Short-Term Soil Flushing with Tannic Acid and Its Effect on Metal Mobilization and Selected Properties of Calcareous Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Soil
2.2. Flushing Agent
2.3. Soil Flushing Process
2.4. Analytical Methods
3. Results
3.1. Characteristic of Leachates from Soil Flushing with TA
3.2. Metal Removal during Soil Flushing with TA
3.3. The Effect of Soil Flushing with TA on Metal Redistribution
3.4. The Effect of Soil Flushing with TA on Soil Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy HM contaminated soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation techniques for heavy HM-contaminated soils: Principles and applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy HMs in Soils; Blackie Academic and Professional, Chapman and Hall: London, UK, 1995; 368p. [Google Scholar]
- Mao, X.; Jiang, R.; Xiao, W.; Yu, J. Use of surfactants for the remediation of contaminated soils: A review. J. Hazard. Mater. 2015, 285, 419–435. [Google Scholar] [CrossRef] [PubMed]
- Udovic, M.; Lestan, D. EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic HMs: Remediation efficiency and soil impact. Chemosphere 2012, 88, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Ding, C.; Zhou, Z.; Huang, G.; Wang, X. Stability of immobilization remediation of 568 several amendments on cadmium contaminated soils as affected by simulated soil acidification. Ecotoxicol. Environ. Saf. 2018, 161, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Klik, B.K.; Gusiatin, Z.M.; Kulikowska, D. Suitability of environmental indices in assessment of soil remediation with conventional and next generation washing agents. Sci. Rep. 2020, 10, 20586. [Google Scholar] [CrossRef] [PubMed]
- Gusiatin, Z.M.; Kulikowska, D.; Klik, B. New-generation washing agents in remediation of HM-polluted soils and methods for washing effluent treatment: A review. Int. J. Environ. Res. Public Health 2020, 17, 6220. [Google Scholar] [CrossRef]
- Available online: https://clu-in.org/techfocus/default.focus/sec/In_Situ_Flushing/cat/Overview/ (accessed on 23 March 2021).
- Lombi, E.; Hamon, R.E. Remediation of polluted soils. In Encyclopedia of Soils in the Environment; Elsevier: Amsterdam, The Netherlands, 2005; pp. 379–385. [Google Scholar] [CrossRef]
- Raffa, C.M.; Chiampo, F.; Shanthakumar, S. Remediation of Metal/Metalloid-Polluted Soils: A Short Review. Appl. Sci. 2021, 11, 4134. [Google Scholar] [CrossRef]
- Zhang, W.; Tsang, D.C.; Chen, H.; Huang, L. Remediation of an electroplating contaminated soil by EDTA flushing: Chromium release and soil dissolution. J. Soil. Sediment. 2013, 13, 354–363. [Google Scholar] [CrossRef]
- Reddy, K.R.; Al-Hamdan, A.Z. Enhanced sequential flushing process for removal of mixed contaminants from soils. Water Air Soil Pollut. 2013, 224, 1709. [Google Scholar] [CrossRef]
- Martorelli, E.; Antonucci, A.; Luciano, A.; Rossi, E.; Raboni, M.; Mancini, G.; Viotti, P. EDTA chelating process for lead removal: Evaluation of approaches by means of a reactive transport model. Water Air Soil Pollut. 2015, 226, 96. [Google Scholar] [CrossRef]
- Qiao, J.; Sun, H.; Luo, X.; Zhang, W.; Mathews, S.; Yin, X. EDTA-assisted leaching of Pb and Cd from contaminated soil. Chemosphere 2017, 167, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, M.; Li, L.Y.; Grace, J.R. Simultaneous removal of polycyclic aromatic hydrocarbons and heavy HMs from natural soil by combined non-ionic surfactants and EDTA as extracting reagents: Laboratory column tests. J. Environ. Manag. 2019, 248, 109258. [Google Scholar] [CrossRef]
- Zhao, B.; Che, H.; Wang, H.; Xu, J. Column flushing of phenanthrene and copper (II) co-contaminants from sandy soil using Tween 80 and citric acid. Soil Sediment Contam. 2016, 25, 50–63. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, H. Simultaneous removal of phenanthrene and Ni (II) co-contaminants from sandy soil column by Triton X-100 and citric acid flushing. Nat. Environ. Pollut. Technol. 2017, 16, 607–613. [Google Scholar]
- Wang, S.; Mulligan, C.N. Rhamnolipid biosurfactant-enhanced soil flushing for the removal of arsenic and heavy HMs from mine tailings. Process Biochem. 2009, 44, 296–301. [Google Scholar] [CrossRef]
- Gusiatin, Z.M.; Klimiuk, E. HM (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin. Chemosphere 2012, 86, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Gusiatin, Z.M. Tannic acid and saponin for removing arsenic from brownfield soils: Mobilization, distribution and speciation. J. Environ. Sci. 2014, 26, 855–864. [Google Scholar] [CrossRef]
- Gao, J.K.; Zhang, Z.J.; Jiang, Y.J.; Chen, Y.; Gao, S.F. Biomimetic-functionalized, tannic acid-templated mesoporous silica as a new support for immobilization of NHase. Molecules 2017, 22, 1597. [Google Scholar] [CrossRef] [Green Version]
- Kraus, T.E.C.; Yu, Z.; Preston, C.M.; Dahlgren, R.A.; Zasoski, R.J. Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins. J. Chem. Ecol. 2003, 29, 703–730. [Google Scholar] [CrossRef]
- Lopes, G.K.; Schulman, H.M.; Hermes-Lima, M. Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim. Biophys. Acta 1999, 1472, 142–152. [Google Scholar] [CrossRef]
- Gusiatin, Z.M.; Bułkowska, K.; Pokój, T. Tannic acid as a cost-effective substitute for saponin in soil remediation. Environ. Biotech. 2014, 10, 66–72. [Google Scholar] [CrossRef]
- Gusiatin, Z.M.; Radziemska, M.; Żochowska, A. Sequential soil washing with mixed biosurfactants is suitable for simultaneous removal of multi-HMs from soils with different properties, pollution levels and ages. Environ. Earth Sci. 2019, 78, 529. [Google Scholar] [CrossRef] [Green Version]
- Cay, S.; Uyanik, A.; Engin, M.S.; Kutbay, H.G. Effect of EDTA and tannic acid on the removal of Cd, Ni, Pb and Cu from artificially contaminated soil by Althaea rosea Cavan. Int. J. Phytoremediation 2015, 17, 568–574. [Google Scholar] [CrossRef]
- Miskowiec, P.; Laptas, A.; Zieba, K. Soil pollution with heavy HMs in industrial and agricultural areas: A case study of Olkusz District. J. Elem. 2015, 20. [Google Scholar] [CrossRef]
- OME. Ordinance of the Minister of Environment on soil and ground quality standards. J. Law 2016, 395, 1–86. (In Polish) [Google Scholar]
- Ostrowska, A.; Gawlinski, S.; Szczubiałka, Z. Analysis of Soils and Plants; Institute of Environmental Protection—National Research Institute: Warsaw, Poland, 1991. (In Polish) [Google Scholar]
- Pueyo, M.; Mateu, J.; Rigol, A.; Vidal, M.; López-Sánchez, J.F.; Rauret, G. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environ. Pollut. 2008, 152, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Kaal, J.; Schellekens, J.; Nierop, K.G.J.; Martínez Cortizas, A.; Muller, J. Contribution of organic matter molecular proxies to interpretation of the last 55 ka of the Lynch’s Crater record (NE Australia). Palaeogeography 2014, 414, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Nierop, K.G.; Preston, C.M.; Kaal, J. Thermally assisted hydrolysis and methylation of purified tannins from plants. Anal. Chem. 2005, 77, 5604–5614. [Google Scholar] [CrossRef]
- Schmidt, M.A.; Halvorson, J.J.; Hagerman, A.E.; Gonzalez, J.M. Macronutrients and HMs released from soils by solutions of naturally occurring phenols. J. Plant Nutr. Soil Sci. 2017, 180, 544–553. [Google Scholar] [CrossRef]
- Di Palma, L.; Ferrantelli, P.; Pitzolu, I. Experimental assessment of the operative conditions of copper extraction from three contaminated soils. Environ. Technol. 2004, 25, 673–680. [Google Scholar] [CrossRef]
- Maity, J.P.; Huang, Y.M.; Hsu, C.M.; Wu, C.I.; Chen, C.C.; Li, C.Y.; Jean, J.S.; Chang, Y.F.; Chen, C.Y. Removal of Cu, Pb and Zn by foam fractionation and a soil washing process from contaminated industrial soils using soapberry-derived saponin: A comparative effectiveness assessment. Chemosphere 2013, 92, 1286–1293. [Google Scholar] [CrossRef]
- Islam, M.N.; Jo, Y.T.; Park, J.H. Leaching and redistribution of Cu and Pb due to simulated road runoff assessed by column leaching test, chemical analysis, and PHREEQC modeling. Environ. Earth Sci. 2016, 75, 1041. [Google Scholar] [CrossRef]
- Hauser, L.; Tandy, S.; Schulin, R.; Nowack, B. Column extraction of heavy HMs from soils using the biodegradable chelating agent EDDS. Environ. Sci. Technol. 2005, 39, 6819–6824. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Deng, Y.; Tang, J.; Chen, D.; Li, X.; Lin, Q.; Yin, G.; Zhang, M.; Hu, H. Potassium lignosulfonate as a washing agent for remediating lead and copper co-contaminated soils. Sci. Total Environ. 2019, 658, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Arwidsson, Z.; Elgh-Dalgren, K.; von Kronhelm, T.; Sjöberg, R.; Allard, B.; van Hees, P. Remediation of heavy HM contaminated soil washing residues with amino polycarboxylic acids. J. Hazard. Mater. 2010, 173, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Gusiatin, Z.M. Fe-modified clinoptilolite is effective to recover plant biosurfactants used for removing arsenic from soil. CLEAN Soil Air Water 2015, 43, 1224–1231. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, D.; Gao, F.; Li, M.; Luo, X. Effects of biochar-derived sewage sludge on heavy HM adsorption and immobilization in soils. Int. J. Environ. Res. Public Health 2017, 14, 681. [Google Scholar] [CrossRef] [PubMed]
- Kuziemska, B.; Kalembasa, S.; Wieremiej, W. Distribution of nickel in fractions extracted with the BCR procedure from nickel-contaminated soil. J. Elem. 2014, 19, 697–708. [Google Scholar] [CrossRef]
- Schmidt, M.A.; Gonzalez, J.M.; Halvorson, J.J.; Hagerman, A.E. HM mobilization in soil by two structurally defined polyphenols. Chemosphere 2013, 90, 1870–1877. [Google Scholar] [CrossRef]
- An, J.H.; Dultz, S. Adsorption of tannic acid on chitosan-montmorillonite as a function of pH and surface charge properties. Appl. Clay Sci. 2007, 36, 256–264. [Google Scholar] [CrossRef]
- Zou, L.; Shao, P.; Zhang, K.; Yang, L.; You, D.; Shi, H.; Lai, W.; Liang, D.; Luo, X. Tannic acid-based adsorbent with superior selectivity for lead (II) capture: Adsorption site and selective mechanism. Chem. Eng. J. 2019, 364, 160–166. [Google Scholar] [CrossRef]
- Ahmad, T. Reviewing the tannic acid mediated synthesis of HM nanoparticles. J. Nanotechnol. 2014, 2014, 954206. [Google Scholar] [CrossRef] [Green Version]
- Appel, H.M. Phenolics in ecological interactions: The importance of oxidation. J. Chem. Ecol. 1993, 19, 1521–1552. [Google Scholar] [CrossRef]
- Halvorson, J.J.; Gollany, H.T.; Kennedy, A.C.; Hagerman, A.E.; Gonzalez, J.M.; Wuest, S.B. Sorption of tannin and related phenolic compounds and effects on extraction of soluble-N in soil amended with several carbon sources. Agriculture 2012, 2, 52–72. [Google Scholar] [CrossRef] [Green Version]
- Hem, J.D. Complexes of Ferrous Iron with Tannic Acid; US Government Printing Office: Washington, DC, USA, 1960; pp. 75–94. [Google Scholar]
- Yuan, H.; Yin, H.; Yang, Z.; Yu, J.; Liu, E.; Li, Q.; Tai, Z.; Cai, Y. Diffusion kinetic process of heavy HMs in lacustrine sediment assessed under different redox conditions by DGT and DIFS model. Sci. Total Environ. 2020, 741, 140418. [Google Scholar] [CrossRef]
- Kaal, J.; Nierop, K.G.J.; Verstraten, J.M. Retention of tannic acid and condensed tannin by Fe-oxide-coated quartz sand. J. Colloid Interface Sci. 2005, 287, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Halvorson, J.J.; Gonzalez, J.M.; Hagerman, A.E.; Smith, J.L. Sorption of tannin and related phenolic compounds and effects on soluble-N in soil. Soil Biol. Biochem. 2009, 41, 2002–2010. [Google Scholar] [CrossRef]
- Kulikowska, D.; Klik, B.K.; Gusiatin, Z.M.; Jabłoński, R. Sewage sludge can provide a washing agent for remediation of soil from a HMlurgical area. Catena 2019, 173, 22–28. [Google Scholar] [CrossRef]
- Halvorson, J.J.; Gonzalez, J.M.; Hagerman, A.E. Effects of tannins on soil carbon, cation exchange capacity, and HM solubility. In Proceedings of the 94th Ecological Society of America Annual Meeting, Albuquerque, NM, USA, 6 August 2009; pp. 20–168. [Google Scholar]
- Halvorson, J.J.; Gonzalez, J.M.; Hagerman, A.E. Repeated applications of tannins and related phenolic compounds are retained by soil and affect cation exchange capacity. Soil Biol. Biochem. 2011, 43, 1139–1147. [Google Scholar] [CrossRef]
- Kaal, J.; Nierop, K.G.; Verstraten, J.M. Interactions between tannins and goethite-or ferrihydrite-coated quartz sand: Influence of pH and evaporation. Geoderma 2007, 139, 379–387. [Google Scholar] [CrossRef]
- Sáiz-Jiménez, C.; De Leeuw, J.W. Lignin pyrolysis products: Their structures and their significance as biomarkers. Org. Geochem. 1986, 10, 869–876. [Google Scholar] [CrossRef] [Green Version]
- Derenne, S.; Quenea, K. Analytical pyrolysis as a tool to probe soil organic matter. J. Anal. Appl. Pyrolysis 2015, 111, 108–120. [Google Scholar] [CrossRef] [Green Version]
- Galletti, G.C.; Modafferi, V.; Poiana, M.; Bocchini, P. Analytical pyrolysis and thermally assisted hydrolysis-methylation of wine tannin. J. Agr. Food Chem. 1995, 43, 1859–1863. [Google Scholar] [CrossRef]
- Wang, G.; Pan, X.; Zhang, S.; Zhong, Q.; Zhou, W.; Zhang, X.; Wu, J.; Vijver, M.G.; Peijnenburg, W.J. Remediation of heavy HM contaminated soil by biodegradable chelator–induced washing: Efficiencies and mechanisms. Environ. Res. 2020, 186, 109554. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Unit | Value | Acceptable Values a |
---|---|---|---|
Sand | % | 48.7 | - |
Silt | % | 44.6 | - |
Clay | % | 6.7 | - |
Bulk density | g/mL | 1.16 | - |
Water holding capacity | % | 62.2 | - |
pH | - | 8.2 ± 0.4 | - |
Electrical conductivity | mS/cm | 2.1 ± 0.2 | - |
Organic matter | % | 4.1 ± 0.7 | - |
Cation exchange capacity | cmol/kg | 47.8 ± 2.7 | - |
Total Cd | mg/kg | 16.0 ± 1.3 | 3 |
Total Cu | mg/kg | 515.8 ± 8.9 | 150 |
Total Ni | mg/kg | 245.1 ± 3.8 | 150 |
Total Pb | mg/kg | 919.1 ± 14.6 | 250 |
Total Zn | mg/kg | 865.8 ± 10.1 | 500 |
Flow Rate/Metal | Cd | Cu | Ni | Pb | Zn |
---|---|---|---|---|---|
0.5 mL/min | 0.110 | 1.976 | 1.005 | 2.131 | 1.701 |
1.0 mL/min | 0.147 | 1.383 | 0.926 | 1.682 | 1.488 |
Metal | Fraction * | Unflushed Soil | Flushed Soil | |||
---|---|---|---|---|---|---|
0.5 mL/min | 1.0 mL/min | 0.5 mL/min | 1.0 mL/min | |||
mg/kg | mg/kg | mg/kg | % | % | ||
Cu | F1 | 264.3 ± 8.3 a | 94.7±5.9 b | 67.2 ± 3.5 c | 64.2 | 74.6 |
F2 | 164.3 ± 3.1 a | 176.0±6.1 b | 203.4 ± 9.6 c | −7.1 ** | −23.8 | |
F3 | 30.9 ± 0.9 a | 31.5±1.3 a | 35.5 ± 1.6 b | −1.9 | −14.9 | |
F4 | 56.3 ± 2.6 a | 53.5±3.9 a | 52.8 ± 4.1 a | 9.0 | 6.2 | |
Ni | F1 | 167.3 ± 6.2 a | 93.0±3.1b | 80.6 ± 4.7c | 44.4 | 51.8 |
F2 | 53.2 ± 1.8 a | 40.3±3.6 b | 44.8 ± 2.3 b | 24.2 | 15.8 | |
F3 | 9.7 ± 1.1 a | 11.4±1.8 b | 11.1 ± 2.2 b | −17.5 | −14.4 | |
F4 | 14.9 ± 0.9 a | 11.1±1.6 b | 10.6 ± 1.1 b | 25.5 | 28.8 | |
Cd | F1 | 13.8 ± 0.7 a | 4.0±0.3 b | 2.6 ± 0.3 c | 71.0 | 81.1 |
F2 | 1.9 ± 0.2 a | 2.0 ± 0.2 a | 0.9 ± 0.1 b | −5.3 | 52.6 | |
F3 | 0.3 ± 0.1 a | 0.4 ± 0.1 a | 0.4 ± 0.1 a | −33.3 | −33.3 | |
F4 | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 | 0.0 | |
Pb | F1 | 313.1 ± 11.3 a | 38.3 ± 3.7 b | 43.4 ± 2.4 b | 87.8 | 86.1 |
F2 | 558.6 ± 16.1 a | 636.4 ± 18.1 b | 695.1 ± 15.2 c | −13.9 | −24.4 | |
F3 | 31.5 ± 2.1 a | 49.6 ± 3.0 b | 46.4 ± 3.9 b | −57.5 | −47.3 | |
F4 | 15.8 ± 1.9 a | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 100 | 100 | |
Zn | F1 | 586.8 ± 17.1 a | 336.2 ± 10.5 b | 331.8 ± 11.6 b | 39.6 | 43.4 |
F2 | 206.0 ± 9.8 a | 231.2 ± 11.3 b | 265.7 ± 10.9 c | −12.2 | −28.9 | |
F3 | 14.8 ± 1.1 a | 25.3 ± 0.9 b | 25.9 ± 1.3 b | −70.9 | −75.0 | |
F4 | 58.2 ± 3.0 a | 48.5 ± 2.8 b | 46.3 ± 3.9 b | 16.7 | 20.4 |
Characteristic | Unit | Unflushed Soil | Flushed Soil ** | |
---|---|---|---|---|
0.5 mL/min | 1.0 mL/min | |||
pH | - | 8.2 ± 0.4a | 6.8 ± 0.2b | 6.7 ± 0.3b |
Electrical conductivity | mS/cm | 2.1 ± 0.2a | 0.8 ± 0.1b | 0.8 ± 0.1b |
Organic matter | % | 4.1 ± 0.7a | 10.4 ± 0.4b | 10.8 ± 0.6b |
Cation exchange capacity | cmol/kg | 47.8 ± 2.7a | 39.0 ± 3.1b | 40.0 ± 1.6b |
Total Cd | mg/kg | 16.0 ± 1.3a | 4.6 ± 0.6b | 2.3 ± 0.5c |
Total Cu | 515.8 ± 8.9a | 387.9 ± 7.4b | 366.7 ± 5.8c | |
Total Ni | 245.1 ± 3.8a | 135.1 ± 4.1b | 136.8 ± 5.9b | |
Total Pb | 919.1 ± 14.6a | 776.7 ± 8.4b | 778.5 ± 9.6b | |
Total Zn | 865.8 ± 10.1 | 665.8 ± 12.4 | 638.9 ± 15.6 | |
MFCu * | % | 51.3 ± 3.3a | 26.7 ± 2.0b | 18.7 ± 1.7c |
MFNi | 68.3 ± 2.6a | 59.7 ± 3.1b | 54.8 ± 4.3b | |
MFCd | 86.6 ± 4.1a | 62.6 ± 3.4b | 67.7 ± 4.2b | |
MFPb | 34.1 ± 1.3a | 5.3 ± 0.3b | 5.5 ± 0.6b | |
MFZn | 67.8 ± 3.5a | 52.4 ± 2.8b | 49.6 ± 3.1b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gusiatin, Z.M.; Kaal, J.; Wasilewska, A.; Kumpiene, J.; Radziemska, M. Short-Term Soil Flushing with Tannic Acid and Its Effect on Metal Mobilization and Selected Properties of Calcareous Soil. Int. J. Environ. Res. Public Health 2021, 18, 5698. https://doi.org/10.3390/ijerph18115698
Gusiatin ZM, Kaal J, Wasilewska A, Kumpiene J, Radziemska M. Short-Term Soil Flushing with Tannic Acid and Its Effect on Metal Mobilization and Selected Properties of Calcareous Soil. International Journal of Environmental Research and Public Health. 2021; 18(11):5698. https://doi.org/10.3390/ijerph18115698
Chicago/Turabian StyleGusiatin, Zygmunt Mariusz, Joeri Kaal, Agnieszka Wasilewska, Jurate Kumpiene, and Maja Radziemska. 2021. "Short-Term Soil Flushing with Tannic Acid and Its Effect on Metal Mobilization and Selected Properties of Calcareous Soil" International Journal of Environmental Research and Public Health 18, no. 11: 5698. https://doi.org/10.3390/ijerph18115698
APA StyleGusiatin, Z. M., Kaal, J., Wasilewska, A., Kumpiene, J., & Radziemska, M. (2021). Short-Term Soil Flushing with Tannic Acid and Its Effect on Metal Mobilization and Selected Properties of Calcareous Soil. International Journal of Environmental Research and Public Health, 18(11), 5698. https://doi.org/10.3390/ijerph18115698