Morphological Characterization of Indoor Airborne Particles in Seven Primary Schools
Abstract
:1. Introduction
2. Material and Methods
2.1. Description of the Sampling Site
2.2. Sample Collection
2.3. SEM Analysis
3. Results and Discussion
3.1. Identified Particles
3.1.1. Mineral Particles
3.1.2. Particles Emitted During Combustion Processes
3.1.3. Particles Originated by High-Temperature Industrial Processes
3.1.4. Other Particles
3.2. Fine Fraction (<2.5 μm) Characterization
3.3. Coarse Fraction (2.5–10 μm) Characterization
- (a)
- School S2 is the urban location with the lowest percentage for all elements, whereas school S1 has the highest percentages of S.
- (b)
- School S7 (rural) has the lowest values of Ca, Si and S of all the studied schools.
- (c)
- Industrial locations S5 and S6 have similar values of Ca and Si; however, the percentage of S is greater in school S6. Location S4 has the lowest values of all industrial schools.
- (d)
- The highest proportion of sulfur compounds was registered in school S1 (urban); this fact can be observed in the results obtained when calculating ratios S/Si and S/Ca, both greater than 1.
- (e)
- Very similar values were obtained in school S6 for the S/Ca and S/Si ratios, which gives us similar values for particles rich in Si and Ca. This same situation occurs in school S5, where a value of 0.79 was obtained for the ratios S/Si and S/Ca, which is also the lowest value obtained. This fact tells us that, as well as having similar values for phases with Si and Ca contents, S5 is the school with the highest amount of mineral compounds regarding phases resulting from traffic.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kamens, R.; Lee, C.-T.; Wiener, R.; Leith, D. A study of characterize indoor particles in three non-smoking homes. Atmos. Environ. 1991, 25, 939–948. [Google Scholar] [CrossRef]
- Thatcher, T. Deposition, resuspension, and penetration of particles within a residence. Atmos. Environ. 1995, 29, 1487–1497. [Google Scholar] [CrossRef]
- Kingham, S.; Durand, M.; Harrison, J.; Cavanagh, J.; Epton, M.J. Temporal variations in particulate exposure to wood smoke in a residential school environment. Atmos. Environ. 2008, 42, 4619–4631. [Google Scholar] [CrossRef]
- Pallarés, S.; Gómez, E.T.; Vidal, M.M.J. Typological Characterisation of Mineral and Combustion Airborne Particles Indoors in Primary Schools. Atmosphere 2019, 10, 209. [Google Scholar] [CrossRef] [Green Version]
- Pallarés, S.; Gómez, E.; Martínez, A.; Vidal, M.M.J. The relationship between indoor and outdoor levels of PM10 and its chemical composition at schools in a coastal region in Spain. Heliyon 2019, 5, e02270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, I.; Aparicio, P.; Galán, E.; Fabbri, B. A proposal for reducing F and Cl emission in the brick industry using new formulations. Appl. Clay Sci. 2002, 22, 1–7. [Google Scholar] [CrossRef]
- González, I.; Barba-Brioso, C.; Campos, P.; Romero-Baena, A.J.; Galán, E. Reduction of CO2 diffuse emissions from the traditional ceramic industry by the addition of Si-Al raw material. J. Environ. Manag. 2016, 180, 190–196. [Google Scholar] [CrossRef]
- Pardo, F.; Sanfeliu, T.; Soriano, A.; Pallares, S.; Vicente, A.B.; Vidal, M.M.J. Settlement of particulate matter in a ceramic cluster (NE, Spain) during the years 2000–2005. Appl. Clay Sci. 2012, 70, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Bergametti, G.; Dutot, A.L.; Buat-Menard, P.; Losno, R. The Impact of Desert Dust Across the Mediterranean. Tell Us 1989, 41, 353–361. [Google Scholar] [CrossRef] [Green Version]
- Kubilay, N. Trace elements in atmospheric particulates over the Eastern Mediterranean; Concentrations, sources, and temporal variability. Atmos. Environ. 1995, 29, 2289–2300. [Google Scholar] [CrossRef]
- Querol, X.; Alastuey, A.; Puicercus, J.A.; Mantilla, E.; Miro, J.V.; Lopez-Soler, A.; Plana, F.; Artíñano, B. Seasonal evolution of suspended particles around a large coal-fired power station. Atmos. Environ. 1998, 32, 1963–1978. [Google Scholar] [CrossRef]
- Ortner, H.M. Sampling and characterization of individual particles in occupational health studies. J. Environ. Monit. 1999, 1, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Koch, W.; Dunkhorst, W.; Lodding, H. Design and Performance of a New Personal Aerosol Monitor. Aerosol Sci. Technol. 1999, 31, 231–246. [Google Scholar] [CrossRef]
- Umbría, A.; Gervilla, J.; Galán, M.; Valdés, R. Caracterización De Partículas; Junta de Andalucía, Consejería de Medio Ambiente: Sevilla, Spain, 1999. [Google Scholar]
- Inerle-Hof, M.; Weinbruch, S.; Ebert, M.; Thomassen, Y. The hygroscopic behaviour of individual aerosol particles in nickel refineries as investigated by environmental scanning electron microscopy. J. Environ. Monit. 2007, 9, 301. [Google Scholar] [CrossRef]
- Boix, A.; Jordan, M.M.; Querol, X.; Sanfeliu, T. Characterization of total suspended particles around a power station in an urban coastal area in eastern Spain. Environ. Earth Sci. 2001, 40, 891–896. [Google Scholar] [CrossRef]
- Weinbruch, S.; Van Aken, P.; Ebert, M.; Thomassen, Y.; Skogstad, A.; Chashchin, V.; Nikonov, A. The heterogeneous composition of working place aerosols in a nickel refinery: A transmission and scanning electron microscope study. J. Environ. Monit. 2002, 4, 344–350. [Google Scholar] [CrossRef]
- Chen, Y.; Shah, N.; E Huggins, F.; Huffman, G.P.; Linak, W.P.; Miller, C. Investigation of primary fine particulate matter from coal combustion by computer-controlled scanning electron microscopy. Fuel Process. Technol. 2004, 85, 743–761. [Google Scholar] [CrossRef]
- Moraswska, L. Indoor particles, combustion products and fibers. In The Handbook of Environmental Chemistry; Springer: Midtown Manhatan, NY, USA, 2004. [Google Scholar]
- Moreno, T.; Jones, T.P.; Richards, R.J. Characterisation of aerosol particulate matter from urban and industrial environments: Examples from Cardiff and Port Talbot, South Wales, UK. Sci. Total. Environ. 2004, 334, 337–346. [Google Scholar] [CrossRef]
- Vidal, M.M.J.; Alvarez, C.; Sanfeliu, T. Spherical particles as tracers of atmospheric ceramic industry. Environ. Earth Sci. 2006, 51, 447–453. [Google Scholar] [CrossRef]
- Srivastava, A.; Jain, V. A study to characterize the suspended particulate matter in an indoor environment in Delhi, India. Build. Environ. 2007, 42, 2046–2052. [Google Scholar] [CrossRef]
- Tye, A.M.; Hodgkinson, E.S.; Rawlins, B.G. Microscopic and chemical studies of metal particulates in tree bark an attic dust: Evidence for historical atmospheric smelter emissions, Humberside, UK. J. Environ. Monit. 2006, 8, 904–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallarés, S.; Gómez, E.T.; Sanfeliu, T. Characterization of the settleable and suspended atmospheric particles to solve an air quality problem. Fresenius Environ. Bull. 2008, 17, 1565–1576. [Google Scholar]
- Maenhaut, W.; Cornille, P.; Pacyna, J.M.; Vitols, V. Trace element composition and origin of the atmospheric aerosol in the Norwegian arctic. Atmos. Environ. 1989, 23, 2551–2569. [Google Scholar] [CrossRef]
- Chen, Y.; Shah, N.; Huggins, F.E.; Huffman, G.P. Microanalysis of ambient particles from Lexington, KY, by electron microscopy. Atmos. Environ. 2006, 40, 651–663. [Google Scholar] [CrossRef]
- Gómez, E.T.; Sanfeliu, T.; Rius, J. Metodología Del Estudio De Contaminantes Atmosféricos: Aplicación De Métodos Cristalográficos Y Geoquímicos Al Estudio De Contaminantes Atmosféricos Particulados; Servei de Publicacions, Diputació de Castelló: Castellón, Spain, 2006. [Google Scholar]
- Álvarez, C.; Jordán, M.M.; Boix, A.; Gómez, E.T.; Sanfeliu, T. Air Pollution; Power, H., Moussiopoulos, N., Brebbia, C.A., Eds.; Wessex Institute of Technology; Computational Mechanics Publications: Ashurst, Southampton, UK, 1999; Volume 7, pp. 385–393. [Google Scholar]
- Baron, P.A.; Sorensen, C.M.; Brockmann, J.E. Aerosol Measurement: Principles, Techniques, and Applications, 2nd ed.; Baron, E.P.A., Willeke, K., Eds.; Wiley publisher: New York city, NY, USA, 2001; pp. 705–749. [Google Scholar]
- Harris, S.J.; Maricq, M. Signature size distributions for diesel and gasoline engine exhaust particulate matter. J. Aerosol Sci. 2001, 32, 749–764. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Ntziachristos, L.; Samaras, Z.; Scheer, V.; Casati, R.; Vogt, R. Formation potencial of vehicle exhaust mode particles on-road and in the laboratory. Atmos. Environ. 2005, 39, 3191–3198. [Google Scholar] [CrossRef]
- Jordán, M.; Boix, A.; Sanfeliu, T.; De La Fuente, C. Firing transformations of cretaceous clays used in the manufacturing of ceramic tiles. Appl. Clay Sci. 1999, 14, 225–234. [Google Scholar] [CrossRef]
School | Site | City Zone | Traffic Density | Classroom Volume (m3) | Orientation of Windows | Number of Students |
---|---|---|---|---|---|---|
S1 | Urban | E | High | 268.03 | WNW | 40 |
S2 | Urban | NW | Medium | 159.56 | SSE | 21 |
S3 | Urban | W | High | 173.49 | ESE | 20 |
S4 | Industrial | SE | Medium | 136.17 | WNW | 25–30 |
S5 | Industrial | E | Medium | 109.09 | ENE | 26 |
S6 | Industrial | SW | Low-Medium | 197.67 | SSE | 60 |
S7 | Rural | SE | Low | 182.60 | SE | 12–8 |
Characterization | Type of Location Environment | |||
---|---|---|---|---|
Urban | Industrial | Rural | ||
Amount | Total particles | High | High | Medium |
Mineral phases | Medium | High | Medium | |
Combustion compounds | High Predominantly sphere-like particles | Medium Predominantly Dendritic aggregates | Low-Medium | |
Size | Mineral phases | (1–1.5) μm | (1–1.5) μm | (1–2) μm |
Sphere-like particles | (0.2–0.5 μm) | (0.2–0.5) μm | (0.2–0.5) μm | |
Soot dendritic aggregates | <1 μm | until 2 μm | until 2.5 μm | |
Spheres | In all schools Diameter (0.6–0.8) μm | In S4 and S6 Diameter (0.8–2) μm | Not observed | |
Fibres | Not observed | Only in S5 | Not observed | |
Secondary particulate matter | Cubic shapes and gypsum crystals (S5) | Cubic shapes (S7) |
Amount of Particles | |||||
---|---|---|---|---|---|
Title | Feb. | Mar. | May | Oct. | Nov. |
S1 | + | • | + | ||
S2 | + | • | ++ | ||
S3 | ++ | + | + | ||
S4 | - | • | • | ||
S5 | +++ | +++ | +++ | ||
S6 | ++ | ++ | ++ | ||
S7 | -- | -- | • |
Schools | |||||||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | |
Si | 3.74 | 2.56 | 3.53 | 3.11 | 3.96 | 3.91 | 2.24 |
S | 3.95 | 2.19 | 2.60 | 2.58 | 3.12 | 3.61 | 2.11 |
Ca | 3.77 | 2.19 | 2.72 | 2.32 | 3.76 | 3.80 | 1.99 |
Si+Ca | 7.51 | 4.75 | 6.24 | 5.43 | 7.72 | 7.71 | 4.23 |
Ca/Si | 0.97 | 0.88 | 0.77 | 0.79 | 1.01 | 0.95 | 0.87 |
S/Si | 1.08 | 0.88 | 0.78 | 0.86 | 0.79 | 0.93 | 0.92 |
S/Ca | 1.18 | 1.01 | 1.01 | 1.11 | 0.79 | 0.97 | 1.07 |
(Si+Ca)/S | 1.90 | 2.17 | 2.40 | 2.11 | 2.48 | 2.13 | 2.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pallarés, S.; Gómez, E.T.; Martínez, Á.; Miguel Jordán, M. Morphological Characterization of Indoor Airborne Particles in Seven Primary Schools. Int. J. Environ. Res. Public Health 2020, 17, 3183. https://doi.org/10.3390/ijerph17093183
Pallarés S, Gómez ET, Martínez Á, Miguel Jordán M. Morphological Characterization of Indoor Airborne Particles in Seven Primary Schools. International Journal of Environmental Research and Public Health. 2020; 17(9):3183. https://doi.org/10.3390/ijerph17093183
Chicago/Turabian StylePallarés, Susana, Eva Trinidad Gómez, África Martínez, and Manuel Miguel Jordán. 2020. "Morphological Characterization of Indoor Airborne Particles in Seven Primary Schools" International Journal of Environmental Research and Public Health 17, no. 9: 3183. https://doi.org/10.3390/ijerph17093183
APA StylePallarés, S., Gómez, E. T., Martínez, Á., & Miguel Jordán, M. (2020). Morphological Characterization of Indoor Airborne Particles in Seven Primary Schools. International Journal of Environmental Research and Public Health, 17(9), 3183. https://doi.org/10.3390/ijerph17093183