Influences of Differing Menarche Status on Motor Capabilities of Girls, 13 To 16 Years: A Two-Year Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Research Group
2.3. Ethical Approval
2.4. Measuring Instruments
Age of Menarche
2.5. Motor Measurements
2.6. Body Composition
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study, 2013. Lancet 2015, 386, 743–800. [Google Scholar]
- Mendelsohn, M.E.; Karas, R.H. Molecular and cellular basis of cardiovascular gender differences. Science 2005, 308, 1583–1587. [Google Scholar] [CrossRef] [Green Version]
- Osiński, W. Relation between motor abilities and body features and components in children and adolescents from metropolitan populations. Phys. Educ. Sport 1988, 4, 11–27. [Google Scholar]
- Saczuk, J.; Popławska, H.; Wilczewski, A. Biological age and the physical fitness of girls and boys. Phys. Educ. Sport 1999, 1, 3–18. [Google Scholar]
- Gill, D.; Sheehan, N.A.; Wielscher, M.; Shrine, N.; Amaral, A.F.S.; Thompson, J.R.; Granell, R.; Leynaert, B.; Real, F.G.; Hall, I.P.; et al. Age at menarche and lung function: A Mendelian randomization study. Eur. J. Epidemiol. 2017, 32, 701–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, D.; Brewer, C.F.; Del Greco, M.F.; Sivakumaran, P.; Bowden, J.; Sheehan, N.A.; Minelli, C. Age at menarche and adult body mass index: A Mendelian randomization study. Int. J. Obes. 2018, 42, 1574–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce, M.B.; Leon, D.A. Age at menarche and adult BMI in the Aberdeen children of the 1950s cohort study. Am. J. Clin. Nutr. 2005, 82, 733–739. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Zhang, C.; Hunter, D.J.; Hankinson, S.E.; Louis, G.M.B.; Hediger, M.L.; Hu, F.B. Age at Menarche and Risk of Type 2 Diabetes: Results From 2 Large Prospective Cohort Studies. Am. J. Epidemiol. 2009, 171, 334–344. [Google Scholar] [CrossRef] [Green Version]
- Remsberg, K.E.; Demerath, E.W.; Schubert, C.M.; Chumlea, W.C.; Sun, S.S.; Siervogel, R.M. Early menarche and the development of cardiovascular disease risk factors in adolescent girls: The fels longitudinal study. J. Clin. Endocrinol. Metab. 2005, 90, 2718–2724. [Google Scholar] [CrossRef] [PubMed]
- Balyi, I.; Way, R. Canadian Sports for Life: The Role of Monitoring Growth in Long-Term Athlete Development; Canadian Sports Centre: Calgary, AB, Canada, 2010. [Google Scholar]
- Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation and Physical Activity; Human Kinetics: Champaign, IL, USA, 2004; 712p. [Google Scholar]
- Gluckman, P.D.; Handson, M.A. Evolution, development and timing of puberty. Trends Endocr. Meta 2006, 17, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Biro, F.M.; Pajak, A.; Wolff, M.S.; Pinney, S.M.; Windham, G.C.; Galvez, M.P.; Greenspan, L.C.; Kushi, L.H.; Teitelbaum, S. Age of menarche in a longitudinal US cohort. J. Pediatr. Adolesc. Gynecol. 2018, 31, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Karapanou, O.; Papadimitriou, A. Determinants of menarche. Reprod. Biol. Endocrinol. 2010, 8, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Kaprio, J.; Rimpelä, A.; Winter, T.; Viken, R.J.; Rimpelä, M.; Rose, M.J. Common genetic influences on BMI and age at menarche. Hum. Biol. 1995, 67, 739–753. [Google Scholar] [PubMed]
- Salces, I.; Rebato, E.M.; Susanne, C.; San Martin, L.; Rosique, J. Familial resemblance for the age at menarche in Basque population. An. Hum. Biol. 2001, 28, 143–156. [Google Scholar]
- Reka, S.; Samraj, P. Differences between menstrual cycle phases on selected motor fitness components among college women kho-kho players. IJPESH 2018, 5, 76–77. [Google Scholar]
- Do Bonfim, B.M.A.; Bonuzzi, G.M.G.; Domingues, V.L.; Reiser, F.C. The influence of maturational and morphological status pre- and post-menarche on the 100-m freestyle swimming performance of competitive teenagers. Motriz Rio Claro 2020, 26, 1–6. [Google Scholar]
- Erlandson, M.C.; Sherar, L.B.; Mirwald, R.L.; Maffulli, N.; Baxter-Jones, A.D.G. Growth and Maturation of Adolescent Female Gymnasts, Swimmers, and Tennis Players. Med. Sci. Sport Exerc. 2008, 40, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Bronikowski, M.; Bronikowska, M. Motor fitness in relation to the maturational process of pubertal boys and girls. Pap. Anthropol. 2008, 7, 28–37. [Google Scholar]
- Baquet, C.; Twisk, J.W.R.; Kemper, E.; van Praagh, E.; Berthoin, S. Longitudinal follow-up of fitness during childhood: Interaction with physical activity. Am. J. Hum. Biol. 2006, 18, 51–58. [Google Scholar] [CrossRef]
- Van Den Berg, L.; Coetzee, B.; Pienaar, A.E. The influence of biological maturity on physical and motor performance talent identification determinants of u-14 provincial girl tennis players. Afr. J. Phys. Health Educ. Recreat. Dance 2006, 18, 510–515. [Google Scholar]
- Des te Croix, M. Advances in paediatric strength assessment: Changing our perspective on strength development. J. Sports Sci. Med. 2007, 6, 292–304. [Google Scholar]
- Pienaar, A.E. Motor Development, Growth, Motor Assessment and the Intervention Thereof: A Textbook for Students in Kinderkinetics, 10th ed.; Ivyline Printers: Potchefstroom, South Africa, 2018; 682p. [Google Scholar]
- Anderson, S. Collins English Dictionary: Complete & Unabridged, 10th ed.; Harper Collins: London, UK, 2009; 2336p. [Google Scholar]
- Freitas, D.L.; Lausen, B.; Maia, J.A.; Lefevre, J.; Gouveia, E.R.; Thomis, M.; Malina, R.M. Skeletal maturation, fundamental motor capabilities and motor coordination in children 7–10 years. J. Sports Sci. 2015, 33, 924–934. [Google Scholar] [CrossRef] [Green Version]
- Van Gent, M.M. Anthropometrical, Physical and Motor Fitness Characteristics of 10- to 15-Year Old Girls in the Northwest Province. Master’s Thesis, NWU, Potchefstroom, South Africa, 2001. [Google Scholar]
- Rodrıguez, G.; Moreno, L.A.; Blay, M.G.; Blay, V.A.; Garagorri, J.M.; Sarrı, A.; Bueno, M. Body composition in adolescents: Measurements and metabolic aspects. Int. J. Obes. 2004, 28, S54–S58. [Google Scholar] [CrossRef] [Green Version]
- Garnier, D.; Simondon, K.B.; Benefice, E. Longitudinal estimates of pubertal timing in Senegalese adolescent girls. Am. J. Hum. Biol. 2005, 17, 718–730. [Google Scholar] [CrossRef]
- Fredriks, A.M.; van Buuren, S.; van Heel, W.J.M.; Dijkman-Neerincx, R.H.M.; Verloove, S.P.; Wit, J.M. Nationwide age reference for sitting height, leg length, and sitting height/height ratio, and their diagnostic value for disproportionate growth disorders. Arch. Dis. Child. 2005, 90, 807–812. [Google Scholar] [CrossRef] [Green Version]
- Deborah, C.; Russel, V. ABC of adolescence: Adolescent development. BMJ 2005, 330, 301–304. [Google Scholar]
- Beunen, G.P.; Ostyn, M.; Simons, J.; Renson, R.; Claessens, A.; Eynde, V.; Van’t Hof, M.A. Development and tracking in fitness components: Leuven longtudinal study on lifestyle, fitness and health. Int. J. Sport Med. 1997, 18, S171–S178. [Google Scholar] [CrossRef] [Green Version]
- Prahl-Anderson, B.; Kowalski, C.J.; Heydendael, P. A Mix Longitudinal Interdisciplinary Study of Growth and Development; Academic Press: New York, NY, USA, 1994. [Google Scholar]
- Kemper, H.C.G.; Snel, J.; van Mechelen, W. Amsterdam growth and health longitudinal study. J. Sci. Med. Sport 2004, 47, 1–198. [Google Scholar]
- Lee, T.S.; Chao, T.; Tang, R.B.; Hsieh, C.C.; Chen, S.J.; Ho, L.T. A longitudinal study of growth in schoolchildren in one Taipei district II: Sitting height, arm span, body mass index and skinfold thickness. Chin. Med. J. 2005, 68, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Volver, A.; Viru, A.; Viru, M. A two-year longitudinal study of sexual maturation effects on motor abilities of girls. Med. Della Sport. 2007, 60, 57–63. [Google Scholar]
- Henneberg, M.; Louw, G.J. Average menarcheal age of higher socioeconomic status urban Cape coloured girls assessed by means of status quo and recall methods. Am. J. Phys. Anthropol. 1995, 96, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Travill, A.L. Growth and physical fitness of socially disadvantage boys and girls aged 8–17 years living in the Western Cape, South Africa. Afr. J. Phys. Health Educ. Recreat. Dance 2007, 13, 279–293. [Google Scholar]
- Monyeki, K.D.; Koppes, L.L.J.; Kemper, H.C.G.; Monyeki, K.D.; Toriola, A.L.; E Pienaar, A.; Twisk, J.W.R. Body composition and physical fitness of undernourished South African rural primary school children. Eur. J. Clin. Nutr. 2006, 59, 877–883. [Google Scholar] [CrossRef] [Green Version]
- Richter, L.; Norris, S.; Yack, D.; Cameron, N. Cohort profile: Mandela’s children. The 1990 birth to twenty study in South Africa. Int. J. Epidemiol. 2007, 36, 504–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durand-Bush, N.; Salmela, J.H. The development and maintenance of expert athletic performance: Perceptions of world and Olympic champions. J. Appl. Sport Psychol. 2002, 14, 154–171. [Google Scholar] [CrossRef]
- Little, N.G.; Day, J.A.P.; Steinke, L. Relationship of physical performance to maturation in perimenarchal girls. Am. J. Hum. Biol. 1997, 9, 163–171. [Google Scholar] [CrossRef]
- Wang, Z.; Dang, S.; Yuan, X.; Li, Q.; Hong, Y. Correlation of body mass index levels with menarche in adolescent girls in Shaanxi, China: A cross sectional study. BMC Women’s Health 2016, 16, 61. [Google Scholar] [CrossRef]
- Australian Sport Commission. Sport Search Program; ASC: Canberra, NSW, Australia, 1996. [Google Scholar]
- Gerber, B.P.; Pienaar, A.E.; Kruger, A. Interrelations between anthropometric and fitness changes during mid-adolescence in boys: A 2-year longitudinal study. Am. J. Hum. Biol. 2014, 26, 617–626. [Google Scholar] [CrossRef]
- Steward, A.D.; Marfell-Jones, M.; Olds, T.; de Ridder, H. International Standards for Anthropometric Assessment; International Society for Advancement of Kinanthropometry (ISAK): Potchefstroom, South Africa, 2011. [Google Scholar]
- Statsoft. Statistica for Windows: General Conventions and Statistics; Statsoft: Tulsa, OK, USA, 2017. [Google Scholar]
- Cohen, J.A. Power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Pauole, K.; Madole, K.; Garhammer, J.; Lacourse, M.; Rozenek, R. Reliability and validity of the t-test as a measure of agility, leg power, and leg speed in college-aged men and women. J. Strength Cond. Res. 2000, 14, 443–450. [Google Scholar]
- Aberberga-Augskalne, L.; Kemper, H.C.G. Longitudinal relationship between cardiovascular functioning and peak height velocity during exercise in 7- to 16-year-old boys and girls. Hum. Mov. Sci. 2007, 8, 5–11. [Google Scholar]
- Rogol, D.R.; Roemmich, J.N.; Clark, P.A. Growth at Puberty. J. Adolesc. Health 2002, 31, 192–200. [Google Scholar] [CrossRef]
- Kaplowitz, P.B.; Slora, E.J.; Wasserman, R.C.; Pedlow, S.E.; Herman-Giddens, M.E. Earlier onset of puberty in girls: Relation to increased body mass index and race. Paediatrics 2001, 108, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Little, T.; Williams, A.G. Specificity of acceleration, maximum speed, and agility in professional soccer players. J. Strength Cond. Res. 2005, 19, 76–78. [Google Scholar]
- Davis, B.; Bull, R.; Roscoe, J.; Roscoe, D. Physical Education and the Study of Sport, 3rd ed.; Mosby: London, UK, 1997. [Google Scholar]
Year 1 (T1) | Year 2 (T2) | Year 3 (T3) | ||||
---|---|---|---|---|---|---|
N | Mean Age ± SD | N | Mean Age ± SD | N | Mean Age ± SD | |
Group | 58 | (T1) 13.51 ± 3.5 | 58 | (T2) 14.51 ± 3.51 | 58 | (T3) 15.51 ± 3.51 |
Pre-menarche | 13 | (T1) 13.52 ± 3.58 | 13 | (T2) 14.52 ± 3.58 | 13 | (T3) 15.52 ± 3.58 |
Post-menarche | 45 | (T1) 13.51 ± 3.53 | 45 | (T2) 14.51 ± 3.53 | 45 | (T3) 15.51 ± 3.53 |
Pre | Post | Difference | p-Value | d-Value | |
---|---|---|---|---|---|
T1 (Grade 8) | |||||
BMI ∆ | 19.59 + 3.50 | 21.79 + 3.73 | 2.2 | 0.06 ► | 0.60 ## |
T2 (Grade 9) | |||||
Fat % | 21.02 ± 7.62 | 25.84 ± 6.45 | 4.82 | 0.02 * | 0.68 ## |
Muscle % | 34.90 ± 2.63 | 33.38 ± 2.33 | 1.25 | −2.02 | 0.61 ## |
BMI | 21.02 ± 4.07 | 22.36 ± 3.36 | 1.34 | 0.23 | 0.35 # |
T3 (Grade 10) | |||||
Fat % | 26.26 ± 10.01 | 28.97 ± 7.54 | 2.71 | 0.29 | 0.31 # |
Muscle % | 40.24 ± 5.68 | 38.98 ± 4.25 | 1.26 | 0.39 | 0.25 # |
BMI | 21.65 ± 3.78 | 22.49 ± 2.91 | 0.84 | 0.39 | 0.25 # |
Pre-Menarche (n = 13) | Post-Menarche (n = 45) | Significance of Differences | |||||||
---|---|---|---|---|---|---|---|---|---|
TP | M ± SD | Min | Max | M ± SD | Min | Max | Diff | p-Value | d-Value |
Explosive upper body strength (EUBS) (m) (Maturity group * Time F = 2.65; p = 0.11) | |||||||||
T1 | 4.65 ± 0.83 | 3.1 | 6.18 | 5.24 ± 0.63 | 4.05 | 6.72 | 0.59 | 0.01 * | 0.80 ### |
T2 | 5.42 ± 0.97 | 4.2 | 7.2 | 5.58 ± 0.57 | 4.5 | 7 | 0.12 | 0.58 | 0.15 |
T3 | 5.34 ± 0.80 | 4.04 | 6.73 | 5.60 ± 0.63 | 4.2 | 7.1 | 0.26 | 0.23 | 0.36 # |
Explosive leg strength (ELS) (cm) (Maturity group * Time F = 0.02; p = 0.87) | |||||||||
T1 | 32.57 ± 4.16 | 26 | 39 | 31.23 ± 5.77 | 18.5 | 45 | 1.34 | 0.43 | 0.26 # |
T2 | 29.80 ± 8.60 | 19 | 42.5 | 29.13 ± 7.96 | 16.5 | 51.5 | 0.67 | 0.79 | 0.08 |
T3 | 31.43 ± 6.98 | 21 | 41.5 | 33.97 ± 6.06 | 22 | 48.2 | 2.54 | 0.2 | 0.38 # |
Agility (s) (Maturity group * Time F = 0.06; p = 0.80) | |||||||||
T1 | 20.46 ± 1.22 | 18.57 | 22.43 | 20.72 ± 1.27 | 18.02 | 24.88 | 0.26 | 0.52 | 0.20 # |
T2 | 19.23 ± 1.35 | 17.87 | 22.91 | 19.23 ± 1.86 | 16.37 | 24.71 | 0 | 0.99 | 0 |
T3 | 20.53 ± 1.31 | 18.24 | 22.32 | 20.62 ± 1.28 | 18.84 | 24.27 | 0.09 | 0.83 | 0.06 |
Speed (0–10 m) (s) (Maturity group * Time F = 0.53; p = 0.47) | |||||||||
T1 | 2.18 ± 0.15 | 1.92 | 2.45 | 2.13 ± 0.14 | 1.9 | 2.54 | 0.05 | 0.3 | 0.34 # |
T2 | 3.67 ± 0.62 | 1.9 | 4.28 | 3.50 ± 0.59 | 1.78 | 4.34 | 0.16 | 0.42 | 0.28 # |
T3 | 2.13 ± 0.15 | 1.88 | 2.39 | 2.12 ± 0.11 | 1.9 | 2.41 | 0.01 | 0.79 | 0.07 |
Speed (0–40 m) (s) (Maturity group * Time F = 0.04; p = 0.84) | |||||||||
T1 | 7.12 ± 0.61 | 6.17 | 8.39 | 6.95 ± 0.64 | 5.81 | 8.9 | 0.17 | 0.39 | 0.27 # |
T2 | 6.88 ± 0.69 | 5.87 | 8.04 | 6.74 ± 0.63 | 5.67 | 8.61 | 0.14 | 0.5 | 0.21 # |
T3 | 6.75 ± 0.70 | 5.84 | 8.15 | 6.80 ± 0.63 | 6 | 8.59 | 0.05 | 0.82 | 0.07 |
Hand-eye coordination (HEC) (n) (Maturity group * Time F = 0.41; p = 0.52) | |||||||||
T1 | 4.84 ± 4.45 | 0 | 14 | 5.60 ± 4.08 | 0 | 15 | 0.76 | 0.56 | 0.17 |
T2 | 6.15 ± 4.68 | 0 | 14 | 8.06 ± 5.02 | 0 | 20 | 1.91 | 0.22 | 0.39 # |
T3 | 5.61 ± 4.53 | 0 | 12 | 5.46 ± 4.02 | 0 | 16 | 0.15 | 0.88 | 0.04 |
T1–T2 | T2–T3 | T1–T3 | ||||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | |
Explosive upper body strength | 0.81 * | 0.34 * | −0.12 | 0.02 | 0.69 * | 0.36 * |
Explosive leg strength | −2.77 | −1.9 | 1.63 | 4.75 * | −1.14 | 2.85 * |
Agility | −1.23 * | −1.38 * | 1.30 * | 1.24 * | 0.07 | −0.14 |
Speed (1–10 m) | 1.42 * | 1.36 * | −1.45 * | −1.38 * | −0.03 | −0.02 |
Speed (0–40 m) | −0.23 * | −0.17 * | −0.04 | 0 | −0.27 * | −0.17 * |
Hand-eye coordination | 1.31 | 2.46 * | −0.54 | −2.64 * | 0.77 | −0.18 |
Variable | Interaction Effect |
---|---|
Explosive upper body strength | F (2.112) = 5.9670, p = 0.00345 |
Hand-eye coordination | F (2.112) = 2.2069, p = 0.11480 |
Vertical jump | F (2.108) = 2.7179, p = 0.06986 |
Agility | F (2.98) = 0.12702, p = 0.88086 |
Speed 0–10 m | F (2.92) = 0.10077, p = 0.90424 |
Speed 0– 40 m | F (2.100) = 0.54467, p = 0.58174 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerber, B.; Pienaar, A.E.; Kruger, A. Influences of Differing Menarche Status on Motor Capabilities of Girls, 13 To 16 Years: A Two-Year Follow-Up Study. Int. J. Environ. Res. Public Health 2021, 18, 5539. https://doi.org/10.3390/ijerph18115539
Gerber B, Pienaar AE, Kruger A. Influences of Differing Menarche Status on Motor Capabilities of Girls, 13 To 16 Years: A Two-Year Follow-Up Study. International Journal of Environmental Research and Public Health. 2021; 18(11):5539. https://doi.org/10.3390/ijerph18115539
Chicago/Turabian StyleGerber, Barry, Anita E. Pienaar, and Ankebe Kruger. 2021. "Influences of Differing Menarche Status on Motor Capabilities of Girls, 13 To 16 Years: A Two-Year Follow-Up Study" International Journal of Environmental Research and Public Health 18, no. 11: 5539. https://doi.org/10.3390/ijerph18115539
APA StyleGerber, B., Pienaar, A. E., & Kruger, A. (2021). Influences of Differing Menarche Status on Motor Capabilities of Girls, 13 To 16 Years: A Two-Year Follow-Up Study. International Journal of Environmental Research and Public Health, 18(11), 5539. https://doi.org/10.3390/ijerph18115539