PM2.5 Pollution Strongly Predicted COVID-19 Incidence in Four High-Polluted Urbanized Italian Cities during the Pre-Lockdown and Lockdown Periods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analyses
3. Results
3.1. Demographic and Socioeconomic Parameters of Four Italian Cities
3.2. PM10 and PM2.5 Pollution in Four Italian Cities during the Entire Study Period
3.3. PM10 and PM2.5 Pollution in Four Italian Cities during the Universal Lockdown
3.4. Meteorological Conditions across Four Italian Cities
3.5. Daily COVID-19 Incidence across Four Italian Cities
3.6. Investigating the Effect of PM Pollution on COVID-19 Incidence after Adjusting for Demographic, Environmental and Socioeconomic Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Okyere, M.A.; Forson, R.; Essel-Gaisey, F. Positive Externalities of an Epidemic: The Case of the Corona Virus (COVID-19) in China. J. Med. Virol. 2020, 92, 1376–1379. [Google Scholar] [CrossRef] [Green Version]
- Martelletti, L.; Martelletti, P. Air Pollution and the Novel COVID-19 Disease: A Putative Disease Risk Factor. SN Compr. Clin. Med. 2020, 2, 383–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsouyanni, K. Ambient air pollution and health. Br. Med. Bull. 2003, 68, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, J.; Peng, Y.; Zhang, M.; Che, H.; Zhanga, X. The impacts of the meteorology features on PM2.5 levels during a severe haze episode in central-east China. Atmos. Environ. 2019, 197, 177–189. [Google Scholar] [CrossRef]
- Rahman, A.; Luo, C.; Khan, M.J.R.; Ke, J.; Thilakanayaka, V.; Kumar, S. Influence of atmospheric PM2.5, PM10, O3, CO, NO2, SO2, and meteorological factors on the concentration of airborne pollen in Guangzhou, China. Atmos. Environ. 2019, 212, 290–304. [Google Scholar] [CrossRef]
- Wang, J.; Ogawa, S. Effects of Meteorological Conditions on PM2.5 Concentrations in Nagasaki, Japan. Int. J. Environ. Res. Public Health 2015, 12, 9089–9101. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, X.; Zhang, Y.; Sun, K.; Wu, Y.; Xue, R.; Zeng, L.; Qu, Y.J. An Characteristics and formation mechanism of regional haze episodes in the Pearl River Delta of China. J. Environ. Sci. 2018, 63, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Nam, E.; Kishan, S.; Baldauf, R.W.; Fulper, C.R.; Sabisch, M.; Warila, J. Temperature effects on particulate matter emissions from light-duty, gasoline-powered motor vehicles. Environ. Sci. Technol. 2010, 44, 4672–4677. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.; Fan, S.B.; Huang, Y.H.; Nie, L.; Li, G. Relationship between wind velocity and PM10 concentration & emission flux of fugitive dust source. Huan Jing Ke Xue 2008, 29, 2983–2986. [Google Scholar] [PubMed]
- Losacco, C.; Perillo, A. Particulate matter air pollution and respiratory impact on humans and animals. Environ. Sci. Pollut. Res. Int. 2018, 25, 33901–33910. [Google Scholar] [CrossRef]
- Radan, M.; Dianat, M.; Badavi, M.; Mard, S.A.; Bayati, V.; Goudarzi, G. Gallic acid protects particulate matter (PM10) triggers cardiac oxidative stress and inflammation causing heart adverse events in rats. Environ. Sci. Pollut. Res. 2019, 26, 18200–18207. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.; Yu, Z.; Ding, H.; Ma, Z. The influence of PM2.5 on lung injury and cytokines in mice. Exp. Ther. Med. 2019, 18, 2503–2511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, C.A., 3rd; Bhatnagar, A.; McCracken, J.P.; Abplanalp, W.; Conklin, D.J.; O’Toole, T. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ. Res. 2016, 119, 1204–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, D.H.; Riediker, M.; Berchet, A.; Paccaud, F.; Waeber, G.; Vollenweider, P.; Bochud, M. Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population. Environ. Sci. Pollut. Res. Int. 2019, 26, 19697–19704. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020, 71, 248. [Google Scholar] [CrossRef]
- Horne, B.D.; Joy, E.A.; Hofmann, M.G.; Gesteland, P.H.; Cannon, J.B.; Lefler, J.S.; Blagev, D.P.; Korgenski, E.K.; Torosyan, N.; Hansen, G.I.; et al. Short-term elevation of fine particulate matter air pollution and acute lower respiratory infection. Am. J. Respir. Crit. Care Med. 2018, 198, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Berend, N. Contribution of air pollution to COPD and small airway dysfunction. Respirology 2016, 21, 237–244. [Google Scholar] [CrossRef]
- Croft, D.P.; Zhang, W.; Lin, S.; Thurston, S.W.; Hopke, P.K.; Masiol, M.; Squizzato, S.; van Wijngaarden, E.; Utell, M.J.; Rich, D.Q. The Association between Respiratory Infection and Air Pollution in the Setting of Air Quality Policy and Economic Change. Ann. Am. Thorac. Soc. 2019, 16, 321–330. [Google Scholar] [CrossRef]
- Chen, P.S.; Tsai, F.T.; Lin, C.K.; Yang, C.Y.; Chan, C.C.; Young, C.Y.; Lee, C.H. Ambient influenza and avian influenza virus during dust storm days and background days. Environ. Health Perspect. 2010, 118, 1211–1216. [Google Scholar] [CrossRef] [Green Version]
- Comunian, S.; Dongo, D.; Milani, C.; Palestini, P. Air Pollution and Covid-19: The Role of Particulate Matter in the Spread and Increase of Covid-19’s Morbidity and Mortality. Int. J. Environ. Res. Public Health 2020, 17, 4487. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhang, W.; Li, S.; Williams, G.; Liu, C.; Morgan, G.G.; Jaakkola, J.J.; Guo, Y. Is short-term exposure to ambient fine particles associated with measles incidence in China? A multi-city study. Environ. Res. 2017, 156, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Jiang, W.; Wang, B.; Fang, J.; Lang, J.; Tian, G.; Jiang, J.; Zhu, T.F. Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event. Environ. Sci. Technol. 2014, 48, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Franzetti, A.; Gandolfi, I.; Gaspari, E.; Ambrosini, R.; Bestetti, G. Seasonal variability of bacteria in fine and coarse urban air particulate matter. Appl. Microbiol. Biotechnol. 2011, 90, 745–753. [Google Scholar] [CrossRef]
- Wu, X.; Nethery, R.C.; Sabath, B.M.; Braun, D.; Dominici, F. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. medRxiv 2020, 54, 502. [Google Scholar] [CrossRef] [Green Version]
- Fattorini, D.; Regoli, F. Role of the chronic air pollution levels in the COVID-19 outbreak risk in Italy. Environ. Pollut. 2020, 2264, 114732. [Google Scholar] [CrossRef] [PubMed]
- World’s Air Pollution: Real-Time Air Quality Index. 2020. Available online: https://waqi.info/ (accessed on 7 April 2021).
- Johns Hopkins Coronovirus Resource Center. Johns Hopkins University & Medicine. 2020. Available online: https://coronavirus.jhu.edu/map.html (accessed on 20 August 2020).
- Adminstat Italia. Maps, Analysis and Statistics about the Resident Population. 2020. Available online: https://ugeo.urbistat.com/AdminStat/en/it/demografia/eta/lombardia/3/2 (accessed on 7 April 2021).
- European Commission. Internal Market, Industry, Entrepreneurship and SMEs. 2020. Available online: https://ec.europa.eu/growth/tools-databases/regional-innovation-monitor/base-profile/lombardy (accessed on 7 April 2021).
- AccuWeather, Local, National, & Global Daily Weather Forecast. 2020. Available online: https://www.accuweather.com/ (accessed on 7 April 2021).
- Weather Underground. 2020. Available online: https://www.wunderground.com/ (accessed on 20 August 2020).
- U.S. Department of Commerce Weather Bureau. The Climatic Handbook for Washington, DC Weather Bureau Technical Paper No. 8; U.S. Department of Commerce Weather Bureau: Silver Spring, MD, USA, 1949.
- World Health Organization. Ambient (Outdoor) Air Pollution. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 7 April 2021).
- Paul, A. What Towns in Italy Are on Lockdown Because of Coronavirus? Metro. 25 February 2020. Available online: https://metro.co.uk/2020/02/25/towns-italy-lockdown-coronavirus-12298246/ (accessed on 7 April 2021).
- All of Italy Facing Coronavirus Lockdown. BBC News. 9 March 2020. Available online: https://www.bbc.com/news/world-europe-51810673 (accessed on 7 April 2021).
- Bertacche, M.; Orihuela, R.; Colten, J. Italy Struck by Deadliest Day as Virus Prompts Industry Shutdown. Bloomberg. 2 March 2020. Available online: https://www.bloomberg.com/news/articles/2020-03-21/germany-plans-extra-spending-of-eu150-billion-scholz-says (accessed on 7 April 2021).
- Hernandez, M.; Reuters Graphics. A Breath of Fresh Air. How Air Quality Has Improved during the Coronavirus Crisis. 2020. Editing by Matthew Green and Simon Scarr. Available online: https://graphics.reuters.com/CLIMATE-CHANGE/CORONAVIRUS-POLLUTION/jznvngjyplm/index.html (accessed on 7 April 2021).
- Lauer, S.A.; Grantzm, K.H.; Bim, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med. 2020, 172, 577–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Zhuang, G.; Huang, K.; Liu, T.; Lin, Y.; Deng, C.; Fu, Q.; Fu, J.S.; Chen, J.; Zhang, W.; et al. Evolution of particulate sulfate and nitrate along the Asian dust pathway: Secondary transformation and primary pollutants via long-range transport. Atmos. Res. 2016, 16, 86–95. [Google Scholar] [CrossRef]
- Tran, H.N.Q.; Mölders, N. Investigations on meteorological conditions for elevated PM2.5 in Fairbanks, Alaska. Atmos. Res. 2011, 99, 39–49. [Google Scholar] [CrossRef]
- Lou, C.; Liu, H.; Li, Y.; Peng, Y.; Wang, J.; Dai, L. Relationships of relative humidity with PM2.5 and PM10 in the Yangtze River Delta, China. Environ. Monit. Assess. 2017, 189, 582. [Google Scholar] [CrossRef]
- Cheng, Y.; He, K.; Du, Z.; Zheng, M.; Duan, F.; Ma, Y. Humidity plays an important role in the PM2.5 pollution in Beijing. Environ. Pollut. 2015, 197, 68–75. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, L.; Wang, L.; Liu, Z.; Ji, D.; Tang, G. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci. China Earth Sci. 2014, 44, 15–26. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, B.; Zhang, J.; Yu, Y.; Wang, Y. Characteristics of aerosol size distributions and chemical compositions during wintertime pollution episodes in Beijing. Atmos. Res. 2016, 168, 1–12. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, L.; Wang, H.; Yang, Y.; Liu, J.; Qiu, D.; Ma, W.; Zhang, Z.; Liu, J. Dry deposition of particulate matter at an urban forest, wetland and lake surface in Beijing. Atmos. Environ. 2016, 125, 178–187. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, J.; Cong, L.; Ma, W.; Zhang, Z. Spatiotemporal characteristics of particulate matter and dry deposition flux in the Cuihu wetland of Beijing. PLoS ONE 2016, 11, e0158616. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yan, F.; Xie, Y.; Wang, F.; Wu, J.; Fu, Q. Impact of meteorological conditions on a nine-day particulate matter pollution event observed in December 2013, Shanghai, China. Particuology 2015, 20, 69–79. [Google Scholar] [CrossRef]
- De Jesus, A.L.; Thompson, H.; Knibbs, L.D.; Kowalski, M.; Cyrys, J.; Niemi, J.V.; Kusa, A.; Timonen, H.; Luoma, K.; Petäjä, T.; et al. Long-term trends in PM2.5 mass and particle number concentrations in urban air: The impacts of mitigation measures and extreme events due to changing climates. Environ. Pollut. 2020, 263, 114500. [Google Scholar] [CrossRef]
- Kong, L.; Tan, Q.; Feng, M.; Qu, Y.; An, J.; Liu, X.; Cheng, N.; Deng, Y.; Zhai, R.; Whang, Z. Investigating the characteristics and source analyses of PM2.5 seasonal variations in Chengdu, Southwest China. Chemosphere 2020, 243, 125267. [Google Scholar] [CrossRef]
- Shen, R.; Schäfer, K.; Schnelle-Kreis, J.; Shao, L.; Norra, S.; Kramar, U.; Mickalke, U.B.; Abbaszade, G.; Streibel, T.; Fricker, M.; et al. Characteristics and sources of PM in seasonal perspective—A case study from one year continuously sampling in Beijing. Atmos. Pollut. Res. 2016, 7, 235–248. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Hu, J.; Ying, Q.; Hu, X.M. Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environ. Res. 2015, 140, 242–254. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, X.; Ding, G.; Miao, Q. The Correlation Factors and Pollution Forecast Model For PM2.5 Concentration In Beijing Area. Acta Meteorol. Sin. 2003, 61, 761. [Google Scholar]
- Perrone, M.G.; Larsen, B.R.; Ferrero, L.; Sangiorgi, G.; De Gennaro, G.; Udisti, R.; Zangrandoe, R.; Gambaroef, A.; Bolzacchinia, E. Sources of high PM2.5 concentrations in Milan, Northern Italy: Molecular marker data and CMB modelling. Sci. Total Environ. 2012, 414, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Kotsiou, O.S.; Zidros, T.; Gourgoulianis, K.I. Letter to Editor regarding Prata et al. (2020), Temperature significantly changes COVID-19 transmission in (sub)tropical cities of Brazil. Sci. Total Environ. 2020, 746, 141323. [Google Scholar] [CrossRef]
- Sharma, A.K.; Balyan, P. Air pollution and COVID-19: Is the connect worth its weight? Indian J. Public Health 2020, 64, S132–S134. [Google Scholar] [CrossRef]
- Li, R.; Kou, X.; Xie, L.; Cheng, F.; Geng, H. Effects of ambient PM2.5 on pathological injury, inflammation, oxidative stress, metabolic enzyme activity, and expression of c-fos and c-jun in lungs of rats. Environ. Sci. Pollut. Res. Int. 2015, 22, 20167–20176. [Google Scholar] [CrossRef] [PubMed]
- Hiraiwa, K.; van Eeden, S.F. Contribution of Lung Macrophages to the Inflammatory Responses Induced by Exposure to Air Pollutants. Mediat. Inflamm. 2013, 2013, 619523. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Chen, G.; Yang, Z. Mitochondrial superoxide mediates PM2.5-induced cytotoxicity in human pulmonary lymphatic endothelial cells. Environ. Pollut. 2020, 263, 114423. [Google Scholar] [CrossRef] [PubMed]
- Undurraga, E.A.; Chowell, G.; Mizumoto, K. COVID-19 case fatality risk by age and gender in a high testing setting in Latin America: Chile, March-August 2020. Infect. Dis. Poverty 2021, 10, 11. [Google Scholar] [CrossRef]
Various Investigated Aspects | Milan | Rome | Naples | Salerno | p-Value |
---|---|---|---|---|---|
Population (N) | 3,250,315 | 4,342,212 | 3,084,890 | 1,098,513 | NS |
Population density (people/Km2) | 206.3 | 809.6 | 2616.8 | 221.7 | NS |
Males (%) | 48.5 | 47.9 | 48.5 | 48.9 | NS |
Females (%) | 51.5 | 52.1 | 51.5 | 51.1 | NS |
Foreigners (%) | 14.5 | 12.8 | 4.4 | 5.2 | NS |
Mean population age (years) | 44.8 | 44.5 | 41.3 | 43.6 | NS |
Population age structure | |||||
0–17 years (% of population) | 522,975 (16.09) | 700,833 (16.14) | 571,938 (18.54) | 178,728 (16.27) | NS |
18–64 years (% of population) | 1,991,469 (61.27) | 2,702,159 (62.23) | 1,951,192 (63.25) | 689,536 (62.77) | NS |
65+ years (% of population) | 735,871 (22.64) | 939,220 (21.63) | 561,760 (18.21) | 230,249 (20.96) | NS |
Visitors, 2019 (N) | 9,291,198 | 7,046,098 | 7,247,964 | 2,098,781 | NS |
Quality of Life Index | 117.43 | 110.75 | 102.39 | 145.73 | NS |
Health Care Index | 71.57 | 81.48 | 56.01 | 54.17 | NS |
Italian Cities | Milan | Rome | Naples | Salerno | |
---|---|---|---|---|---|
PM10 (μg/m3) Safe level: <50) | Entire study period | 45.1 ± 18.5 *,**,*** | 29.7 ± 12.7 *,# | 28.6 ± 15.0 **,^ | 21.4 ± 9.0 ***,#,^ |
Pre-lockdown period | 47.3 ± 18.2 | 31.0 ± 12.3 | 30.1 ± 14.9 | 22.6.7 ± 8.8 | |
Lockdown period | 34.6 ± 16.8 | 24.4 ± 13.6 | 21.6 ± 11.2 | 16.1 ± 7.7 | |
p-value 1 | 0.010 | 0.050 | 0.025 | 0.005 | |
PM2.5 (μg/m3) (Safe level: <25) | Entire study period | 102.0 ± 38.3 *,**,*** | 60.1 ± 32.3 * | 68.1 ± 30.8 ** | 59.2 ± 21.7 *** |
Pre-lockdown period | 108.4 ± 39.1 | 66.2 ± 31.4 | 70.9 ± 32.2 | 60.0 ± 22.8 | |
Lockdown period | 73.3 ± 15.1 | 32.4 ± 19.0 | 55.4 ± 18.9 | 52.9 ± 14.6 | |
p-value 1 | <0.001 | <0.001 | 0.050 | 0.046 |
Italian Cities | Milan | Rome | Naples | Salerno | p-Value |
---|---|---|---|---|---|
Daily average Humidity (%) | 62.5 ± 22.4 | 67.4 ± 13.0 | 67.5 ± 14.2 | 67.4 ± 14.7 | NS |
Daily average temperature (°C) | 7.4 ± 3.5 *,**,*** | 10.5 ± 2.8 *,# | 11.0 ± 2.5 **,^ | 12.0 ± 2.2 ***,#,^ | p < 0.001 |
Daily average wind speed (mph) | 22.6 ± 31.3 *,**,*** | 10.3 ± 4.7 * | 10.0 ± 5.0 ** | 12.7 ± 10 *** | p < 0.001 |
Model 1 | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | ||
B | Std. Error | Beta | Tolerance | VIF | |||
(Constant) | 34.246 | 6.603 | 5.187 | <0.001 | |||
Daily average Humidity (%) | 0.312 | 0.072 | 0.323 | 4.359 | <0.001 | 0.535 | 1.870 |
Daily average temperature (°C) | −2.835 | −2.80 | −0.571 | −10.138 | <0.001 | 0.925 | 1.081 |
Daily average wind speed (mph) | 0.268 | 0.057 | 0.360 | 4.744 | <0.001 | 0.509 | 1.964 |
Dependent Variable: PM10 levels The PM pollution of Milan, Rome, Naples, and Salerno included in the analysis. R = 69.5%, R2 = 50.0%, R2 (Adjusted) = 47.5% | |||||||
Model 2 | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | ||
B | Std. Error | Beta | Tolerance | VIF | |||
(Constant) | 55.828 | 14.695 | 3.799 | <0.001 | |||
Daily average Humidity (%) | 0.921 | 0.159 | 0.415 | 5.780 | <0.001 | 0.535 | 1.870 |
Daily average temperature (°C) | −6.008 | 0.623 | −0.527 | −9.651 | <0.001 | 0.925 | 1.081 |
Daily average wind speed (mph) | 0.829 | 0.126 | 0.485 | 6.588 | <0.001 | 0.509 | 1.964 |
Dependent Variable: PM2.5 levels The PM pollution of Milan, Rome, Naples, and Salerno included in the analysis. R = 71.7%, R2 = 51.5%, R2(Adjusted) = 50.6% |
Italian Cities | Milan | Rome | Naples | Salerno |
---|---|---|---|---|
Total cases up to 8 April 2020 | 12039 *,**,*** | 2910 * | 1668 * | 489 *** |
Daily average new COVID-19 cases | ||||
Entire study period | 268 ± 226 *,**,*** | 66 ± 53 *,#,^ | 37 ± 37 **,#,& | 11 ± 11 ***,^,& |
Pre-lockdown period | 173 ± 170 | 34 ± 34 | 17 ± 16 | 5 ± 5 |
Lockdown period | 409 ± 156 | 112 ± 29 | 67 ± 34 | 20 ± 15 |
p-value 3 | <0.001 | <0.001 | <0.001 | <0.001 |
Model 1 | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | ||
B | Std. Error | Beta | Tolerance | VIF | |||
(Constant) | 32.319 | 8.728 | 3.703 | <0.001 | |||
Daily number of samples tested | 0.26 | 0.001 | 0.988 | 28.876 | <0.001 | 0.805 | 1.242 |
Daily average PM2.5 (μg/m3) | 0.383 | 0.116 | 0.122 | 3.305 | 0.001 | 0.805 | 1.242 |
Dependent Variable: Daily average of new COVID-19 cases during the pre-lockdown period. The Italian cities of Milan, Rome, Naples, and Salerno included in the analysis. Excluded variables: PM10 (μg/m3), Daily average humidity (%), Daily average temperature (°C), Daily average wind speed (mph), Population (n), Population density (people/km2), Males (%), Females (%), Foreigners (%), Visitors (n), Mean age of population (years), Quality of life index, Health care index. R = 94.1%, R2 = 88.6%, R2 (Adjusted) = 83.3%. | |||||||
Model 2 | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | Collinearity Statistics | ||
B | Std. Error | Beta | Tolerance | VIF | |||
(Constant) | −4.070 | 358.747 | −12.098 | <0.001 | |||
Daily average PM2.5 (μg/m3) | 1.750 | 0.322 | 0.338 | 5.442 | <0.001 | 0.689 | 1.452 |
Mean age of population (years) | 90.747 | 8.195 | 0.726 | 11.073 | <0.001 | 0.617 | 1.621 |
Population density (people/km2) | 0.107 | 0.013 | 0.598 | 8.569 | <0.001 | 0.546 | 1.832 |
Dependent Variable: Daily average of new COVID-19 cases during the lockdown period. The Italian cities of Milan, Rome, Naples, and Salerno were included in the analysis. Excluded variables: PM10 (μg/m3), Daily average humidity (%), Daily average temperature (°C), Daily average wind speed (mph), Population (N), Males (%), Females (%), Foreigners (%), Visitors (n), Quality of life index, Health care index. Sampling (n), R = 90.5%, R2 = 82.0%, R2 (Adjusted) = 81.2%. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotsiou, O.S.; Kotsios, V.S.; Lampropoulos, I.; Zidros, T.; Zarogiannis, S.G.; Gourgoulianis, K.I. PM2.5 Pollution Strongly Predicted COVID-19 Incidence in Four High-Polluted Urbanized Italian Cities during the Pre-Lockdown and Lockdown Periods. Int. J. Environ. Res. Public Health 2021, 18, 5088. https://doi.org/10.3390/ijerph18105088
Kotsiou OS, Kotsios VS, Lampropoulos I, Zidros T, Zarogiannis SG, Gourgoulianis KI. PM2.5 Pollution Strongly Predicted COVID-19 Incidence in Four High-Polluted Urbanized Italian Cities during the Pre-Lockdown and Lockdown Periods. International Journal of Environmental Research and Public Health. 2021; 18(10):5088. https://doi.org/10.3390/ijerph18105088
Chicago/Turabian StyleKotsiou, Ourania S., Vaios S. Kotsios, Ioannis Lampropoulos, Thomas Zidros, Sotirios G. Zarogiannis, and Konstantinos I. Gourgoulianis. 2021. "PM2.5 Pollution Strongly Predicted COVID-19 Incidence in Four High-Polluted Urbanized Italian Cities during the Pre-Lockdown and Lockdown Periods" International Journal of Environmental Research and Public Health 18, no. 10: 5088. https://doi.org/10.3390/ijerph18105088
APA StyleKotsiou, O. S., Kotsios, V. S., Lampropoulos, I., Zidros, T., Zarogiannis, S. G., & Gourgoulianis, K. I. (2021). PM2.5 Pollution Strongly Predicted COVID-19 Incidence in Four High-Polluted Urbanized Italian Cities during the Pre-Lockdown and Lockdown Periods. International Journal of Environmental Research and Public Health, 18(10), 5088. https://doi.org/10.3390/ijerph18105088