, C.; Zhuo, W.; Chen, B.; Zhang, H. Characteristic and performance of a simple thoron chamber. Radiat. Prot. Dosim. 2010, 141, 444–447. [Google Scholar] [CrossRef]
- Jílek, K.; Hýža, M.; Kotík, L.; Thomas, J.; Tomášek, L. International intercomparison of measuring instruments for radon/thoron gas and radon short-lived daughter products in the NRPI Prague. Radiat. Prot. Dosim. 2014, 160, 154–159. [Google Scholar] [CrossRef]
- Janik, M.; Tokonami, S.; Kranrod, C.; Sorimachi, A.; Ishikawa, T.; Hassan, N.M. International intercomparisons of integrating radon/thoron detectors with the NIRS radon/thoron chambers. Radiat. Prot. Dosim. 2010, 141, 436–439. [Google Scholar] [CrossRef]
- Janik, M.; Ishikawa, T.; Omori, Y.; Kavasi, N. Invited article: Radon and thoron intercomparison experiments for integrated monitors at NIRS, Japan. Rev. Sci. Instrum. 2014, 85, 022001. [Google Scholar] [CrossRef] [PubMed]
- Janik, M.; Tokonami, S.; Iwaoka, K.; Karunakara, N.; Trilochana, S.; Mohan, M.P.; Kumara, S.; Yashodhara, I.; Zhuo, W.; Zhao, C.; et al. Comparison of radon and thoron concentration measuring systems among Asian countries. Int. J. Environ. Res. Public Health 2019, 16, 5019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szeiler, G.; Somlai, J.; Ishikawa, T.; Omori, Y.; Mishra, R.; Sapra, B.K.; Mayya, Y.S.; Tokonami, S.; Csordás, A.; Kovács, T. Preliminary results from an indoor radon thoron survey in Hungary. Radiat. Prot. Dosim. 2012, 152, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Kávási, N.; Vigh, T.; Németh, C.; Ishikawa, T.; Omori, Y.; Janik, M.; Yonehara, H. Invited article: In situ comparison of passive radon-thoron discriminative monitors at subsurface workplaces in Hungary. Rev. Sci. Instrum. 2014, 85, 022002. [Google Scholar] [CrossRef]
Rotational Speed Level | Wind Speed (m s−1) | ||
---|---|---|---|
Center 1 | Near Wall 1 | Average 2 | |
Very low | 0.33 ± 0.01 | 0.20 ± 0.02 | 0.27 |
Low | 0.75 ± 0.02 | 0.44 ± 0.03 | 0.59 |
Reference | 0.85 ± 0.05 | 0.85 ± 0.05 | 0.85 |
High | 1.84 ± 0.05 | 2.00 ± 0.06 | 1.92 |
RADUETs | |||||
Wind Speed (m s−1) | Exposure Time (T, h) | Time-Integrated Thoron Concentration (CTn, out × T, kBq m−3 h) | Net Track Density (Nex–Nbg, tracks mm−2) 1 | Response to Thoron (RR, tracks mm−2 (kBq m−3 h)−1) | |
0.27 | 71 | 1082 | 12.6 ± 1.3 | 0.012 ± 0.001 | |
0.59 | 82 | 1281 | 24.6 ± 1.8 | 0.019 ± 0.001 | |
0.85 | 72 | 1016 | 19.7 ± 0.5 | 0.019 ± 0.001 | |
1.92 | 87 | 1007 | 24.0 ± 0.7 | 0.024 ± 0.001 | |
AlphaGUARD | |||||
Wind Speed (m s−1) | Exposure Time (T, h) | Thoron Concentration (CTn, out, Bq m−3) 2 | AlphaGUARD Value (Bq m−3) 2 | Response to Thoron (RA) | |
Cex | Cbg | ||||
0.27 | 21 | 12752 ± 359 | 549 ± 42 | 11 ± 3 | 0.042 ± 0.004 |
0.59 | 17 | 12294 ± 323 | 816 ± 37 | 11 ± 3 | 0.065 ± 0.003 |
0.85 | 16 | 932 ± 80 | 98 ± 12 | 4 ± 2 | 0.101 ± 0.016 |
0.85 | 17 | 1049 ± 65 | 89 ± 9 | 8 ± 3 | 0.078 ± 0.011 |
0.85 | 20 | 12254 ± 680 | 900 ± 50 | 11 ± 3 | 0.073 ± 0.006 |
1.92 | 12 | 1165 ± 76 | 115 ± 13 | 9 ± 3 | 0.091 ± 0.013 |
1.92 | 15 | 1014 ± 117 | 94 ± 9 | 10 ± 3 | 0.083 ± 0.013 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omori, Y.; Tamakuma, Y.; Nugraha, E.D.; Suzuki, T.; Saputra, M.A.; Hosoda, M.; Tokonami, S. Impact of Wind Speed on Response of Diffusion-Type Radon-Thoron Detectors to Thoron. Int. J. Environ. Res. Public Health 2020, 17, 3178. https://doi.org/10.3390/ijerph17093178
Omori Y, Tamakuma Y, Nugraha ED, Suzuki T, Saputra MA, Hosoda M, Tokonami S. Impact of Wind Speed on Response of Diffusion-Type Radon-Thoron Detectors to Thoron. International Journal of Environmental Research and Public Health. 2020; 17(9):3178. https://doi.org/10.3390/ijerph17093178
Chicago/Turabian StyleOmori, Yasutaka, Yuki Tamakuma, Eka Djatnika Nugraha, Takahito Suzuki, Miki Arian Saputra, Masahiro Hosoda, and Shinji Tokonami. 2020. "Impact of Wind Speed on Response of Diffusion-Type Radon-Thoron Detectors to Thoron" International Journal of Environmental Research and Public Health 17, no. 9: 3178. https://doi.org/10.3390/ijerph17093178
APA StyleOmori, Y., Tamakuma, Y., Nugraha, E. D., Suzuki, T., Saputra, M. A., Hosoda, M., & Tokonami, S. (2020). Impact of Wind Speed on Response of Diffusion-Type Radon-Thoron Detectors to Thoron. International Journal of Environmental Research and Public Health, 17(9), 3178. https://doi.org/10.3390/ijerph17093178