The Use of Samsung Health and ECG M-Trace Base II Applications for the Assessment of Exercise Tolerance in the Secondary Prevention in Patients after Ischemic Stroke
Abstract
:1. Introduction
- Exercise tolerance parameters in patients after ischemic stroke (IS) during SMTW i SCT with the use of mobile application Samsung Health.
- Cardiological parameters in patients after ischemic stroke (IS) during SMTW i SCT with the use of mobile application ECG M-Trace Base II.
- Risk factors for CVD events recurrence in patients after IS in secondary prevention.
- We assume that patients who have undergone IS have gotten worse results of cardiological parameters and exercise tolerance parameters during SMTW and SCT compared to patients without previous IS.
- We assume that the M-Trace Base II and the Samsung Health are popular mobile applications that can be used to assess cardiological parameters and exercise tolerance parameters during SMWT and SCT in patients after IS.
- We assume that there are significant numbers of risk factors for recurrent CVD in patients after IS.
2. Materials and Methods
2.1. Study Design
2.2. Materials
2.3. Variables and Instruments
- red electrode—right hand.
- yellow electrode—left hand.
- green electrode—left shin.
- black electrode—right shin (the so-called reference point; Earth).
- aVR lead—from the “right hand” electrode.
- aVL lead—from the “left hand” electrode.
- aVF lead—from the “left shin” electrode.
- V1—electrode on the fourth right intercostal space at the sternal edge.
- V2—electrode on the fourth left intercostal space at the sternal edge.
- V3—halfway between V2 and V4 electrodes.
- V4—electrode on the fifth left intercostal space at the left midclavicular line.
- V5—electrode on the fifth left intercostal space at left anterior axillary line.
- V6—electrode on the fifth left intercostal space at the left midaxillary line.
2.4. Statistical Analysis
2.5. Research Ethics
3. Results
3.1. Risk Factors for the Reoccurrence of a Cardiovascular Disease Event
3.2. Exercise Tolerance Parameters Measured with Samsung Health Application
3.3. Cardiological Parameters in the Assessment of Exercise Tolerance Partially Measured with ECG M-Trace Base Application
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lopez, A.D.; Mathers, C.D.; Ezzati, M.; Jamison, D.T.; Murray, C.J. Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data. Lancet 2006, 367, 1747–1757. [Google Scholar] [CrossRef]
- World Health Organization. The Global Burden of Diseases: 2004 Update; World Health Organization: Geneva, Switzerland, 2008; pp. 1–144. [Google Scholar]
- Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 743–800. [Google Scholar] [CrossRef] [Green Version]
- Roth, G.A.; Forouzanfar, M.H.; Moran, A.E.; Barber, R.; Nguyen, G.; Feigin, V.L.; Naghavi, M.; Mensah, G.A.; Murray, C.J. Demographic and epidemiologic drivers of global cardiovascular mortality. N. Engl. J. Med. 2015, 372, 1333–1341. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.W.; Wang, C.X.; Zhang, N.; Bai, Y.; Shi, Y.Z.; Zhou, Y.; Wang, Y.L.; Zhang, T.; Zhou, J.; Yu, X.; et al. Poststroke depression and risk of recurrent stroke at 1 year in a Chinese cohort study. PLoS ONE 2012, 7, e46906. [Google Scholar] [CrossRef]
- Cappuccio, F.P.; Cooper, D.; D’Elia, L.; Strazzullo, P.; Miller, M.A. Sleep duration predicts cardiovascular outcomes: A systematic review and meta-analysis of prospective studies. Eur. Heart J. 2011, 32, 1484–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lip, G.Y.; Hunter, T.D.; Quiroz, M.E.; Ziegler, P.D.; Turakhia, M.P. Atrial fibrillation diagnosis timing, ambulatory ECG monitoring utilization and risk of recurrent stroke. Circ. Cardiovasc. Qual. Outcomes 2017, 10, e002864. [Google Scholar] [CrossRef] [PubMed]
- Orrapin, S.; Rerkasem, K. Carotid endarterectomy for symptomatic carotid stenosis. Cochrane Database Syst. Rev. 2017, 6, CD001081. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, Z.; Gong, L.; Zhang, Y.; Thijs, L.; Staessen, J.A.; Wang, J. Blood pressure reduction for the secondary prevention of stroke: A Chinese trial and a systematic review of the literature. Hypertens. Res. 2009, 32, 1032–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Shi, Y.; Wang, C.; Jia, Q.; Zhang, N.; Zhao, X.; Liu, G.; Wang, Y.; Liu, L.; Wang, Y. Glycated hemoglobin independently predicts stroke recurrence within one year after acute first-ever non-cardioembolic strokes onset in A Chinese cohort study. PLoS ONE 2013, 8, e80690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amarenco, P. Stroke prevention by aggressive reduction in cholesterol levels (SPARCL) investigators High-dose atorvastatin after stroke or transient ischemic attack. N. Engl. J. Med. 2006, 355, 549–559. [Google Scholar] [PubMed]
- Ois, A.; Gomis, M.; Rodríguez-Campello, A.; Cuadrado-Godia, E.; Jiménez-Conde, J.; Pont-Sunyer, C.; Cuccurella, G.; Roquer, J. Factors associated with a high risk of recurrence in patients with transient ischemic attack or minor stroke. Stroke 2008, 39, 1717–1721. [Google Scholar] [CrossRef] [Green Version]
- Epstein, K.A.; Viscoli, C.M.; Spence, J.D.; Young, L.H.; Inzucchi, S.E.; Gorman, M.; Gerstenhaber, B.; Guarino, P.D.; Dixit, A.; Furie, K.L.; et al. Smoking cessation and outcome after ischemic stroke or TIA. Neurology 2017, 89, 1723–1729. [Google Scholar] [CrossRef]
- Emerging Risk Factors Collaboration. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: Collaborative analysis of 58 prospective studies. Lancet 2011, 377, 1085–1095. [Google Scholar] [CrossRef] [Green Version]
- Feigin, V.L.; Roth, G.A.; Naghavi, M.; Parmar, P.; Krishnamurthi, R.; Chugh, S.; Mensah, G.A.; Norrving, B.; Shiue, I.; Ng, M.; et al. Global burden of stroke and risk factors in 188 countries, during 1990–2013: A systematic analysis for the global burden of disease study 2013. Lancet Neurol. 2016, 15, 913–924. [Google Scholar] [CrossRef] [Green Version]
- Blacquiere, D.; Lindsay, M.P.; Foley, N.; Taralson, C.; Alcock, S.; Balg, C.; Bhogal, S.; Cole, J.; Eustace, M.; Gallagher, P.; et al. Canadian stroke best practice recommendations: Secondary prevention of stroke, sixth edition practice guidelines. Int. J. Stroke 2018, 13, 420–443. [Google Scholar]
- Jauch, E.C.; Saver, J.L.; Adams, H.P.; Bruno, A.; Connors, J.J.; Demaerschalk, B.M.; Khatri, P.; McMullan, P.W.; Qureshi, A.I.; Rosenfield, K.; et al. Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American heart association/American stroke association. Stroke 2013, 44, 870–947. [Google Scholar] [CrossRef] [PubMed]
- Kwolek, A. Postępy w leczeniu i rehabilitacji osób po udarze niedokrwiennym mózgu. Rehabil. Med. 2002, 6, 9–22. [Google Scholar]
- Vaidya, G.N. Application of exercise ECG stress test in the current high cost modern-era healthcare system. Indian Heart J. 2017, 69, 551–555. [Google Scholar] [CrossRef]
- Higgins, J.P. Smartphone applications for patients’ health and fitness. Am. J. Med. 2016, 129, 11. [Google Scholar] [CrossRef] [Green Version]
- Krishna, S.; Boren, S.A.; Balas, E.A. Healthcare via cell phones: A systematic review. Telemed. J. e-Health 2009, 15, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Patrick, K.; Griswold, W.G.; Raab, F.; Intille, S.S. Health and the mobile phone. Am. J. Prev. Med. 2008, 35, 177–181. [Google Scholar] [CrossRef]
- Beltrán-Carrillo, V.J.; Jiménez-Loaisa, A.; Alarcón-López, M.; Elvira, J.L. Validity of the “Samsung Health” application to measure steps: A study with two different samsung smartphones. J. Sports Sci. 2019, 37, 788–794. [Google Scholar] [CrossRef]
- Johnson, M.; Turek, J.; Dornfeld, C.; Drews, J.; Hansen, N. Validity of the Samsung phone S health application for assessing steps and energy expenditure during walking and running: Does phone placement matter? Digit. Health 2016, 14, 2. [Google Scholar] [CrossRef] [Green Version]
- User Manual M-Trace Base. Available online: https://m4medical.com/images/dopobrania/mtracepcbase.pl (accessed on 1 October 2018).
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- Boujibar, F.; Gillibert, A.; Gravier, F.E.; Gillot, T.; Bonnevie, T.; Cuvelier, A.; Baste, J.M. Performance at stair-climbing test is associated with postoperative complications after lung resection: A systematic review and meta-analysis. Thorax 2020, 75, 791–797. [Google Scholar] [CrossRef]
- Lacroix, J.; Daviet, J.C.; Salle, J.Y.; Borel, B.; Compagnat, M.; Mandigout, S. Effort assessment of stroke patients in physiotherapy session by accelerometry and perceived exertion score: Preliminary study. Ann. Rehabil. Med. 2019, 43, 262–268. [Google Scholar] [CrossRef]
- Jarvis, H.L.; Bennett, A.N.; Twiste, M.; Phillip, R.D.; Etherington, J.; Baker, R. Temporal spatial and metabolic mjeasures of walking in highly functional individuals with lower limb amputations. Arch. Phys. Med. Rehabil. 2017, 98, 1389–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohannon, R.W. Six-minute walk test: A meta-analysis of data from apparently healthy elders. Top. Geriatr. Rehabil. 2007, 23, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Polese, J.C.; Ribeiro-Samora, G.A.; Lana, R.C.; Rodrigues-De-Paula, F.V.; Teixeira-Salmela, L.F. Energy expenditure and cost of walking and stair climbing in individuals with chronic stroke. Braz. J. Phys. Ther. 2017, 21, 192–198. [Google Scholar] [CrossRef]
- Fulk, G.D.; Reynolds, C.; Mondal, S.; Deutsch, J.E. Predicting home and community walking activity in people with stroke. Arch. Phys. Med. Rehabil. 2010, 10, 1582–1586. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, M.B.; Polese, J.C.; Machado, G.C.; Faria, C.D.; Hirochi, T.L.; Teixeira-Salmela, L.F. The ability to manage stairs for chronic stroke survivors improves with increases in physical activity levels. J. Nov. Physiother. 2013, 3, 159. [Google Scholar]
- Modai, G.; Sharon, B.; Bar-Haim, S.; Hutzler, Y. Stair climbing test post-stroke: Feasibility, convergent validity and metabolic, cardiac, and respiratory responses. Top. Stroke Rehabil. 2015, 22, 281–848. [Google Scholar] [CrossRef]
- Tesch, P.A. Exercise performance and beta-blockade. Sports Med. 1985, 2, 389–412. [Google Scholar] [CrossRef]
- Kurl, S.; Laukkanen, J.A.; Rauramaa, R.; Lakka, T.; Sivenius, J.; Salonen, J.T. Systolic blood pressure response to exercise stress test and risk of stroke. Stroke 2001, 2036, 41. [Google Scholar] [CrossRef] [Green Version]
- Isa, L.; Abubakar, A.; Rufa’I, A.; Mukadas, A. Blood pressure and heart rate adjustment following acute Frenkel’s ambulatory exercise in chronic hemiparetics stroke survivors: A comparative study. Afr. Health Sci. 2014, 14, 906–912. [Google Scholar] [CrossRef] [Green Version]
- Gäverth, J.; Parker, R.; MacKay-Lyons, M. Exercise stress testing after stroke or transient ischemic attack: A scoping review. Arch. Phys. Med. Rehabil. 2015, 96, 1349–1359. [Google Scholar] [CrossRef] [PubMed]
- Józsa, T. The relevance of mobile applications helping in doctor-patient relationships. Br. J. Gen. Pract. 2020, 27, 70–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, C.K.; Ariyarathna, N.; Islam, S.M.; Thiagalingam, A.; Redfern, J. MHealth in cardiovascular health care. Heart Lung Circ. 2016, 25, 802–807. [Google Scholar] [CrossRef]
- Alessa, T.; Hawley, M.S.; Hock, E.S.; Witte, L. Smartphone apps to support self-management of hypertension: Review and content analysis. JMIR mHealth uHealth 2019, 28, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surka, S.; Edirippulige, S.; Steyn, K.; Gaziano, T.; Puoane, T.; Levitt, N. Evaluating the use of mobile phone technology to enhance cardiovascular disease screening by community health workers. Int. J. Med. Inform. 2014, 83, 648–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landínez, S.F.; Villamil, C.A.; López, D.M.; Blobel, B. Mobile ECG systems and cardiovascular risk: A systematic review. Stud. Health Technol. Inform. 2015, 211, 175–184. [Google Scholar]
- Dolezal, B.A.; Abrazado, M.; Batalin, M.A.; Smith, D.; Cooper, C.B. Deployment of remote advanced electrocardiography for improved cardiovascular risk assessment in career firefighters. Telemed. J. e-Health 2014, 20, 603–660. [Google Scholar] [CrossRef] [PubMed]
- Kwan, R.Y.C.; Salihu, D.; Lee, P.H.; Tse, M.; Cheung, D.S.K.; Roopsawang, I.; Choi, K.S. The effect of e-health interventions promoting physical activity in older people: A systematic review and meta-analysis. Eur. Rev. Aging Phys. Act. 2020, 21, 17. [Google Scholar] [CrossRef]
- Kwan, R.Y.; Lee, D.; Lee, P.H.; Tse, M.; Cheung, D.S.; Thiamwong, L.; Choi, K.S. Effects of an mHealth brisk walking intervention on increasing physical activity in older people with cognitive frailty: Pilot randomized controlled trial. JMIR mHealth uHealth 2020, 31, 8. [Google Scholar] [CrossRef] [PubMed]
- Ehn, M.; Eriksson, L.C.; Lee, P.H.; Tse, M.; Cheung, D.S.; Thiamwong, L.; Choi, K.S. Activity monitors as support for older persons’ physical activity in daily life: Qualitative study of the users’ experiences. JMIR mHealth uHealth 2018, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Wildenbos, G.A.; Peute, L.W.; Jaspers, M.W. A framework for evaluating mHealth tools for older patients on usability. Stud Health Technol. Inform. 2015, 210, 783–787. [Google Scholar] [PubMed]
- Iyengar, K.; Upadhyaya, G.K.; Vaishya, R.; Jain, V. COVID-19 and applications of smartphone technology in the current pandemic. Diab. Metab. Syndrome Clin. Res. Rev. 2020, 14, 733–737. [Google Scholar]
Post-Stroke Group | Control Group | p | ||
---|---|---|---|---|
Sex n (%) | M | 18(69.2%) | 18(69.2%) | 1.0 d |
W | 8(30.8%) | 8(30.8%) | ||
Age (years) | Mean ± SD | 54.9 ± 7.1 | 55.6 ± 6.1 | 0.608 c |
Median | 56.5 | 55 | ||
Min-Max | 42.0–65.0 | 44.0–63.0 | ||
BMI * | Mean ± SD | 29.8 ± 4.9 | 24.8 ± 3.3 | <0.001 b |
Median | 29.6 | 24 | ||
Min-Max | 18.6–37.8 | 19.6–32.7 | ||
β-blocker taken | Yes | 17 (65.4%) | 0 (0.0%) | <0.001 d |
Hypertension * | Yes | 23 (88.5%) | 0 (0.0%) | <0.001 d |
Diabetes mellitus * | Yes | 6 (23.1%) | 0 (0.0%) | 0.030 d |
Dyslipidemia * | Yes | 10 (38.5%) | 0 (0.0%) | <0.001 d |
Atrial fibrillation * | Yes | 1 (3.8%) | 0 (0.0%) | 1.0 d |
Depression * | Yes | 6 (23.1%) | 0 (0.0%) | 0.030 d |
Insomnia * | Yes | 8 (30.8%) | 0 (0.0%) | 0.002 d |
Stenosis of internal carotid artery * | <50% | 19 (73.1%) | 0 (0.0%) | 0.018 d |
50–69% | 1 (3.8%) | 0 (0.0%) | ||
>70% | 6 (23.1%) | 0 (0.0%) | ||
Thyroid diseases | Hypothyroidism | 1 (3.8%) | 0 (0.0%) | 0.114 d |
Hyperthyroidism | 2 (7.7%) | 0 (0.0%) | ||
Epilepsy | Yes | 3 (11.5%) | 0 (0.0%) | 0.234 |
Nicotinism * | Yes | 6 (23.1%) | 0 (0.0%) | 0.030 d |
Alcoholism * | Yes | 1 (3.8%) | 0 (0.0%) | 1.0 d |
VARIABLE | SMWT | SCT | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SG | CG | p | SG | CG | p | |||||||||
Mean ± SD | Median | Min-Max | Mean ± SD | Median | Min-Max | Mean ± SD | Median | Min-Max | Mean ± SD | Median | Min-Max | |||
Fatigue according to Borg | 4.9 ± 2.7 | 5 | 0.5–9.0 | 2.2 ± 0.6 | 2 | 1.0–3.0 | <0.001 c | 7.0 ± 2.7 | 8 | 2.0–10.0 | 3.1 ± 0.7 | 3 | 2.0–4.0 | <0.001 c |
Dyspnoea according to Borg | 2.1 ± 1.5 | 2 | 0.0–6.0 | 0.0 ± 0.0 | 0 | 0.0–0.0 | <0.001 c | 3.7 ± 2.1 | 3 | 0.5–9.0 | 0.1 ± 0.2 | 0 | 0.0–1.0 | <0.001 c |
Time (min) | 5.31 ± 1.03 | 5.54 | 2.33–6.60 | 5.84 ± 0.28 | 6.01 | 5.40–6.14 | 0.044 c | 1.78 ± 0.90 | 1.44 | 0.49–3.55 | 0.52 ± 0.15 | 0.5 | 0.35–1.01 | <0.001 c |
Distance (metres) | 320 ± 140 | 370 | 30–480 | 550 ± 50 | 550 | 450–650 | <0.001 c | 40 ± 20 | 50 | 10–90 | 50 ± 10 | 50 | 40–70 | 0.179 c |
Number of steps | 448.2 ± 167.6 | 512 | 100.0–631.0 | 681.3 ± 48.5 | 670.5 | 600.0–807.0 | <0.001 c | 123.9 ± 39.1 | 126.5 | 50.0–183.0 | 85.2 ± 11.6 | 83.5 | 67.0–107.0 | <0.001 b |
Kcal | 19.4 ± 6.4 | 22 | 7.0–29.0 | 26.9 ± 2.2 | 27 | 23.0–30.0 | <0.001 c | 8.2 ± 3.0 | 8 | 4.0–16.0 | 4.8 ± 1.0 | 4.5 | 4.0–7.0 | <0.001 c |
Mean velocity (km/h) | 3.4 ± 1.2 | 4 | 0.3–4.8 | 5.2 ± 0.5 | 5.2 | 4.4–6.4 | <0.001 c | 2.4 ± 1.0 | 2.6 | 0.4–3.9 | 4.2 ± 0.6 | 4.3 | 3.2–5.9 | <0.001 b |
Max velocity (km/h) | 6.1 ± 1.3 | 6.2 | 1.3–8.2 | 7.0 ± 0.7 | 7 | 5.6–8.5 | 0.002 c | 5.7 ± 0.9 | 5.9 | 3.1–7.1 | 6.6 ± 1.0 | 6.5 | 4.9–8.7 | <0.001 a |
Variable | Rest | SMWT | SCT | SG | CG | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SG | CG | p | SG | CG | p | SG | CG | p | |||||||||
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Rest–SMWT | Rest–SCT | Stairs–SMWT | p | Rest–SMWT | Rest–SCT | SCT-SMWT | p | ||||
SBP | 129.9 ± 15.5 | 128.8 ± 16.0 | 0.800 a | 138.5 ± 11.6 | 137.5 ± 18.9 | 0.826 b | 145.0 ± 12.0 | 147.9 ± 18.9 | 0.200 c | 8.6 ± 10.6 * | 15.0 ± 9.2 * | 6.5 ± 10.2 | <0.001 | 8.7 ± 14.8 * | 19.1 ± 14.6 * | 10.3 ± 13.9 * | <0.001 |
DBP | 84.6 ± 10.4 | 81.3 ± 9.9 | 0.257 a | 85.1 ± 6.5 | 83.5 ± 12.2 | 0.545 b | 83.5 ± 9.0 | 89.5 ± 13.6 | 0.068 b | 0.5 ± 7.7 | −1.1 ± 9.5 | −1.7 ± 8.8 | 0.372 | 2.8 ± 7.8 | 8.1 ± 10.4 * | 5.3 ± 13.1 | 0.005 |
Sat | 95.7 ± 1.4 | 97.0 ± 1.8 | 0.015 c | 95.8 ± 1.2 | 96.9 ± 1.7 | 0.023 c | 95.3 ± 1.6 | 96.7 ± 1.6 | 0.008 c | 0.1 ± 1.5 | −0.4 ± 2.3 | −0.5 ± 1.9 | 0.982 | 3.6 ± 19.6 | 3.3 ± 19.6 | −0.2 ± 2.1 | 0.427 |
HR | 61.7 ± 11.0 | 66.4 ± 13.0 | 0.167 a | 72.6 ± 10.6 | 82.7 ± 13.0 | 0.004 a | 80.8 ± 12.5 | 97.6 ± 16.6 | <0.001 a | 15.0 ± 16.8 * | 19.1 ± 14.1 * | 4.2 ± 11.8 * | <0.001 | 20.8 ± 17.4 * | 31.2 ± 20.0 * | 10.4 ± 13.9 | <0.001 |
ECG–ischemic features | 0 (0%) | 0 (0%) | 1.0 d | 4 (15.4%) | 0 (0%) | 0.118 d | 3 (11.5%) | 0 (0%) | 0.234 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucki, M.; Chlebuś, E.; Wareńczak, A.; Lisiński, P. The Use of Samsung Health and ECG M-Trace Base II Applications for the Assessment of Exercise Tolerance in the Secondary Prevention in Patients after Ischemic Stroke. Int. J. Environ. Res. Public Health 2021, 18, 5753. https://doi.org/10.3390/ijerph18115753
Lucki M, Chlebuś E, Wareńczak A, Lisiński P. The Use of Samsung Health and ECG M-Trace Base II Applications for the Assessment of Exercise Tolerance in the Secondary Prevention in Patients after Ischemic Stroke. International Journal of Environmental Research and Public Health. 2021; 18(11):5753. https://doi.org/10.3390/ijerph18115753
Chicago/Turabian StyleLucki, Mateusz, Ewa Chlebuś, Agnieszka Wareńczak, and Przemysław Lisiński. 2021. "The Use of Samsung Health and ECG M-Trace Base II Applications for the Assessment of Exercise Tolerance in the Secondary Prevention in Patients after Ischemic Stroke" International Journal of Environmental Research and Public Health 18, no. 11: 5753. https://doi.org/10.3390/ijerph18115753
APA StyleLucki, M., Chlebuś, E., Wareńczak, A., & Lisiński, P. (2021). The Use of Samsung Health and ECG M-Trace Base II Applications for the Assessment of Exercise Tolerance in the Secondary Prevention in Patients after Ischemic Stroke. International Journal of Environmental Research and Public Health, 18(11), 5753. https://doi.org/10.3390/ijerph18115753