The Impact of the SARS-CoV-19 Pandemic on the Global Gross Domestic Product
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database and Sample of Observations
2.2. Variables
2.3. Design and Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lopachev, A.V.; Kazanskaya, R.B.; Khutorova, A.V.; Fedorova, T.N. An Overview of the Pathogenic Mechanisms Involved in Severe Cases of COVID-19 Infection, and the Proposal of Salicyl Carnosine as a Potential Drug for its Treatment. Eur. J. Pharmacol. 2020, 886, 173457. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.S.; Lu, X.; Yuan, Y.; Xu, G.; Jia, J.; Christakis, N.A. Population Flow Drives Spatiotemporal Distribution of COVID-19 in China. Nature 2020, 582, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Zhou, M.; Dong, X. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hu, B.; Hu, C. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. Summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Kang, S.J.; Jung, S.I. Age-Related Morbidity and Mortality among Patients with COVID-19. Infect. Chemother. 2020, 52, 154–164. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Zhong, F.; Bao, W.; Yipeng, L.; Lei, L.; Hongyan, W.; Yungang, H. Age-Dependent Risks of Incidence and Mortality of COVID-19 in Hubei Province and Other Parts of China. Front. Med. 2020, 7, 190. [Google Scholar]
- Qiurong, R.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar]
- Pettit, N.N.; Erica, L.; MacKenzie, J.; Ridgway, P.; Pursell, K.; Ash, D.; Patel, B.; Pho, M.T. Obesity is Associated with Increased Risk for Mortality Among Hospitalized Patients with COVID-19. Obesity 2020, 28, 1806–1810. [Google Scholar] [CrossRef]
- Rajgor, D.D.; Lee, M.H.; Archuleta, S.; Bagdasarian, N.; Quek, S.C. The many estimates of the COVID-19 case fatality rate. Lancet Infect. Dis. 2020, 20, 776–777. [Google Scholar] [CrossRef] [Green Version]
- Sorci, G.; Faivre, B.; Morand, S. Explaining among-country variation in COVID-19 case fatality rate. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Hodgson, S.H.; Mansatta, K.; Mallett, G.; Harris, V.; Emary, K.R.W.; Pollard, A.J. What Defines an Efficacious COVID-19 Vaccine? A Review of the Challenges Assessing the Clinical Efficacy of Vaccines against SARS-CoV-2. Lancet Infect. Dis. 2020, 23, 9–10. [Google Scholar] [CrossRef]
- Adekoya, O.B.; Oliyide, J.A. How COVID-19 drives connectedness among commodity and financial markets: Evidence from TVP-VAR and causality-in-quantiles techniques. Resour. Policy 2021, 70, 101898. [Google Scholar] [CrossRef]
- Zhang, D.; Hu, M.; Ji, Q. Financial markets under the global pandemic of COVID-19. Financ. Res. Lett. 2020, 36, 101528. [Google Scholar] [CrossRef] [PubMed]
- Youssef, M.; Mokni, K.; Ajmi, A.N. Dynamic connectedness between stock markets in the presence of the COVID-19 pandemic: Does economic policy uncertainty matter? Financ. Innov. 2021, 7, 1–27. [Google Scholar] [CrossRef]
- Yuan, X.; Li, C.; Zhao, K.; Xu, X. The Changing Patterns of Consumers’ Behavior in China: A Comparison during and after the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 2447. [Google Scholar] [CrossRef]
- Korneta, P.; Kludacz-Alessandri, M.; Walczak, R. The Impact of COVID-19 on the Performance of Primary Health Care Service Providers in a Capitation Payment System: A Case Study from Poland. Int. J. Environ. Res. Public Health 2021, 18, 1407. [Google Scholar] [CrossRef]
- Naumann, E.; Möhring, K.; Reifenscheid, M.; Wenz, A.; Rettig, T.; Lehrer, R.; Blom, A.G. COVID-19 policies in Germany and their social, political, and psychological consequences. Eur. Policy Anal. 2020, 6, 191–202. [Google Scholar] [CrossRef]
- Nath, H. Covid-19: Macroeconomic Impacts and Policy Issues in India. Space Cult. India 2020, 8, 1–13. [Google Scholar] [CrossRef]
- Arndt, C.; Davies, R.; Gabriel, S.; Harris, L.; Makrelov, K.; Robinson, S.; Anderson, L. Covid-19 lockdowns, income distribution, and food security: An analysis for South Africa. Glob. Food Secur. 2020, 26, 100410. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, B.; Chatterjee, S.; Ghosh, R.; Dandapat, D. Impact of COVID-19 on global economy. In Coronavirus Outbreak and the Great Lockdown; Springer: Singapore, 2020; pp. 15–26. [Google Scholar]
- Ozili, P.; Arun, T. Spillover of COVID-19: Impact on the Global Economy. SSRN Electron. J. 2020. [Google Scholar] [CrossRef] [Green Version]
- Reinhart, C.; Reinhart, V. The pandemic depression: The global economy will never be the same. Foreign Aff. 2020, 99, 84. [Google Scholar]
- Jena, P.R.; Majhi, R.; Kalli, R.; Managi, S.; Majhi, B. Impact of COVID-19 on GDP of major economies: Application of the artificial neural network forecaster. Econ. Anal. Policy 2021, 69, 324–339. [Google Scholar] [CrossRef]
- International Monetary Fund. Available online: https://www.imf.org/external/datamapper/NGDP_RPCH@WEO/OEMDC/ADVEC/WEOWORLD (accessed on 7 March 2021).
- Goolsbee, A.; Syverson, C. Fear, lockdown, and diversion: Comparing drivers of pandemic economic decline 2020. J. Public Econ. 2021, 193, 104311. [Google Scholar] [CrossRef] [PubMed]
- Selby, K.; Durand, M.A.; Gouveia, A.; Bosisio, F.; Barazzetti, G.; Hostettler, M.; von Plessen, C. Citizen Responses to Government Restrictions in Switzerland During the COVID-19 Pandemic: Cross-Sectional Survey. JMIR Form. Res. 2020, 4, e20871. [Google Scholar] [CrossRef] [PubMed]
- Bennedsen, M.; Larsen, B.; Schmutte, I.; Scur, D. Preserving Job Matches during the COVID-19 Pandemic: Firm-Level Evidence on the Role of Government Aid; GLO Discussion Paper; EconStor: Berlin, Germany, 2020; p. 588. [Google Scholar]
- Gordon, T.; Dadayan, L.; Rueben, K. State and local government finances in the COVID-19 era. Natl. Tax J. 2020, 73, 733–757. [Google Scholar] [CrossRef]
- Hyun, J.; Kim, D.; Shin, S.R. The Role of Global Connectedness and Market Power in Crises: Firm-Level Evidence from the COVID-19 Pandemic. Available online: https://www.researchgate.net/publication/343794415_The_Role_of_Global_Connectedness_and_Market_Power_in_Crises_Firm-level_Evidence_from_the_COVID-19_Pandemic (accessed on 2 April 2021).
- Verbeke, A.; Yuan, W.A. Few Implications of the COVID-19 Pandemic for International Business Strategy Research. J. Manag. Stud. 2020, 58, 597–601. [Google Scholar] [CrossRef]
- Hasell, J.; Mathieu, E.; Beltekian, D.A. Cross-country database of SARS-COV-19 testing. Sci. Data 2020, 7, 345. [Google Scholar] [CrossRef] [PubMed]
- Shams, S.A.; Haleem, A.; Javaid, M. Analyzing SARS-COV-19 pandemic for unequal distribution of tests, identified cases, deaths, and fatality rates in the top 18 countries. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 953–961. [Google Scholar] [CrossRef]
- Arce, G.R. Nonlinear Signal Processing: A Statistical Approach; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Galvani, A.P. Dimensions of superspreading. Nature 2005, 438, 293–295. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T. A Proportional-Reduction-in-Error Interpretation for Kendall’s Tau-B. Soc. Forces 1969, 47, 340–342. [Google Scholar] [CrossRef]
- Korneta, P. Determinants of sales profitability for Polish agricultural distributors. Int. J. Manag. Econ. 2019, 55, 40–51. [Google Scholar]
- Best, D.; Roberts, D. Algorithm AS 89: The Upper Tail Probabilities of Spearman’s Rho. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1975, 24, 377–379. [Google Scholar] [CrossRef]
- Signorino, C.S.; Ritter, M.J. Tau-b or Not Tau-b: Measuring the Similarity of Foreign Policy Positions. Int. Stud. Q. 1999, 43, 115–144. [Google Scholar] [CrossRef]
- Fredricks, G.A.; Nelsen, R.B. On the relationship between Spearman’s rho and Kendall’s tau for pairs of continuous random variables. J. Stat. Plan. Inference 2007, 137, 2143–2150. [Google Scholar] [CrossRef]
- Bonett, D.G.; Wright, T.A. Sample size requirements for Pearson, Kendall, and Spearman correlations. Psychometrika 2000, 65, 23–28. [Google Scholar] [CrossRef]
- Corder, G.W.; Foreman, D.I. Nonparametric Statistics: A Step-by-Step Approach; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Kocsis, T.; Anda, A. Parametric or non-parametric: Analysis of rainfall time series at a Hungarian meteorological station. Q. J. Hung. Meteorol. Serv. 2018, 122, 203–216. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. I, II, III; Akademie van Wetenschappen: Amsterdam, The Netherlands, 1950. [Google Scholar]
- El-Shaarawi, A.H.; Piegorsch, W. Encyclopedia of Environmetrics; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Wiley: Hoboken, NJ, USA, 1987. [Google Scholar]
- Wilcox, R. A note on the Theil–Sen regression estimator when the regressor is random and the error term is heteroscedastic. Biom. J. 1998, 40, 261–268. [Google Scholar] [CrossRef]
- Granato, G.E. Kendall-Theil Robust Line (KTRLine—Version 1.0)—A Visual Basic Program for Calculating and Graphing Robust Nonparametric Estimates of Linear-Regression Coefficients between Two Continuous Variables: Techniques and Methods of the U.S. Geological Survey, 2006, book 4, chap. A7. Available online: https://pubs.usgs.gov/tm/2006/tm4a7/ (accessed on 29 March 2021).
- Korneta, P. Growth, profitability and liquidity of Polish road transportation companies. In Proceedings of the 20th International Scientific Conference Business Logistics in Modern Management; Strossmayer, J., Ed.; University of Osijek: Osijek, Croatia, 2020; pp. 75–88. [Google Scholar]
- Worden, L.; Wannier, R.; Hoff, N.A.; Musene, K.; Selo, B.; Mossoko, M.; Okitolonda-Wemakoy, E.; Tamfum, J.J.M.; Rutherford, G.W.; Lietman, T.M.; et al. Projections of epidemic transmission and estimation of vaccination impact during an ongoing Ebola virus disease outbreak in Northeastern Democratic Republic of Congo. PLoS Negl. Trop. Dis. 2019, 13, e0007512. [Google Scholar] [CrossRef] [Green Version]
- Barth, D.; Mayosi, B.M.; Badri, M.; Whitelaw, A.; Engel, M.E. Invasive and non-invasive group A β-haemolytic streptococcal infections in patients attending public sector facilities in South Africa: 2003–2015. South. Afr. J. Infect. Dis. 2018, 33, 12–17. [Google Scholar]
- Orlik, T.; Rush, J.; Cousin, M.; Hong, J. Coronavirus Could Cost the Global Economy $2.7 Trillion. Here’s How. Bloomberg Economics. NiGEM, OECD. 2020. Available online: https://www.bloomberg.com/graphics/2020-coronavirus-pandemic-global-economic-risk (accessed on 2 April 2021).
- Maliszewska, M.; Mattoo, A.; Van Der Mensbrugghe, D. The potential impact of COVID-19 on GDP and trade: A preliminary assessment. World Bank Policy Res. Work. Pap. 2020, 9211. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3573211 (accessed on 2 April 2021).
- König, M.; Winkler, A. COVID-19: Lockdowns, Fatality Rates and GDP Growth. Evidence for the First Three Quarters of 2020. Intereconomics 2021, 56, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Peto, J. Covid-19 mass testing facilities could end the epidemic rapidly. Br. Med. J. 2020, 368, 1163. [Google Scholar] [CrossRef] [Green Version]
- Finch, W.H.; Finch, M.E.H. Poverty and Covid-19: Rates of Incidence and Deaths in the United States during the First 10 Weeks of the Pandemic. Front. Sociol. 2020, 5, 47. [Google Scholar] [CrossRef]
- Liang, L.L.; Tseng, C.H.H.; Ho, H.J.; Wu, C.Y. Covid-19 mortality is negatively associated with test number and government effectiveness. Sci. Rep. 2020, 10, 12567. [Google Scholar] [CrossRef]
- Pak, A.; Adegboye, O.A.; Adekunle, A.I.; Rahman, K.M.; McBryde, E.S.; Eisen, D.P. Economic Consequences of the COVID-19 Outbreak: The Need for Epidemic Preparedness. Front. Public Health 2020, 8, 241. [Google Scholar]
- Al-Thaqeb, S.A.; Algharabali, B.G.; Alabdulghafour, K.T. The pandemic and economic policy uncertainty. Int. J. Financ. Econ. 2020, 1–11. [Google Scholar] [CrossRef]
- Song, L.; Zhou, Y. The COVID-19 Pandemic and Its Impact on the Global Economy: What Does It Take to Turn Crisis into Opportunity? China World Econ. 2020, 28, 1–25. [Google Scholar] [CrossRef]
- Štifanić, D.; Musulin, J.; Miočević, A.; Šegota, S.B.; Šubić, R.; Car, Z. Impact of COVID-19 on Forecasting Stock Prices: An Integration of Stationary Wavelet Transform and Bidirectional Long Short-Term Memory. Complexity 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gorain, B.; Choudhury, H.; Molugulu, N.; Athawale, R.B.; Kesharwani, P. Fighting Strategies Against the Novel Coronavirus Pandemic: Impact on Global Economy. Front. Public Health 2020, 8, 606129. [Google Scholar] [CrossRef] [PubMed]
Continent | New Cases | Deaths | Population | Number of Countries |
---|---|---|---|---|
Africa | 2,753,352 | 65,360 | 1,333,308,499 | 53 |
Asia | 19,659,852 | 334,364 | 4,518,306,798 | 41 |
Europe | 23,796,060 | 545,361 | 748,015,042 | 42 |
North America | 23,013,002 | 512,367 | 575,845,728 | 20 |
Australia and Oceania | 31,440 | 945 | 41,417,217 | 8 |
South America | 13,194,159 | 362,651 | 430,457,607 | 12 |
Total | 82,447,865 | 1,821,048 | 7,647,350,891 | 176 |
Acronym | Variable | Description |
---|---|---|
CCR | SARS-CoV-19 cases rate | New SARS-CoV-19 cases reported in a country per 1000 of the population of the country |
CFR | SARS-CoV-19 fatality rate | New SARS-CoV-19 deaths reported in a country per 1000 of the population of the country |
GDP | Gross domestic product | The difference of gross domestic product in 2020 and 2019, divided by gross domestic product in 2019, calculated for each country |
Variable | Mean | SD | Median | Min | Max | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
CCR | 15.749 | 18.874 | 7.263 | 0.003 | 76.819 | 1.239 | 0.659 |
CFR | 0.295 | 0.392 | 0.083 | 0 | 1.739 | 1.42 | 1.181 |
GDP | −5.694 | 7.181 | −5.1 | −66.7 | 26.2 | −3.271 | 30.415 |
Kendall | Theil–Sen | ||||
---|---|---|---|---|---|
Variable | Range | Tau-B | p | m Slope | b Intercept |
Gross Domestic Product (GDP) | |||||
CCR | <7 | −0.1274 | 0.0383 | −0.4851 | −2.7409 |
CCR | >7 | −0.0339 | 0.3231 | −0.008 | −6.2276 |
Gross Domestic Product (GDP) | |||||
CFR | <0.2 | −0.1401 | 0.0161 | −12.9928 | −3.2868 |
CFR | >0.2 | −0.1421 | 0.0456 | −1.3475 | −5.8339 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korneta, P.; Rostek, K. The Impact of the SARS-CoV-19 Pandemic on the Global Gross Domestic Product. Int. J. Environ. Res. Public Health 2021, 18, 5246. https://doi.org/10.3390/ijerph18105246
Korneta P, Rostek K. The Impact of the SARS-CoV-19 Pandemic on the Global Gross Domestic Product. International Journal of Environmental Research and Public Health. 2021; 18(10):5246. https://doi.org/10.3390/ijerph18105246
Chicago/Turabian StyleKorneta, Piotr, and Katarzyna Rostek. 2021. "The Impact of the SARS-CoV-19 Pandemic on the Global Gross Domestic Product" International Journal of Environmental Research and Public Health 18, no. 10: 5246. https://doi.org/10.3390/ijerph18105246
APA StyleKorneta, P., & Rostek, K. (2021). The Impact of the SARS-CoV-19 Pandemic on the Global Gross Domestic Product. International Journal of Environmental Research and Public Health, 18(10), 5246. https://doi.org/10.3390/ijerph18105246