The Use of Artificial Neural Networks to Predict the Physicochemical Characteristics of Water Quality in Three District Municipalities, Eastern Cape Province, South Africa
Abstract
:1. Introduction
2. Theoretical Foundations and Application in Water Quality Prediction
2.1. Principles of ANN
2.2. ANN’s Application to Water Quality Prediction
3. Materials and Methods
3.1. Sample Collection
3.2. Physicochemical Analysis
3.3. Artificial Neural Network (ANN)
3.3.1. Optimal selection of ANN model
3.3.2. Selection of Input and Output Variables
3.3.3. Data Preprocessing and Evaluation of the ANN Model’s Performance
3.4. Training and Testing Network
4. Tests and Results
5. Discussions
6. Conclusions and Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdel-Satar, A.M.; Ali, M.H.; Goher, M.E. Indices of Water Quality and Metal Pollution of Nile River, Egypt. Egypt. J. Aquat. Res. 2017, 43, 21–29. [Google Scholar] [CrossRef]
- Huan, J.; Cao, W.; Qin, Y. Prediction of Dissolved Oxygen in Aquaculture Based on EEMD and LSSVM Optimized by the Bayesian Evidence Framework. Comput. Electron. Agric. 2018, 150, 257–265. [Google Scholar] [CrossRef]
- Zheng, F.; Tao, R.; Maier, H.R.; See, L.; Savic, D.; Zhang, T.; Chen, Q.; Assumpção, T.H.; Yang, P.; Heidari, B.; et al. Crowdsourcing Methods for Data Collection in Geophysics: State of the Art, Issues, and Future Directions. Rev. Geophys. 2018, 56, 698–740. [Google Scholar] [CrossRef]
- Büyükşahin, Ü.Ç.; Ertekin, Ş. Improving Forecasting Accuracy of Time Series Data Using a New ARIMA-ANN Hybrid Method and Empirical Mode Decomposition. Neurocomputing 2019, 361, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhang, G.; Chen, F.; He, Y. A Hybrid-Wavelet Model Applied for Forecasting PM2.5 Concentrations in Taiyuan City, China. Atmos. Pollut. Res. 2019, 10, 1884–1894. [Google Scholar] [CrossRef]
- Graf, R.; Zhu, S.; Sivakumar, B. Forecasting River Water Temperature Time Series Using a Wavelet–Neural Network Hybrid Modelling Approach. J. Hydrol. 2019, 578, 124115. [Google Scholar] [CrossRef]
- Li, L.; Jiang, P.; Xu, H.; Lin, G.; Guo, D.; Wu, H. Water Quality Prediction Based on Recurrent Neural Network and Improved Evidence Theory: A Case Study of Qiantang River, China. Environ. Sci. Pollut. Res. 2019, 26, 19879–19896. [Google Scholar] [CrossRef] [PubMed]
- Mashaly, A.F.; Fernald, A.G. Identifying Capabilities and Potentials of System Dynamics in Hydrology and Water Resources as a Promising Modeling Approach for Water Management. Water 2020, 12. [Google Scholar] [CrossRef]
- Kadam, A.K.; Wagh, V.M.; Muley, A.A.; Umrikar, B.N.; Sankhua, R.N. Prediction of Water Quality Index Using Artificial Neural Network and Multiple Linear Regression Modelling Approach in Shivganga River Basin, India. Model. Earth Syst. Environ. 2019, 5, 951–962. [Google Scholar] [CrossRef]
- Katyal, D. Water Quality Indices Used for Surface Water Vulnerability Assessment. Int. J. Environ. Sci. 2011, 2, 154–173. [Google Scholar]
- Seth, R.; Mohan, M.; Dobhal, R.; Gupta, V.K.; Singh, P.; Singh, R.; Gupta, S. Application of Chemometric Techniques in the Assessment of Groundwater Quality of Udham Singh Nagar, Uttarakhand, India. Water Qual. Expo. Heal. 2014, 6, 199–216. [Google Scholar] [CrossRef]
- Akter, T.; Jhohura, F.T.; Akter, F.; Chowdhury, T.R.; Mistry, S.K.; Dey, D.; Barua, M.K.; Islam, M.A.; Rahman, M. Water Quality Index for Measuring Drinking Water Quality in Rural Bangladesh: A Crosssectional Study. J. Heal. Popul. Nutr. 2016, 35, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Abbasnia, A.; Radfard, M.; Mahvi, A.H.; Nabizadeh, R.; Yousefi, M.; Soleimani, H.; Alimohammadi, M. Groundwater Quality Assessment for Irrigation Purposes Based on Irrigation Water Quality Index and Its Zoning with GIS in the Villages of Chabahar, Sistan and Baluchistan, Iran. Data Brief 2018, 19, 623–631. [Google Scholar] [CrossRef]
- Yousefi, M.; Dehghani, M.H.; Nasab, S.M.; Taghavimanesh, V.; Nazmara, S.; Mohammadi, A.A. Data on Trend Changes of Drinking Groundwater Resources Quality: A Case Study in Abhar. Data Brief 2018, 17, 424–430. [Google Scholar] [CrossRef]
- Soleimani, H.; Nasri, O.; Ojaghi, B.; Pasalari, H.; Hosseini, M.; Hashemzadeh, B.; Kavosi, A.; Masoumi, S.; Radfard, M.; Adibzadeh, A.; et al. Data on Drinking Water Quality Using Water Quality Index (WQI) and Assessment of Groundwater Quality for Irrigation Purposes in Qorveh&Dehgolan, Kurdistan, Iran. Data Brief 2018, 20, 375–386. [Google Scholar] [CrossRef]
- Abbasnia, A.; Yousefi, N.; Mahvi, A.H.; Nabizadeh, R.; Radfard, M.; Yousefi, M.; Alimohammadi, M. Evaluation of Groundwater Quality Using Water Quality Index and Its Suitability for Assessing Water for Drinking and Irrigation Purposes: Case Study of Sistan and Baluchistan Province (Iran). Hum. Ecol. Risk Assess. 2019, 25, 988–1005. [Google Scholar] [CrossRef]
- Tyagi, S.; Sharma, B.; Singh, P.; Dobhal, R. Water Quality Assessment in Terms of Water Quality Index. Am. J. Water Resour. 2020, 1, 34–38. [Google Scholar] [CrossRef]
- Rajaee, T.; Boroumand, A. Forecasting of Chlorophyll-a Concentrations in South San Francisco Bay Using Five Different Models. Appl. Ocean Res. 2015, 53, 208–217. [Google Scholar] [CrossRef]
- Othman, F.; Alaaeldin, M.E.; Seyam, M.; Ahmed, A.N.; Teo, F.Y.; Ming Fai, C.; Afan, H.A.; Sherif, M.; Sefelnasr, A.; El-Shafie, A. Efficient River Water Quality Index Prediction Considering Minimal Number of Inputs Variables. Eng. Appl. Comput. Fluid Mech. 2020, 14, 751–763. [Google Scholar] [CrossRef]
- Sulaiman, K.; Hakim Ismail, L.; Adib Mohammad Razi, M.; Shalahuddin Adnan, M.; Ghazali, R. Water Quality Classification Using an Artificial Neural Network (ANN). IOP Conf. Ser. Mater. Sci. Eng. 2019, 601. [Google Scholar] [CrossRef]
- Chen, S.; Fang, G.; Huang, X.; Zhang, Y. Water Quality Prediction Model of a Water Diversion Project Based on the Improved Artificial Bee Colony-Backpropagation Neural Network. Water 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Castañeda-Miranda, A.; Castaño, V.M. Smart Frost Control in Greenhouses by Neural Networks Models. Comput. Electron. Agric. 2017, 137, 102–114. [Google Scholar] [CrossRef]
- Jiang, C.; Jiang, M.; Xu, Q.; Huang, X. Expectile Regression Neural Network Model with Applications. Neurocomputing 2017, 247, 73–86. [Google Scholar] [CrossRef]
- Arora, S.; Taylor, J.W. Rule-Based Autoregressive Moving Average Models for Forecasting Load on Special Days: A Case Study for France. Eur. J. Oper. Res. 2018, 266, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Barrow, D.; Kourentzes, N.; Sandberg, R.; Niklewski, J. Automatic Robust Estimation for Exponential Smoothing: Perspectives from Statistics and Machine Learning. Expert Syst. Appl. 2020, 160, 113637. [Google Scholar] [CrossRef]
- Amo Baffour, A.; Feng, J.; Taylor, E.K. A Hybrid Artificial Neural Network-GJR Modeling Approach to Forecasting Currency Exchange Rate Volatility. Neurocomputing 2019, 365, 285–301. [Google Scholar] [CrossRef]
- Castañeda-Miranda, A.; Castaño-Meneses, V.M. Smart Frost Measurement for Anti-Disaster Intelligent Control in Greenhouses via Embedding IoT and Hybrid AI Methods. Meas. J. Int. Meas. Confed. 2020, 164. [Google Scholar] [CrossRef]
- Pradeepkumar, D.; Ravi, V. Soft Computing Hybrids for FOREX Rate Prediction: A Comprehensive Review. Comput. Oper. Res. 2018, 99, 262–284. [Google Scholar] [CrossRef]
- Panigrahi, S.; Behera, H.S. A Hybrid ETS–ANN Model for Time Series Forecasting. Eng. Appl. Artif. Intell. 2017, 66, 49–59. [Google Scholar] [CrossRef]
- Sharaf El Din, E.; Zhang, Y.; Suliman, A. Mapping Concentrations of Surface Water Quality Parameters Using a Novel Remote Sensing and Artificial Intelligence Framework. Int. J. Remote Sens. 2017, 38, 1023–1042. [Google Scholar] [CrossRef]
- Gupta, T.K.; Raza, K. Optimizing Deep Feedforward Neural Network Architecture: A Tabu Search Based Approach. Neural Process. Lett. 2020, 51, 2855–2870. [Google Scholar] [CrossRef]
- Pu, F.; Ding, C.; Chao, Z.; Yu, Y.; Xu, X. Water-Quality Classification of Inland Lakes Using Landsat8 Images by Convolutional Neural Networks. Remote Sens. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Mahmoodabadi, M.; Rezaei Arshad, R. Long-Term Evaluation of Water Quality Parameters of the Karoun River Using a Regression Approach and the Adaptive Neuro-Fuzzy Inference System. Mar. Pollut. Bull. 2018, 126, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xu, L.; Li, D.; Li, Q.; Jiang, Y.; Tai, H.; Zeng, L. Prediction of Dissolved Oxygen Content in River Crab Culture Based on Least Squares Support Vector Regression Optimized by Improved Particle Swarm Optimization. Comput. Electron. Agric. 2013, 95, 82–91. [Google Scholar] [CrossRef]
- Chang, N.B.; Bai, K.; Chen, C.F. Integrating Multisensor Satellite Data Merging and Image Reconstruction in Support of Machine Learning for Better Water Quality Management. J. Environ. Manag. 2017, 201, 227–240. [Google Scholar] [CrossRef]
- Alsumaiei, A.A. A Nonlinear Autoregressive Modeling Approach for Forecasting Groundwater Level Fluctuation in Urban Aquifers. Water 2020, 12, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Csábrági, A.; Molnár, S.; Tanos, P.; Kovács, J. Application of Artificial Neural Networks to the Forecasting of Dissolved Oxygen Content in the Hungarian Section of the River Danube. Ecol. Eng. 2017, 100, 63–72. [Google Scholar] [CrossRef]
- Zhang, L.; Zou, Z.; Shan, W. Development of a Method for Comprehensive Water Quality Forecasting and Its Application in Miyun Reservoir of Beijing, China. J. Environ. Sci. 2017, 56, 240–246. [Google Scholar] [CrossRef]
- Jaddi, N.S.; Abdullah, S. A Cooperative-Competitive Master-Slave Global-Best Harmony Search for ANN Optimization and Water-Quality Prediction. Appl. Soft Comput. J. 2017, 51, 209–224. [Google Scholar] [CrossRef]
- Elkiran, G.; Nourani, V.; Abba, S.I. Multi-Step Ahead Modelling of River Water Quality Parameters Using Ensemble Artificial Intelligence-Based Approach. J. Hydrol. 2019, 577, 123962. [Google Scholar] [CrossRef]
- Csábrági, A.; Molnár, S.; Tanos, P.; Kovács, J.; Molnár, M.; Szabó, I.; Hatvani, I.G. Estimation of Dissolved Oxygen in Riverine Ecosystems: Comparison of Differently Optimized Neural Networks. Ecol. Eng. 2019, 138, 298–309. [Google Scholar] [CrossRef]
- Kim, S.; Alizamir, M.; Zounemat-Kermani, M.; Kisi, O.; Singh, V.P. Assessing the Biochemical Oxygen Demand Using Neural Networks and Ensemble Tree Approaches in South Korea. J. Environ. Manag. 2020, 270, 110834. [Google Scholar] [CrossRef]
- Liu, H.; Jin, K.; Duan, Z. Air PM2.5 Concentration Multi-Step Forecasting Using a New Hybrid Modeling Method: Comparing Cases for Four Cities in China. Atmos. Pollut. Res. 2019, 10, 1588–1600. [Google Scholar] [CrossRef]
- Shamshirband, S.; Jafari Nodoushan, E.; Adolf, J.E.; Abdul Manaf, A.; Mosavi, A.; Chau, K.-W. Ensemble Models with Uncertainty Analysis for Multi-Day Ahead Forecasting of Chlorophyll a Concentration in Coastal Waters. Eng. Appl. Comput. Fluid Mech. 2019, 13, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Chang, F.J.; Chen, P.A.; Chang, L.C.; Tsai, Y.H. Estimating Spatio-Temporal Dynamics of Stream Total Phosphate Concentration by Soft Computing Techniques. Sci. Total Environ. 2016, 562, 228–236. [Google Scholar] [CrossRef]
- Zhu, S.; Heddam, S.; Wu, S.; Dai, J.; Jia, B. Extreme Learning Machine-Based Prediction of Daily Water Temperature for Rivers. Environ. Earth Sci. 2019, 78, 1–17. [Google Scholar] [CrossRef]
- Pawlowski, A.; Sánchez-Molina, J.A.; Guzmán, J.L.; Rodríguez, F.; Dormido, S. Evaluation of Event-Based Irrigation System Control Scheme for Tomato Crops in Greenhouses. Agric. Water Manag. 2017, 183, 16–25. [Google Scholar] [CrossRef]
- Rajaee, T.; Ebrahimi, H.; Nourani, V. A Review of the Artificial Intelligence Methods in Groundwater Level Modeling. J. Hydrol. 2019, 572, 336–351. [Google Scholar] [CrossRef]
- Fan, Y.; Hu, L.; Wang, H.; Liu, X. Machine Learning Methods for Improved Understanding of a Pumping Test in Heterogeneous Aquifers. Water 2020, 12. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Okuku, C.O.; Njau, E.N. Use of Artificial Neural Networks and Multiple Linear Regression Model for the Prediction of Dissolved Oxygen in Rivers: Case Study of Hydrographic Basin of River Nyando, Kenya. Complexity 2020, 2020. [Google Scholar] [CrossRef]
- Nomquphu, W.; Braune, E.; Mitchell, S. The Changing Water Resources Monitoring Environment in South Africa. S. Afr. J. Sci. 2007, 103, 306–310. [Google Scholar]
- Rivett, U.; Champanis, M.; Wilson-jones, T. Monitoring Drinking Water Quality in South Africa: Designing Information Systems for Local Needs. Water SA 2012, 39, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Walters, C.R.; Somerset, V.S.; Leaner, J.J.; Nel, J.M. Toxic/Hazardous Substances and Environmental Engineering A Review of Mercury Pollution in South Africa: Current Status. J. Environ. Sci. Health Part A 2011, 4529. [Google Scholar] [CrossRef]
- De Villiers, S. The Deteriorating Nutrient Status of the Berg River, South Africa. Water SA 2007, 33, 659–664. [Google Scholar] [CrossRef] [Green Version]
- Onyari, E.K.; Ilunga, F.M. Application of MLP Neural Network and M5P Model Tree in Predicting Streamflow: A Case Study of Luvuvhu Catchment, South Africa. Int. J. Innov. Manag. Technol. 2013, 4. [Google Scholar] [CrossRef]
- Sakala, E.; Novhe, O.; Ravi, V.; Vadapalli, K. Application of Artificial Intelligence (AI) to Predict Mine Water Quality, a Case Study in South Africa. In Proceedings of the Mine Water Association Conference: Technological and Ecological Challenges, International Mine Water Association Annual Conference, Perm, Russia, 15–19 July 2019. [Google Scholar]
- Zubaidi, S.L.; Ortega-martorell, S.; Al-bugharbee, H.; Olier, I.; Hashim, K.S.; Gharghan, S.K.; Kot, P.; Al-khaddar, R. Urban Water Demand Prediction for a City That Su Ff Ers from Climate Change and Population Growth: Gauteng Province Case Study. Water 2020, 12, 1885. [Google Scholar] [CrossRef]
- Chen, Y.; Song, L.; Liu, Y.; Yang, L.; Li, D. A Review of the Artificial Neural Network Models for Water Quality Prediction. Appl. Sci. 2020, 10. [Google Scholar] [CrossRef]
- Yan, D.; Rupp, A.A.; Foltz, P.W. Handbook of Automated Scoring Theory Into Practice; CRC Press: Boca Raton, FL, USA, 2020; Volume 4. [Google Scholar]
- Ahamed, K.I. A Study on Neural Network Architectures. Comp. Eng. Intell. Syst. 2016, 7, 1–7. [Google Scholar]
- Hameed, M.; Sharqi, S.S.; Yaseen, Z.M.; Afan, H.A.; Hussain, A.; Elshafie, A. Application of Artificial Intelligence (AI) Techniques in Water Quality Index Prediction: A Case Study in Tropical Region, Malaysia. Neural Comput. Appl. 2017, 28 (Suppl. S1), 893–905. [Google Scholar] [CrossRef]
- Wei, N.; Li, C.; Peng, X.; Zeng, F.; Lu, X. Conventional Models and Artificial Intelligence-Based Models for Energy Consumption Forecasting: A Review. J. Pet. Sci. Eng. 2019, 181, 106187. [Google Scholar] [CrossRef]
- Najah, A.; El-Shafie, A.; Karim, O.A.; El-Shafie, A.H. Application of Artificial Neural Networks for Water Quality Prediction. Neural Comput. Appl. 2013, 22 (Suppl. 1), 187–201. [Google Scholar] [CrossRef]
- Silva, H.A.N.; Rosato, A.; Altilio, R.; Panella, M. Water Quality Prediction Based on Wavelet Neural Networks and Remote Sensing. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio, Brazil, 8–13 July 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Jaafar, O.; Deo, R.C.; Kisi, O.; Adamowski, J.; Quilty, J.; El-Shafie, A. Stream-Flow Forecasting Using Extreme Learning Machines: A Case Study in a Semi-Arid Region in Iraq. J. Hydrol. 2016, 542, 603–614. [Google Scholar] [CrossRef]
- Khosravi, K.; Mao, L.; Kisi, O.; Yaseen, Z.M.; Shahid, S. Quantifying Hourly Suspended Sediment Load Using Data Mining Models: Case Study of a Glacierized Andean Catchment in Chile. J. Hydrol. 2018, 567, 165–179. [Google Scholar] [CrossRef]
- Huang, C.C.; Fang, H.T.; Ho, H.C.; Jhong, B.C. Interdisciplinary Application of Numerical and Machine-Learning-Based Models to Predict Half-Hourly Suspended Sediment Concentrations during Typhoons. J. Hydrol. 2019, 573, 661–675. [Google Scholar] [CrossRef]
- Zhang, H.; Li, R.; Cai, Z.; Gu, Z.; Heidari, A.A.; Wang, M.; Chen, H.; Chen, M. Advanced Orthogonal Moth Flame Optimization with Broyden–Fletcher–Goldfarb–Shanno Algorithm: Framework and Real-World Problems. Expert Syst. Appl. 2020, 159. [Google Scholar] [CrossRef]
- Xu, Q.; Ye, S.; Liu, W.; Chen, Y.; Chen, Q.; Guo, L. Intelligent Identification of Steam Jet Condensation Regime in Water Pipe Flow System by Wavelet Multiresolution Analysis of Pressure Oscillation and Artificial Neural Network. Appl. Therm. Eng. 2019, 147, 1047–1058. [Google Scholar] [CrossRef]
- Humphrey, G.B.; Maier, H.R.; Wu, W.; Mount, N.J.; Dandy, G.C.; Abrahart, R.J.; Dawson, C.W. Improved Validation Framework and R-Package for Artificial Neural Network Models. Environ. Model. Softw. 2017, 92, 82–106. [Google Scholar] [CrossRef] [Green Version]
- Bidar, B.; Sadeghi, J.; Shahraki, F.; Khalilipour, M.M. Data-Driven Soft Sensor Approach for Online Quality Prediction Using State Dependent Parameter Models. Chemom. Intell. Lab. Syst. 2017, 162, 130–141. [Google Scholar] [CrossRef]
- Cong, Q.; Yu, W. Integrated Soft Sensor with Wavelet Neural Network and Adaptive Weighted Fusion for Water Quality Estimation in Wastewater Treatment Process. Meas. J. Int. Meas. Confed. 2018, 124, 436–446. [Google Scholar] [CrossRef]
- Šiljić Tomić, A.; Antanasijević, D.; Ristić, M.; Perić-Grujić, A.; Pocajt, V. A Linear and Non-Linear Polynomial Neural Network Modeling of Dissolved Oxygen Content in Surface Water: Inter- and Extrapolation Performance with Inputs’ Significance Analysis. Sci. Total Environ. 2018, 610–611, 1038–1046. [Google Scholar] [CrossRef]
- Lim, H.; An, H.; Kim, H.; Lee, J. Prediction of Pollution Loads in the Geum River Upstream Using the Recurrent Neural Network Algorithm. Korean J. Agric. Sci. 2019, 46, 67–78. [Google Scholar]
- Kargar, K.; Samadianfard, S.; Parsa, J.; Nabipour, N.; Shamshirband, S.; Mosavi, A.; Chau, K.W. Estimating Longitudinal Dispersion Coefficient in Natural Streams Using Empirical Models and Machine Learning Algorithms. Eng. Appl. Comput. Fluid Mech. 2020, 14, 311–322. [Google Scholar] [CrossRef]
- Abba, S.I.; Hadi, S.J.; Abdullahi, J. River Water Modelling Prediction Using Multi-Linear Regression, Artificial Neural Network, and Adaptive Neuro-Fuzzy Inference System Techniques. Procedia Comput. Sci. 2017, 120, 75–82. [Google Scholar] [CrossRef]
- Seo, I.W.; Yun, S.H.; Choi, S.Y. Forecasting Water Quality Parameters by ANN Model Using Pre-Processing Technique at the Downstream of Cheongpyeong Dam. Procedia Eng. 2016, 154, 1110–1115. [Google Scholar] [CrossRef] [Green Version]
- Ren, T.; Liu, X.; Niu, J.; Lei, X.; Zhang, Z. Real-Time Water Level Prediction of Cascaded Channels Based on Multilayer Perception and Recurrent Neural Network. J. Hydrol. 2020, 585, 124783. [Google Scholar] [CrossRef]
- Solgi, A.; Pourhaghi, A.; Bahmani, R.; Zarei, H. Improving SVR and ANFIS Performance Using Wavelet Transform and PCA Algorithm for Modeling and Predicting Biochemical Oxygen Demand (BOD). Ecohydrol. Hydrobiol. 2017, 17, 164–175. [Google Scholar] [CrossRef]
- Vlahogianni, E.I.; Golias, J.C.; Karlaftis, M.G. Short-term Traffic Forecasting: Overview of Objectives and Methods. Transp. Rev. 2004, 24, 533–557. [Google Scholar] [CrossRef]
- Isiyaka, H.A.; Mustapha, A.; Juahir, H.; Phil-Eze, P. Water Quality Modelling Using Artificial Neural Network and Multivariate Statistical Techniques. Model. Earth Syst. Environ. 2019, 5, 583–593. [Google Scholar] [CrossRef]
- Ritter, A.; Muñoz-Carpena, R. Performance Evaluation of Hydrological Models: Statistical Significance for Reducing Subjectivity in Goodness-of-Fit Assessments. J. Hydrol. 2013, 480, 33–45. [Google Scholar] [CrossRef]
- Deksissa, T.; Ashton, P.J.; Vanrolleghem, P.A. Control Options for River Water Quality Improvement: A Case Study of TDS and Inorganic Nitrogen in the Crocodile River (South Africa). Water SA 2003, 29, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Cavalcante, Y.L.; Hauser-Davis, R.A.; Saraiva, A.C.F.; Brandão, I.L.S.; Oliveira, T.F.; Silveira, A.M. Metal and Physico-Chemical Variations at a Hydroelectric Reservoir Analyzed by Multivariate Analyses and Artificial Neural Networks: Environmental Management and Policy/Decision-Making Tools. Sci. Total Environ. 2013, 442, 509–514. [Google Scholar] [CrossRef]
- Pasini, A. Artificial Neural Networks for Small Dataset Analysis. J. Thorac. Dis. 2015, 7, 953–960. [Google Scholar] [CrossRef]
- Anmala, J.; Meier, O.W.; Meier, A.J.; Grubbs, S. GIS and Artificial Neural Network–Based Water Quality Model for a Stream Network in the Upper Green River Basin, Kentucky, USA. J. Environ. Eng. 2015, 141, 4014082. [Google Scholar] [CrossRef]
- RadFard, M.; Seif, M.; Ghazizadeh Hashemi, A.H.; Zarei, A.; Saghi, M.H.; Shalyari, N.; Morovati, R.; Heidarinejad, Z.; Samaei, M.R. Protocol for the Estimation of Drinking Water Quality Index (DWQI) in Water Resources: Artificial Neural Network (ANFIS) and Arc-Gis. MethodsX 2019, 6, 1021–1029. [Google Scholar] [CrossRef]
- Cuest Cordoba, G.A.; Tuhovčák, L.; Tauš, M. Using Artificial Neural Network Models to Assess Water Quality in Water Distribution Networks. Procedia Eng. 2014, 70, 399–408. [Google Scholar] [CrossRef] [Green Version]
River | Site | Full Site Description | GPS Coordinate | |
---|---|---|---|---|
Latitude | Longitude | |||
Makhanda Municipality | ||||
Bloukrans | GU | Upper site of the Bloukrans River | 33.31774167 | 26.52194444 |
GM | Middle site of the Bloukrans River | 33.31427500 | 26.55166667 | |
GL | Lower site of the Bloukrans River | 33.31780556 | 26.56833333 | |
GE | Influent site of WWTP of Grahamstown region | 33.31667500 | 26.55750000 | |
GI | Effluent site of WWTP of Grahamstown region | |||
Buffalo City Metropolitan | ||||
Buffalo | BU | Upper site of the Buffalo River | 32.78991389 | 27.36916667 |
BM | Middle site of the Buffalo River | 32.89703333 | 27.39277778 | |
BL | Lower site of the Buffalo River | 32.93447500 | 27.44027778 | |
BE | Influent site of WWTP of King William’s Town region | 32.89969722 | 27.40305556 | |
BI | Effluent site of WWTP of King William’s Town region | |||
Raymond Mhlaba Municipality | ||||
Tyhume | AU | Upper site of the Tyhume River | 32.61067778 | 26.90944444 |
AM | Middle site of the Tyhume River | 32.79636667 | 26.84583333 | |
AL | Lower site of the Tyhume River | 32.82713889 | 26.88833333 | |
AE | Influent site of WWTP of Alice region | 32.79108611 | 26.85000000 | |
AI | Effluent site of WWTP of Alice region |
Sample Area | Temperature (°C) | Chloride (Cl) (mg/L) | Sulphate (SO42-) (mg/L) | Phosphate (PO43-) (mg/L) | pH | Turbidity (NTU) | Electrical Conductivity (EC) (mS/m) | Dissolved Oxygen (DO) (mg/L) |
---|---|---|---|---|---|---|---|---|
AU | 12.77 | 4.00 | 4.00 | 0.06 | 8.08 | 7.32 | 11.10 | 7.43 |
AM | 15.66 | 7.67 | 4.00 | 0.42 | 7.05 | 18.21 | 26.02 | 7.57 |
AL | 14.88 | 4.00 | 4.00 | 0.04 | 9.43 | 12.36 | 40.29 | 7.58 |
AE | 18.38 | 28.00 | 65.34 | 0.04 | 7.16 | 6.57 | 64.89 | 7.22 |
AI | 19.32 | 4.00 | 48.44 | 0.04 | 7.29 | 15.28 | 72.82 | 4.85 |
BU | 17.24 | 180.67 | 9.67 | 0.04 | 7.46 | 18.17 | 50.35 | 7.26 |
BM | 18.22 | 4.00 | 52.50 | 0.30 | 7.71 | 23.27 | 61.74 | 7.02 |
BL | 17.95 | 4.00 | 119.00 | 0.04 | 7.89 | 14.34 | 75.33 | 7.11 |
BE | 19.25 | 4.00 | 64.22 | 0.28 | 7.27 | 23.44 | 85.24 | 6.59 |
BI | 19.50 | 16.00 | 32.84 | 0.13 | 7.27 | 191.00 | 102.88 | 4.77 |
GU | 13.24 | 4.00 | 45.84 | 0.04 | 6.22 | 9.14 | 73.42 | 7.25 |
GM | 15.63 | 69.67 | 127.33 | 0.04 | 7.28 | 30.96 | 230.60 | 6.03 |
GL | 14.75 | 83.33 | 156.50 | 0.55 | 6.41 | 89.82 | 223.50 | 6.27 |
GE | 17.93 | 9.67 | 136.78 | 0.35 | 7.16 | 137.00 | 209.54 | 5.84 |
GI | 21.51 | 4.00 | 63.33 | 0.43 | 7.52 | 206.15 | 226.27 | 4.72 |
Network Name | R2 | MSE | Training Algorithm | Error Function | Hidden Activation | Output Activation |
---|---|---|---|---|---|---|
MLP 4-5-4 | 0.989383 | 39.03087 | BFGS 88 | SOS | Logistic | Logistic |
MLP 4-9-4 | 0.993532 | 39.06589 | BFGS 130 | SOS | Tanh | Exponential |
Sample Area | Sample | Experimental pH Values | Predicted pH Values (MLP 4-5-4) | % Difference | Predicted pH Values (MLP 4-9-4) | % Difference |
---|---|---|---|---|---|---|
AU | Training | 8.080000 | 8.071202 | 0.11 | 8.086230 | 0.08 |
AM | Training | 7.050000 | 7.048911 | 0.02 | 7.097960 | 0.68 |
AL | Training | 9.430000 | 9.330070 | 1.06 | 9.444249 | 0.15 |
AE | Test | 7.160000 | 7.441819 | 3.94 | 7.393835 | 3.27 |
AI | Training | 7.290000 | 7.442833 | 2.10 | 7.351340 | 0.84 |
BU | Training | 7.460000 | 7.399046 | 0.82 | 7.466864 | 0.09 |
BM | Test | 7.710000 | 7.441837 | 3.48 | 7.387560 | 4.18 |
BL | Training | 7.890000 | 7.441830 | 5.68 | 7.621972 | 3.40 |
BE | Training | 7.270000 | 7.442062 | 2.37 | 7.475793 | 2.83 |
BI | Training | 6.270000 | 7.443619 | 18.72 | 7.085941 | 13.01 |
GU | Training | 6.220000 | 6.220000 | 0.00 | 6.221081 | 0.02 |
GM | Validation | 7.280000 | 7.426453 | 2.01 | 7.733750 | 6.23 |
GL | Training | 6.410000 | 6.552220 | 2.22 | 6.384595 | 0.40 |
GE | Validation | 7.160000 | 7.441715 | 3.93 | 7.994136 | 11.65 |
GI | Training | 7.520000 | 7.448825 | 0.95 | 7.622527 | 1.36 |
Sample Area | Sample | Experimental EC | Predicted EC MLP 4-5-4 | % Difference | Predicted EC MLP 4-9-4 | % Difference |
---|---|---|---|---|---|---|
AU | Training | 11.1000 | 12.7558 | 14.92 | 11.1286 | 0.26 |
AM | Training | 26.0200 | 27.4272 | 5.41 | 41.8489 | 60.83 |
AL | Training | 40.2900 | 11.9350 | 70.38 | 15.6602 | 61.13 |
AE | Test | 64.8900 | 62.7317 | 3.33 | 61.9240 | 4.57 |
AI | Training | 72.8200 | 86.7355 | 19.11 | 75.6735 | 3.92 |
BU | Training | 50.3500 | 60.1378 | 19.44 | 51.4812 | 2.25 |
BM | Test | 61.7400 | 62.7808 | 1.69 | 59.0714 | 4.32 |
BL | Training | 75.3300 | 62.7223 | 16.74 | 81.7645 | 8.54 |
BE | Training | 85.2400 | 67.6846 | 20.60 | 66.1918 | 22.35 |
BI | Training | 102.8800 | 108.4363 | 5.40 | 101.2073 | 1.63 |
GU | Training | 73.4200 | 73.9280 | 0.69 | 73.0470 | 0.51 |
GM | Validation | 230.6000 | 62.9033 | 72.72 | 93.0826 | 59.63 |
GL | Training | 223.5000 | 226.2581 | 1.23 | 223.6889 | 0.08 |
GE | Validation | 209.5400 | 62.7630 | 70.05 | 119.5078 | 42.97 |
GI | Training | 226.2700 | 214.8109 | 5.06 | 226.2055 | 0.03 |
Sample Area | Sample | Experimental Turbidity | Predicted Turbidity MLP 4-5-4 | % Difference | Predicted Turbidity MLP 4-9-4 | %Difference |
---|---|---|---|---|---|---|
AU | Training | 7.3200 | 7.3200 | 0.00 | 7.4476 | 1.74 |
AM | Training | 18.2100 | 7.5026 | 58.80 | 10.3960 | 42.91 |
AL | Training | 12.3600 | 7.3200 | 40.78 | 8.0410 | 34.94 |
AE | Test | 6.5700 | 17.3447 | 164.00 | 16.5765 | 152.31 |
AI | Training | 151.200 | 147.5284 | 2.43 | 150.3962 | 0.53 |
BU | Training | 18.1700 | 15.3185 | 15.69 | 13.9046 | 23.47 |
BM | Test | 23.2700 | 17.4291 | 25.10 | 16.9588 | 27.12 |
BL | Training | 14.3400 | 17.3287 | 20.84 | 25.6735 | 79.03 |
BE | Training | 23.4400 | 29.5244 | 25.96 | 21.8990 | 6.57 |
BI | Training | 191.0000 | 201.9652 | 5.74 | 192.3942 | 0.73 |
GU | Training | 9.1400 | 7.3200 | 19.91 | 8.2733 | 9.48 |
GM | Validation | 3.9600 | 17.2437 | 335.45 | 32.7986 | 728.25 |
GL | Training | 89.8200 | 87.0369 | 3.10 | 89.3686 | 0.50 |
GE | Validation | 137.5000 | 17.3304 | 87.40 | 55.9932 | 59.28 |
GI | Training | 206.1500 | 206.1500 | 0.00 | 205.9516 | 0.10 |
Sample Area | Sample | Experimental DO | Predicted DO MLP 4-5-4 | % Difference | Predicted DO MLP 4-9-4 | % Difference |
---|---|---|---|---|---|---|
AU | Training | 7.430000 | 7.580000 | 2.02 | 7.420167 | 0.13 |
AM | Training | 7.570000 | 7.570000 | 0.00 | 7.602289 | 0.43 |
AL | Training | 7.580000 | 7.580000 | 0.00 | 7.596899 | 0.22 |
AE | Test | 7.220000 | 7.137646 | 1.14 | 6.746576 | 6.56 |
AI | Training | 4.850000 | 4.907170 | 1.18 | 4.722991 | 2.62 |
BU | Training | 7.260000 | 7.261512 | 0.02 | 7.239937 | 0.28 |
BM | Test | 7.020000 | 7.133850 | 1.62 | 7.021295 | 0.02 |
BL | Training | 7.110000 | 7.138362 | 0.40 | 7.022525 | 1.23 |
BE | Training | 6.590000 | 6.638667 | 0.74 | 6.598599 | 0.13 |
BI | Training | 4.770000 | 4.726695 | 0.91 | 4.721815 | 1.01 |
GU | Training | 7.250000 | 7.580000 | 4.55 | 7.251133 | 0.02 |
GM | Validation | 6.030000 | 7.142718 | 18.45 | 6.927154 | 14.88 |
GL | Training | 6.270000 | 6.214789 | 0.88 | 6.331988 | 0.99 |
GE | Validation | 5.840000 | 7.138329 | 22.23 | 6.721605 | 15.10 |
GI | Training | 4.720000 | 4.720000 | 0.00 | 4.769756 | 1.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setshedi, K.J.; Mutingwende, N.; Ngqwala, N.P. The Use of Artificial Neural Networks to Predict the Physicochemical Characteristics of Water Quality in Three District Municipalities, Eastern Cape Province, South Africa. Int. J. Environ. Res. Public Health 2021, 18, 5248. https://doi.org/10.3390/ijerph18105248
Setshedi KJ, Mutingwende N, Ngqwala NP. The Use of Artificial Neural Networks to Predict the Physicochemical Characteristics of Water Quality in Three District Municipalities, Eastern Cape Province, South Africa. International Journal of Environmental Research and Public Health. 2021; 18(10):5248. https://doi.org/10.3390/ijerph18105248
Chicago/Turabian StyleSetshedi, Koketso J., Nhamo Mutingwende, and Nosiphiwe P. Ngqwala. 2021. "The Use of Artificial Neural Networks to Predict the Physicochemical Characteristics of Water Quality in Three District Municipalities, Eastern Cape Province, South Africa" International Journal of Environmental Research and Public Health 18, no. 10: 5248. https://doi.org/10.3390/ijerph18105248
APA StyleSetshedi, K. J., Mutingwende, N., & Ngqwala, N. P. (2021). The Use of Artificial Neural Networks to Predict the Physicochemical Characteristics of Water Quality in Three District Municipalities, Eastern Cape Province, South Africa. International Journal of Environmental Research and Public Health, 18(10), 5248. https://doi.org/10.3390/ijerph18105248