Divisive Faultlines and Knowledge Search in Technological Innovation Network: An Empirical Study of Global Biopharmaceutical Firms
Abstract
:1. Introduction
2. Literature Review
2.1. Relevant Research on Technological Innovation Network and Knowledge Search
2.2. Related Research on Divisive Faultlines
2.3. Related Research on Structural Holes
3. Research Hypotheses
3.1. The Impact of Divisive Faultlines on the Depth of Knowledge Search
3.2. The Impact of Divisive Faultlines on the Breadth of Knowledge Search
3.3. The Moderating Effect of Structural Holes
4. Research Design
4.1. Data Source and Sample
4.2. Variable Definitions
4.2.1. Dependent Variable
4.2.2. Independent Variable
4.2.3. Moderator Variable
4.2.4. Control Variables
4.3. Empirical Model
5. Empirical Results
5.1. Descriptive Statistics and Relevance Analysis
5.2. Multicollinearity Test
5.3. Regression Analysis
5.3.1. The Impact of Divisive Faultlines on Knowledge Search in Technological Innovation Network
5.3.2. The Moderating Effect of Structural Holes
5.4. Robustness Test
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kinch, M.S.; Kraft, Z.; Schwartz, T. Sources of innovation for new medicines: Questions of sustainability. Drug Discov. Today 2021, 26, 240–247. [Google Scholar] [CrossRef]
- Khan, F.U.; Khan, F.U.; Hayat, K.; Ahmad, T.; Khan, A.; Chang, J.; Malik, U.R.; Khan, Z.; Lambojon, K.; Fang, Y. Knowledge, attitude, and practice on antibiotics and its resistance: A two-phase mixed-methods online study among Pakistani community pharmacists to promote rational antibiotic use. Int. J. Environ. Res. Public Health 2021, 18, 1320. [Google Scholar] [CrossRef]
- Hyop, L.J.; Jaewon, K.; Hwan, H.B. Creation of system dynamics in an uncertain and complex market: The case of Korea’s evolving biopharmaceutical industry. Asian J. Technol. Innov. 2019, 8, 180–207. [Google Scholar] [CrossRef]
- Lalor, F.; Fitzpatrick, J.; Sage, C.; Byrne, E. Sustainability in the biopharmaceutical industry: Seeking a holistic perspective. Biotechnol. Adv. 2019, 37, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.D.; Nanda, V.K.; Park, H.D. Technology spillovers and capital gains in corporate venture capital investments: Evidence from the biopharmaceutical industry. Ventur. Cap. 2021, 23, 129–155. [Google Scholar] [CrossRef]
- Lavie, D.; Haunschild, P.R.; Khanna, P. Organizational differences, relational mechanisms, and alliance performance. Strateg. Manag. J. 2012, 33, 1453–1479. [Google Scholar] [CrossRef]
- Banerjee, T.; Siebert, R. Dynamic impact of uncertainty on R&D cooperation formation and research performance: Evidence from the biopharmaceutical industry. Res. Policy 2017, 46, 1255–1271. [Google Scholar] [CrossRef]
- Rojas, M.G.A.; Solis, E.R.R.; Zhu, J.J. Innovation and network multiplexity: R&D and the concurrent effects of two collaboration networks in an emerging economy. Res. Policy 2018, 47, 1111–1124. [Google Scholar] [CrossRef]
- Tatarynowicz, A.; Sytch, M.; Gulati, R. Environmental demands and the emergence of social structure: Technological dynamism and interorganizational network forms. Adm. Sci. Q. 2016, 61, 52–86. [Google Scholar] [CrossRef] [Green Version]
- Dooley, L.; O’Sullivan, D. Managing within distributed innovation networks. Int. J. Innov. Manag. 2007, 11, 397–416. [Google Scholar] [CrossRef]
- Su, Y.-S.; Vanhaverbeke, W. How do different types of interorganizational ties matter in technological exploration? Manag. Decis. 2019, 57, 2148–2176. [Google Scholar] [CrossRef]
- Balachandran, S.; Hernandez, E. Networks and innovation: Accounting for structural and institutional sources of recombination in brokerage triads. Organ. Sci. 2018, 29, 80–99. [Google Scholar] [CrossRef]
- Dimasi, J.A. Risks in new drug development: Approval success rates for investigational drugs. Clin. Pharmacol. Ther. 2001, 69, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Das, T.K.; He, I.Y. Entrepreneurial firms in search of established partners: Review and recommendations. Int. J. Entrep. Behav. R. 2006, 12, 114–143. [Google Scholar] [CrossRef] [Green Version]
- Gulati, R.; Sytch, M.; Tatarynowicz, A. The rise and fall of small worlds: Exploring the dynamics of social structure. Organ. Sci. 2012, 23, 449–471. [Google Scholar] [CrossRef] [Green Version]
- Jacob, J.; Duysters, G. Alliance network configurations and the co-evolution of firms’ technology profiles: An analysis of the biopharmaceutical industry. Technol. Forecast. Soc. Chang. 2017, 120, 90–102. [Google Scholar] [CrossRef]
- Heidl, R.A.; Steensma, H.K.; Phelps, C. Divisive faultlines and the unplanned dissolutions of multipartner alliances. Organ. Sci. 2014, 25, 1351–1371. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Xinghua, D.; Long, C. Divisive faultlines and knowledge sharing in technology innovation network: The moderating effect of network position and knowledge power. Sci. Res. Manag. 2018, 39, 59–67. [Google Scholar] [CrossRef]
- Yu-bing, H.; Ying-chun, Z. A study on the impact of network embeddedness on industry-university-research institute knowledge collaboration performance. Stud. Sci. Sci. 2017, 35, 1396–1408. [Google Scholar] [CrossRef]
- Halevy, N.; Halali, E.; Zlatev, J.J. Brokerage and brokering: An integrative review and organizing framework for third party influence. Acad. Manag. Ann. 2019, 13, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Anderson, N.; Potočnik, K.; Zhou, J. Innovation and Creativity in Organizations A State-of-the-Science Review, Prospective Commentary, and Guiding Framework. J. Manag. 2014, 40, 1297–1333. [Google Scholar] [CrossRef] [Green Version]
- Freeman, C. Networks of innovators: A synthesis of research issues. Res. Policy 1991, 20, 499–514. [Google Scholar] [CrossRef]
- Jianbo, W.; Xin, C.; Jingying, Z. Mechanism of “Liquid State” of emerging technology innovation network based on case analysis of coastal cities. J. Coast. Res. 2020, 104, 223–228. [Google Scholar] [CrossRef]
- Tippmann, E.; Scott, P.S.; Mangematin, V. Problem solving in MNCs: How local and global solutions are (and are not) created. J. Int. Bus. Stud. 2012, 43, 746–771. [Google Scholar] [CrossRef] [Green Version]
- Rosenkopf, L.; Nerkar, A. Beyond local search: Boundary-spanning, exploration, and impact in the optical disk industry. Strateg. Manag. J. 2001, 22, 287–306. [Google Scholar] [CrossRef]
- Laursen, K.; Salter, A. Open for innovation: The role of openness in explaining innovation performance among U.K. manufacturing firms. Strateg. Manag. J. 2006, 27, 131–150. [Google Scholar] [CrossRef]
- Jun, G.; Jianzhong, X.; Yan, L. Impacts of boundary-spanning search, network routines and ambidextrous competence on innovation performance. Manag. Rev. 2019, 31, 61–72. [Google Scholar] [CrossRef]
- Katila, R.; Ahuja, G. Something old, something new: A longitudinal study of search behavior and new product introduction. Acad. Manag. J. 2002, 45, 1183–1194. [Google Scholar] [CrossRef]
- Zhengyun, R.; Jinlian, L.; Jingxian, G. The innovation dilemma breakthrough of new ventures: Ambidexterity of external search and its matching with enterprise’s knowledge base. Nankai Bus. Rev. 2017, 20, 155–164. [Google Scholar]
- Terjesen, S.; Patel, P.C. In search of process innovations: The role of search depth, search breadth, and the industry environment. J. Manag. 2017, 43, 1421–1446. [Google Scholar] [CrossRef]
- Wang, C.; Rodan, S.; Fruin, M.; Xu, X. Knowledge networks, collaboration networks, and exploratory innovation. Acad. Manag. J. 2014, 57, 484–514. [Google Scholar] [CrossRef]
- Kumar, P.; Zaheer, A. Ego-network stability and innovation in alliances. Acad. Manag. J. 2019, 62, 691–716. [Google Scholar] [CrossRef]
- Xing-hua, D.; Long, C.; Long, W. Impact of technological innovation network divisive faultlines on subgroup polarization: Based on network embeddedness perspective. Stud. Sci. Sci. 2016, 34, 781–792. [Google Scholar] [CrossRef]
- Lau, D.C.; Murnighan, J.K. Demographic diversity and faultlines: The compositional dynamics of organizational groups. Acad. Manag. Rev. 1998, 23, 325–340. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Gupta, A.K.; Hallen, B.L. The conditional importance of prior ties: A group-level analysis of venture capital syndication. Acad. Manag. J. 2017, 60, 1360–1386. [Google Scholar] [CrossRef]
- Zhang, L.; Guler, I. How to join the club: Patterns of embeddedness and the addition of new members to interorganizational collaborations. Adm. Sci. Q. 2019, 112–150. [Google Scholar] [CrossRef]
- Long, C.; Xinghua, D.; Yao, X. Impact of divisive faultlines on subgroup polarization based on network diversity perspective. Manag. Rev. 2017, 29, 95–109. [Google Scholar] [CrossRef]
- Burt, R.S. Structural Holes: The Social Structure of Competition; Ronald, S., Burt, M.S., Eds.; Harvard University Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Shi, X.; Zhang, Q.; Zheng, Z. The double-edged sword of external search in collaboration networks: Embeddedness in knowledge networks as moderators. J. Knowl. Manag. 2019, 23, 2135–2160. [Google Scholar] [CrossRef]
- Long, W.; Xinghua, D. Network closure, knowledge base and the catalyst of innovation: The moderating effect of dynamic structural holes. J. Manag. Sci. 2017, 30, 83–96. [Google Scholar]
- Na, Z.; Fengchao, L. The impact of two-level collaboration network construction on firms’ exploratory innovation performance. J. Ind. Eng. Eng. Manag. 2021, 35, 1–11. [Google Scholar] [CrossRef]
- Salvato, C.; Rerup, C. Routine regulation: Balancing conflicting goals in organizational routines. Adm. Sci. Q. 2018, 63, 170–209. [Google Scholar] [CrossRef]
- Fei, Y.; Shengjun, Y.; Zemin, H. Impact of knowledge base and knowledge distance on firm’s green innovation. Sci. Res. Manag. 2021, 42, 100–112. [Google Scholar] [CrossRef]
- Lau, A.K.; Lo, W. Absorptive capacity, technological innovation capability and innovation performance: An empirical study in Hong Kong. Int. J. Technol. Manag. 2019, 80, 107–148. [Google Scholar] [CrossRef]
- Davies, A.; Frederiksen, L.; Cacciatori, E.; Hartmann, A. The long and winding road: Routine creation and replication in multi-site organizations. Res. Policy 2018, 47, 1403–1417. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.B.; Hou, Y. Redundant heterogeneity and group performance. Organ. Sci. 2015, 26, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Vestal, A.; Danneels, E. Knowledge exchange in clusters: The contingent role of regional inventive concentration. Res. Policy 2018, 47, 1887–1903. [Google Scholar] [CrossRef]
- Yibo, L.; Jingfei, N.; Quanshan, L.; Binyuan, H. Impact of industrial technology grouping on innovation diffusion. Sci. Res. Manag. 2020, 41, 78–88. [Google Scholar] [CrossRef]
- Jian, L.; Yue, Y. Structural holes in collaboration network, cohesion of knowledge network and exploratory innovation performance: An empirical study on the chinese automakers. Nankai Bus. Rev. 2018, 21, 121–130. [Google Scholar]
- Paruchuri, S.; Awate, S. Organizational knowledge networks and local search: The role of intra-organizational inventor networks. Strateg. Manag. J. 2017, 38, 657–675. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, Y.-R.; Zhang, F. The influence of network positions on exploratory innovation: An empirical evidence from china’s patent analysis. Sci. Technol. Soc. 2020, 25, 184–207. [Google Scholar] [CrossRef]
- Sytch, M.; Tatarynowicz, A. Friends and foes: The dynamics of dual social structures. Acad. Manag. J. 2014, 57, 585–613. [Google Scholar] [CrossRef]
- Rongkang, M.; Yitang, W. Diversity and novelty of knowledge combination and the formation of breakthrough inventions. Stud. Sci. Sci. 2020, 38, 313–322. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, T. Knowledge structure, network structure, exploitative and exploratory innovations. Technol. Anal. Strateg. 2020, 32, 666–682. [Google Scholar] [CrossRef]
- Peizhen, C.; Deming, Z. The impacts of network positions, knowledge base on firms’ new product development performance. Manag. Rev. 2019, 31, 128–138. [Google Scholar] [CrossRef]
- Reagans, R.; Mcevily, B. Network structure and knowledge transfer: The effects of cohesion and range. Adm. Sci. Q. 2003, 48, 240–267. [Google Scholar] [CrossRef] [Green Version]
Variable | Mean | Sd | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|---|
1. KSD | 0.508 | 0.198 | 1 | ||||||||
2. KSB | 4.862 | 2.184 | 0.550 *** | 1 | |||||||
3. DF | 0.904 | 0.313 | 0.051 ** | 0.040 * | 1 | ||||||
4. SH | 0.483 | 0.193 | 0.046 * | −0.344 *** | 0.395 *** | 1 | |||||
5. NS | 7.923 | 6.077 | −0.032 | 0.347 *** | −0.146 *** | −0.644 *** | 1 | ||||
6. ND | 0.426 | 0.302 | 0.006 | −0.256 *** | 0.247 *** | 0.633 *** | −0.283 *** | 1 | |||
7. BC | 0.693 | 1.623 | −0.096 *** | 0.343 *** | −0.150 *** | −0.452 *** | 0.527 *** | −0.318 *** | 1 | ||
8. KB | 9.195 | 3.946 | −0.239 *** | 0.575 *** | 0.028 | −0.452 *** | 0.448 *** | −0.322 *** | 0.522 *** | 1 | |
9. TRDC | 12.043 | 14.269 | −0.104 *** | 0.563 *** | 0.041 * | −0.469 *** | 0.595 *** | −0.361 *** | 0.551 *** | 0.781 *** | 1 |
Variable Name | Variable Representation | Variance Inflation Factor | Tolerance |
---|---|---|---|
Divisive Faultlines | DF | 1.32 | 0.760 |
Structural Holes | SH | 3.28 | 0.305 |
Network Size | NS | 2.48 | 0.403 |
Network Density | ND | 1.85 | 0.541 |
Betweenness Centrality | BC | 1.69 | 0.592 |
Knowledge Base | KB | 2.81 | 0.356 |
Technology research and development Capability | TRDC | 3.40 | 0.294 |
Variable | KSD | KSB | ||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
NS | −0.013 * | 0.002 | 0.002 | 0.016 | 0.019 | 0.018 * |
(0.007) | (0.004) | (0.004) | (0.015) | (0.015) | (0.011) | |
ND | 0.290 *** | 0.203 *** | 0.165 *** | −0.029 | 0.002 | 0.249 *** |
(0.023) | (0.015) | (0.014) | (0.030) | (0.031) | (0.030) | |
BC | −0.098 *** | −0.049 *** | −0.035 *** | 0.211 *** | 0.202 *** | 0.084 *** |
(0.013) | (0.007) | (0.006) | (0.037) | (0.036) | (0.027) | |
KB | −0.015 | −0.003 | −0.001 | 0.013 | 0.000 | −0.031 |
(0.016) | (0.009) | (0.009) | (0.040) | (0.040) | (0.030) | |
TRDC | 0.016 | −0.058 *** | −0.036 *** | 0.242 *** | 0.256 *** | 0.087 *** |
(0.010) | (0.006) | (0.006) | (0.028) | (0.030) | (0.023) | |
DF | 0.798 *** | 0.706 *** | 1.971 *** | 2.057 *** | ||
(0.022) | (0.020) | (0.378) | (0.349) | |||
DF2 | −1.633 *** | −1.293 *** | ||||
(0.281) | (0.277) | |||||
SH | 0.241 *** | −1.791 *** | ||||
(0.024) | (0.073) | |||||
DF × SH | 0.242 *** | −4.330 ** | ||||
(0.069) | (1.779) | |||||
DF2 × SH | 3.369 ** | |||||
(1.308) | ||||||
_cons | 0.499 *** | 0.120 *** | 0.010 | 1.353 *** | 0.786 *** | 1.852 *** |
(0.041) | (0.023) | (0.022) | (0.078) | (0.135) | (0.123) | |
N | 1798.000 | 1798.000 | 1798.000 | 1798.000 | 1798.000 | 1798.000 |
R2 | 0.5585 | 0.8614 | 0.8769 | 0.4072 | 0.4253 | 0.6840 |
Wald chi2 | 502.79 | 3336.42 | 5573.28 | 289.57 | 366.70 | 1063.87 |
Variable | KSD | KSB | ||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
NS | −0.019 | −0.000 | −0.013 ** | 0.018 * | 0.022 ** | 0.021 ** |
(0.013) | (0.008) | (0.006) | (0.010) | (0.010) | (0.010) | |
ND | 0.685 *** | 0.432 *** | 0.098 *** | 0.030 * | 0.062 *** | −0.041 * |
(0.035) | (0.024) | (0.019) | (0.015) | (0.017) | (0.025) | |
BC | −0.333 *** | −0.193 *** | −0.136 *** | 0.153 *** | 0.145 *** | 0.153 *** |
(0.024) | (0.014) | (0.010) | (0.011) | (0.011) | (0.011) | |
KB | −0.031 | 0.001 | −0.011 | −0.002 | −0.008 | −0.008 |
(0.023) | (0.014) | (0.010) | (0.016) | (0.016) | (0.016) | |
TRDC | 0.068 *** | −0.083 *** | −0.045 *** | 0.094 *** | 0.105 *** | 0.113 *** |
(0.013) | (0.009) | (0.006) | (0.010) | (0.010) | (0.010) | |
DF | 1.377 *** | 1.382 *** | 1.102 *** | 1.208 *** | ||
(0.029) | (0.019) | (0.148) | (0.167) | |||
DF2 | −0.929 *** | −1.027 *** | ||||
(0.109) | (0.129) | |||||
SH | −1.392 *** | −0.425 *** | ||||
(0.053) | (0.064) | |||||
DF × SH | 1.063 *** | −2.626 ** | ||||
(0.135) | (1.065) | |||||
DF2 × SH | 1.780 ** | |||||
(0.861) | ||||||
_cons | −0.858 *** | −1.459 *** | −0.657 *** | 0.412 *** | 0.079 | 0.299 *** |
(0.055) | (0.030) | (0.042) | (0.029) | (0.054) | (0.065) | |
N | 1798.000 | 1798.000 | 1798.000 | 1798.000 | 1798.000 | 1798.000 |
Pseudo R2 | 0.0285 | 0.0434 | 0.0465 | 0.0153 | 0.0160 | 0.0165 |
Log−likelihood | −1365.9876 | −1345.0422 | −1340.6433 | −2405.076 | −2403.1779 | −2402.0112 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, L.; Wang, M.; Lou, X.; Chen, Z.; Yang, Y. Divisive Faultlines and Knowledge Search in Technological Innovation Network: An Empirical Study of Global Biopharmaceutical Firms. Int. J. Environ. Res. Public Health 2021, 18, 5614. https://doi.org/10.3390/ijerph18115614
Cheng L, Wang M, Lou X, Chen Z, Yang Y. Divisive Faultlines and Knowledge Search in Technological Innovation Network: An Empirical Study of Global Biopharmaceutical Firms. International Journal of Environmental Research and Public Health. 2021; 18(11):5614. https://doi.org/10.3390/ijerph18115614
Chicago/Turabian StyleCheng, Long, Meng Wang, Xuming Lou, Zifeng Chen, and Yang Yang. 2021. "Divisive Faultlines and Knowledge Search in Technological Innovation Network: An Empirical Study of Global Biopharmaceutical Firms" International Journal of Environmental Research and Public Health 18, no. 11: 5614. https://doi.org/10.3390/ijerph18115614
APA StyleCheng, L., Wang, M., Lou, X., Chen, Z., & Yang, Y. (2021). Divisive Faultlines and Knowledge Search in Technological Innovation Network: An Empirical Study of Global Biopharmaceutical Firms. International Journal of Environmental Research and Public Health, 18(11), 5614. https://doi.org/10.3390/ijerph18115614