The Safety Assessment of Toxic Metals in Commonly Used Herbs, Spices, Tea, and Coffee in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
- Herbs (163)
- -
- Green matter: hoary rockrose (Cistus incanus L.)—(7), lemon balm (Melissa officinalis L.)—(4), common sage (Salvia officinalis L.)—(4), common thyme (Thymus vulgaris L.) (3), field horsetail (Equisetum arvense L.)—(3), heath speedwell (Veronica officinalis L.)—(3), common mugwort (Artemisia vulgaris L.)—(3), yellow bedstraw (Galium verum L.) (3), ground ivy (Glechoma hederacea L.)—(3), smallflower hairy willowherb (Epilobium parviflorum Schreb.)—(3), southernwood (Artemisia abrotanum L.)—(3), common oat (Avena sativa L.)—(3);
- -
- Root: valerian (Valeriana officinalis L.)—(17), liquorice (Glycyrrhiza glabra L.)—(8), dandelion (Taraxacum officinale Web.)—(4), greater burdock (Arctium lappa L.)—(3), Japanese knotweed (Reynoutria japonica Houtt.)—(3), marshmallow (Althaea officinalis L.)—(3), common chicory (Cichorium intybus L.)—(3),
- -
- Leaf: European blueberry (Vaccinium myrtillus L.)—(3), blackcurrant (Ribes nigrum L.)—(3), white mulberry (Morus alba L.)—(3), globe artichoke (Cynara scolymus L.)—(3), red raspberry (Rubus idaeus L.)—(3), goutweed (Aegopodium podagraria L.)—(3), bear’s garlic (Allium ursinum L.)—(3);
- -
- Flower: blackthorn (Prunus spinosa L.)—(3), red clover (Trifolium pratense L.)—(3), common heather (Calluna vulgaris L.)—(3), hollyhock (Alcea rosea L.)—(3), chamomile (Matricaria chamomilla L.)—(4), common sunflower (Helianthus annuus L.)—(3), small-leaved lime (Tilia cordata Mill.)—(3), white nettle (Lamium album L.)—(3);
- -
- Fruit: dog rose (Rosa canina L.)—(3), rowan (Sorbus aucuparia L.)—(4), midland hawthorn (Crataegus oxyacantha L.)—(3), chasteberry (Vitex agnus-castus L.)—(3);
- -
- Seeds: common flax (Linum usitatissimum L.)—(24), narrowleaf plantain (Plantago lanceolata L.)—(3).
- Spices (61)
- -
- Green matter of basil (Ocimum basilicum L.)—(3);
- -
- Rhizome: common onion (Allium cepa L.)—(3), common garlic (Allium sativum L.)—(3);
- -
- Root of turmeric (Curcuma longa L.)—(3);
- -
- Flowers of clove tree (Eugenia caryophyllus L.)—(3);
- -
- Fruit: black pepper (Piper nigrum L.)—(26), peppers (Capsicum annuum L.)—(8), allspice (Pimenta dioica L.)—(3);
- -
- Seeds: cumin (Cuminum cyminum L.)—(3), fennel (Foeniculum vulgare Mill.)—(3), fenugreek (Trigonella foenum-graecum L.)—(3).
- Leaf of China tea (green) (8).
- Beans of Arabica coffee (roasted) (8).
2.2. Evaluation of the Contents of Cd, Pb, As, and Hg
2.3. ICP–MS
2.4. Mercury Analyzer
2.5. Analytical Quality
2.6. Health Risk Assessment
3. Results and Discussion
3.1. Cadmium
3.2. Lead
3.3. Arsenic
3.4. Mercury
3.5. Health Risk Assessment (Noncarcinogenic Risk)
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kusuma, I.W.; Arung, E.T.; Kim, Y.U. Antimicrobial and antioxidant properties of medicinal plants used by the Bentian tribe from Indonesia. Food Sci. Hum. Wellness 2014, 3, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Duman, E.; Özcan, M.M. Mineral contents of seed and seed oils of Capparis species growing wild in Turkey. Environ. Monit. Assess. 2014, 186, 239–245. [Google Scholar] [CrossRef]
- Brzezicha-Cirocka, J.; Grembecka, M.; Szefer, P. Monitoring of essential and heavy metals in green tea from different geographical origins. Environ. Monit. Assess. 2016, 188, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tan, E.K.; Chua, E.; Fook-Chong, S.M.; Teo, Y.Y.; Yuen, Y.; Tan, L.; Zhao, Y. Association between caffeine intake and risk of Parkinson’s disease among fast and slow metabolizers. Pharmacogenomics 2007, 17, 1001–1005. [Google Scholar]
- Kotyczka, C.; Boettler, U.; Lang, R.; Stiebitz, H.; Bytof, G.; Lantz, I.; Hofmann, T.; Marko, D.; Somoza, V. Dark roast coffee is more effective than light roast coffee in reducing body weight, and in restoring red blood cell vitamin E and glutathione concentrations in healthy volunteers. Mol. Nutr. Food Res. 2011, 55, 1582–1586. [Google Scholar] [CrossRef]
- Jabeen, S.; Shah, M.; Khan, S.; Hayat, M.Q. Determination of major and trace elements in ten important folk therapeutic plants of Haripur basin, Pakistan. J. Med. Plants Res. 2010, 4, 559–566. [Google Scholar]
- Baye, H.; Hymete, A. Lead and cadmium accumulation in medicinal plants collected from environmentally different sites. Bull. Environ. Contam. Toxicol. 2010, 84, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, V.; Basak, B.B.; Varghese, T.S.; Saha, A. Residues and contaminants in medicinal herbs—A review. Phytochem. Lett. 2015, 14, 67–78. [Google Scholar] [CrossRef]
- Wallkers, M.P. Cadmium carcinogenesis. Mutat. Res. 2003, 533, 107–120. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organisation). WHO Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues; World Health Organ: Geneva, Switzerland, 2007. [Google Scholar]
- Regulation of the Minister of Health of 27 September 2006. Amending the Regulation on the Methods of Sampling Certain Foods for the Official Control of the Levels of Pollutants and the Preparation of Samples and Guidelines for Analytical Methods for the Determination of These Pollutants. Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20061811336/O/D20061336.pdf (accessed on 19 May 2021).
- Kowalska, G.; Kowalski, R.; Hawlena, J.; Rowiński, R. Seeds of oilseed rape as an alternative source of protein and minerals. J. Elem. 2020, 25, 513–522. [Google Scholar] [CrossRef]
- Kowalski, R.; Kowalska, G.; Baj, A. The risk asessment of mercury poisoning after consuming teas and cereal products. Curr. Issues Pharm. Med. Sci. 2012, 25, 176–178. [Google Scholar]
- Dadar, M.; Adel, M.; Saravi, H.N.; Fakhri, Y. Trace element concentration and its risk assessment in common kilka (Clupeonella cultriventris caspia Bordin, 1904) from southern basin of Caspian Sea. Toxin Rev. 2017, 36, 222–227. [Google Scholar] [CrossRef]
- Fathabad, A.E.; Shariatifar, N.; Moazzen, M.; Nazmara, S.; Fakhri, Y.; Alimohammadi, M.; Azari, A.; Khaneghah, A.M. Determination of heavy metal content of processed fruit products from Tehran’s market using ICP-OES: A risk assessment study. Food Chem. Toxicol. 2018, 115, 436–446. [Google Scholar] [CrossRef]
- Means, B. Risk Assessment Guidance for Superfund; Human Health Evaluation Manual (Part A); Interim Final, Volume I; National Center for Environmental Assessement, Office of Research and Developments: Washington, DC, USA, 1989.
- Newerli-Guz, J. Analiza rynku przypraw w Polsce. Mark. Zarządzanie 2017, 2, 167–175. [Google Scholar] [CrossRef]
- CBI Product Factsheet: Tea in Poland. Available online: https://www.cbi.eu/sites/default/files/market-information/cbi_2016_-_tea_-_pfs_pl_-_final_draft.pdf (accessed on 24 March 2021).
- Chudy, S. Rozwój rynku kawy i zmiany w jej konsumpcji wśród Polaków. JARD 2014, 4, 1–10. [Google Scholar]
- CBI Trade Statistics Spices and Herbs. Available online: https://www.ceintelligence.com/files/documents/Herbs%20and%20Spices%20Sector%20-%20CBI%20Trade%20Statistics.pdf (accessed on 24 March 2021).
- Chamannejadian, A.; Sayyad, G.; Moezzi, A.; Jahangriri, A. Evaluation of estimated daily intake (EDI) of cadmium and lead for rice (Oryza sativa L.) in calcareous soils. Iran. J. Environ. Health Sci. Eng. 2013, 10, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USEPA. Quantitative Risk Assessment Calculations; US Environmental Protection Agency USEPA: Washington, DC, USA, 2015. Available online: https://www.epa.gov/sites/production/files/2015-05/documents/13.pdf (accessed on 12 February 2021).
- Pawełczyk, A.; Božek, F.; Żuber, M. Environmental Risk, Case Studies. Czech-Pol Trade: Prague, Czech Republic. 2018. Available online: https://depot.ceon.pl/handle/123456789/14664 (accessed on 12 February 2021).
- IARC. Agents classified by the IARC monographs. In Oxford Handbook of Occupational Health; OUP Oxford: Oxford, UK, 2011. [Google Scholar]
- USEPA, United States Environmental Protection Agency. Methodology for Deriving Ambient Water Quality Criteriafor the Protection of Human Health; EPA-822-B-00-004; USEPA: Washington, DC, USA, 2000.
- Mirosławski, J.; Pakuszto, A. Determination of the cadmium, chromium, nickel, and lead ions relays in selected polish medicinal plants and their infusion. Biol. Trace Elem. Res. 2018, 182, 147–151. [Google Scholar] [CrossRef] [Green Version]
- Krejpcio, Z.; Król, E.; Sionkowski, S. Evaluation of heavy metals contents in spices and herbs available on the polish market. Pol. J. Environ. Stud. 2007, 16, 97–100. [Google Scholar]
- Gajewska, M.; Czajkowska-Mysłek, A.; Głowacka, A. Assesment of content of cadmium and lead in selected dried culinary plants. Post. Nauki Technol. Przem. Rol. Spoż. 2016, 71, 43–51. [Google Scholar]
- Staniek, K.; Krejpcio, Z. Evaluation of Cd and Pb content in selected organic and conventional products. Probl. Hig. Epidemiol. 2013, 94, 857–861. [Google Scholar]
- Fischer, A.; Brodziak-Dopierała, B.; Steuer, M.; Rajczykowski, K.; Kowol, J. The concentration of cadmium in spice plants available on the market and in individual growing areas. Environ. Med. 2017, 20, 27–33. [Google Scholar]
- Chizzola, R.; Michitsch, H.; Franz, C. Monitoring of metallic micronutrients and heavy metals in herbs, spices and medicinal plants from Austria. Eur. Food Res. Technol. 2003, 216, 407–411. [Google Scholar] [CrossRef]
- Reinholds, I.; Pugajeva, I.; Bavrins, K.; Kuckovska, G.; Bartkevics, V. Mycotoxins, pesticides and toxic metals in commercial spices and herbs. Food Addit. Contam. Part B 2017, 10, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Özden, H.; Özden, S. Levels of Heavy Metals and OTA in Medicinal Plants Commercialized in Turkey. Turk. J. Pharm. Sci. 2018, 15, 376–381. [Google Scholar] [PubMed]
- Özcan, M.M.; Ünver, A.; Uçar, T.; Arslan, D. Mineral content of some herbs and herbal teas by infusion and decoction. Food Chem. 2008, 106, 1120–1127. [Google Scholar] [CrossRef]
- Divrikli, U.; Horzum, N.; Soylak, M.; Elci, L. Trace heavy metal contents of some spices and herbal plants from western Anatolia, Turkey. Intern. J. Food Sci. Technol. 2006, 41, 712–716. [Google Scholar] [CrossRef]
- Kohzadi, S.; Shahmoradi, B.; Ghaderi, E.; Loqmani, H.; Maleki, A. Concentration, source, and potential human health risk of heavy metals in the commonly consumed medicinal plants. Biol. Trace Elem. Res. 2019, 187, 41–50. [Google Scholar] [CrossRef]
- Moghaddam, M.; Mehdizadeh, L.; Sharifi, Z. Macro- and microelement content and health risk assessment of heavy metals in various herbs of Iran. Environ. Sci. Pollut. Res. 2020, 27, 12320–12331. [Google Scholar] [CrossRef]
- Ibrahim, G.I.; Hassan, L.M.; Baban, S.O.; Fadhil, S.S. Effect of heavy metal content of some common spices available in local markets in Erbil city on human consumption. Raf. J. Sci. 2012, 23, 106–114. [Google Scholar] [CrossRef]
- Dghaim, R.; Khatib, S.A.; Rasool, H.; Khan, M.A. Determination of heavy metals concentration in traditional herbs commonly consumed in the United Arab Emirates. J. Environ. Public Health 2015, 973878, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Nordin, N.; Selamat, J. Heavy metals in spices and herbs from wholesale markets in Malaysia. Food Addit. Contam. Part B 2013, 6, 36–41. [Google Scholar] [CrossRef]
- Meena, A.K.; Bansal, P.; Kumar, S.; Rao, M.M.; Garg, V.K. Estimation of heavy metals in commonly used medicinal plants: A market basket survey. Environ. Monit. Assess. 2010, 170, 657–660. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Kulsoom, M.; Shukla, V.; Kumar, D.; Priyanka; Sanjeev, P.; Kumar, S.; Tiwari, J.; Dwivedi, N. Profiling of heavy metal and pesticide residues in medicinal plants. Environ. Sci. Pollut. Res. 2018, 25, 29505–29510. [Google Scholar] [CrossRef]
- Wojciechowska-Mazurek, M.; Starska, K.; Mania, M.; Rebeniak, M.; Karłowski, K. Pierwiastki szkodliwe dla zdrowia w herbacie—Ocena zagrożenia dla zdrowia. Bromat. Chem. Toksykol. 2010, 43, 233–239. [Google Scholar]
- Suchacz, B.; Wesołowski, M. The analysis of heavy metals content in herbal infusions. Cent. Eur. J. Med. 2012, 7, 457–464. [Google Scholar] [CrossRef]
- Winiarska-Mieczana, A.; Kwiecień, M.; Kwiatkowska, K. Lead and cadmium content in herbal teas. Probl. Hig. Epidemiol. 2011, 92, 667–670. [Google Scholar]
- Sarojam, P. Application Note. Atomic Absorption; PerkinElmer, Ed.; Bic USA Inc.: Shelton, CT, USA, 2011. [Google Scholar]
- Zhong, W.S.; Ren, T.; Zhao, L.J. Determination of Pb (lead), Cd (cadmium), Cr (chromium),Cu (cooper), and Ni (nickel) in Chinese tea with high-resolution continuum Skurce graphite furnace atomic absorption spectrometry. J. Food Drug Anal. 2016, 24, 46–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basgel, S.; Erdemoglu, S.B. Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Sci. Total Environ. 2006, 359, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Hosseni, S.M.; Shakerian, A.; Moghini, A. Cadmium and lead content in several brands of black tea (Camelia sinesis) in Iran. J. Food Biosci. Technol. 2012, 3, 67–72. [Google Scholar]
- Adler, G.; Nędzarek, A.; Tchórz, A. Concentration of selected metals (Na, K, Ca, Mg, Fe, Cu, Zn, Al, Ni, Pb, Cd) in coffee. Zdr. Varst. 2019, 58, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Długaszek, M.; Połec, J.; Mularczyk-Oliwa, M. The content of chosen elements in coffee infusions depending on the method of their preparation. Bromat. Chem. Toksykol. 2010, 43, 493–497. [Google Scholar]
- Alves da Silva, S.; Mendes, F.Q.; Reis, M.R.; Passos, F.R.; Xavier de Carvalho, A.M.; Rodrigues de Oliveira Rocha, K.; Pinto, F.G. Determination of heavy metals in the roasted and ground coffee beans and brew. Afr. J. Agric. Res. 2017, 12, 221–228. [Google Scholar]
- Grembecka, M.; Malinowska, E.; Szefer, P. Differentiation of market coffee and its infusions in view of their mineral composition. Sci. Total Environ. 2007, 383, 59–69. [Google Scholar] [CrossRef]
- Blagojević, S.M.; Blagojević, S.N.; Begović, B.M. Lead, Mercury and Arsenic Content in Spices: Black, White and Green Pepper, Black Cumin and Ginger. Facta Univ. Ser. Phys. Chem. Technol. 2015, 13, 191–202. [Google Scholar] [CrossRef]
- Huremović, J.; Badema, B.; Muhić-Šarac, T.; Selović, A.; Memić, M. Heavy metal contents in spices from markets in Sarajevo, Bosnia and Herzegovina. Kem. Ind. 2014, 63, 77–81. [Google Scholar]
- Alhusban, A.A.; Ata, S.A.; Shraim, A. The safety assessment of toxic metals in commonly used pharmaceutical herbal products and traditional herbs for infants in Jordanian market. Biol. Trace Element. Res. 2019, 187, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Gutt, G.; Amariei, S.; Norocel, L. Study of heavy metals in teas from romanian market. Rev. Chim. 2020, 71, 156–170. [Google Scholar] [CrossRef]
- Othman, A.; Al-Ansi, S.; Al-Tufail, M. Determination of lead in Saudi Arabian imported green tea by ICP-MS. J. Chem. 2012, 9, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Behera, B.; Bhattacharya, S. The importance of assessing heavy metals in medicinal herbs: A quantitative study. TANG 2016, 6, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Mania, M.; Szynal, T.; Rebeniak, M.; Wojciechowska-Mazurek, M.; Starska, K.; Strzelecka, A. Human exposure asseessment to different arsenic species in tea. Rocz. Panstw. Zakl. Hig. 2014, 65, 281–286. [Google Scholar]
- European Food Safety Authority. Scientific opinion of the Panel on Contaminants in the Food Chain (CONTAM) on arsenic in food. EFSA J. 2009, 7, 1–199. [Google Scholar]
- Yuan, C.; Gao, E.; He, B.; Jiang, G. Arsenic species and leaching characters in tea(Camellia sinensis). Food Chem. Toxicol. 2007, 45, 2381–2389. [Google Scholar] [CrossRef]
- Han, W.Y.; Shi, Y.Z.; Ma, L.F.; Ruan, J.Y. Arsenic, cadmium, chromium, cobalt, and copper in different types of Chinese tea. Bull. Environ. Contam. Toxicol. 2005, 75, 272–277. [Google Scholar] [CrossRef]
- Shi, Y.Z.; Jin, L.M.; Zhu, Y.S. The contents status quo and the cumulation characteristic of heavy metal in tea. China Tea 2007, 6, 17–19. [Google Scholar]
- Fischer, A.; Brodziak-Dopierała, B.; Loska, K.; Stojko, J. The assessment of toxic metals in plants used in cosmetics and cosmetology. Int. J. Environ. Res. Public Health 2017, 14, 1280. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, R.; Kucharski, A. Monitoring of total merkury level in selected herbal products. Herba Pol. 2007, 53, 235–240. [Google Scholar]
- Yu, I.S.; Lee, J.S.; Kim, S.D.; Kim, Y.H.; Park, H.W.; Ryu, H.J.; Lee, J.H.; Lee, J.K.; Jung, K.; Na, C. Monitoring heavy metals, residual agricultural chemicals and sulfites in traditional herbal decoctions. BMC Complement Altern. Med. 2017, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Forsberg, J.; McQuatters, J. Mercury Determination in Tea Leaves, INCT-TL-1, USEPA Method 7473, Using the Teledyne Leeman Labs Hydra IIc Combustion CVAAS; Aplication Note—AN1603; Teledyne Leeman Labs: Mason, OH, USA, 2016. [Google Scholar]
- Canadian Food Inspection Agency. Mercury in Dried Tea, Soft Drinks and Corn Syrup; Canadian Food Inspection Agency: Ottawa, Canada, 2011.
- Soliman, N.F. Metals contents in spices and herbs available on the Egyptian market: Assessment of potential human health risk. Open Conf. Proc. J. 2015, 6, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Mihreteab, M.; Ketema, G.; Kassahun, H. Health risk assessment and determination of some heavy metals in commonly consumed traditional herbal preparations in Northeast Ethiopia. J. Chem. 2020, 7. [Google Scholar] [CrossRef]
- Adusei-Mensah, F.; Essumang, D.K.; Agjei, R.O.; Kauhanen, J.; Tikkanen-Kaukanen, C.; Ekor, M. Heavy metal content and health risk assessment of commonly patronized herbal medicinal preparations from the Kumasi metropolis of Ghana. J. Environ. Health Sci. Eng. 2019, 17, 609–618. [Google Scholar] [CrossRef]
- Nkansah, M.A.; Opoku, F.; Ackumey, A.A. Risk assessment of mineral and heavy metal content of selected tea products from the Ghanaian market. Environ. Monit. Assess. 2016, 188, 332. [Google Scholar] [CrossRef]
- Asomugha, R.N.; Udowelle, N.A.; Offor, S.J.; Njoku, C.J.; Ofoma, I.Y.; Chukwuogor, C.C.; Orisakwe, O.E. Heavy metals hazards from Nigerian spices. Rocz. Panstw. Zakl. Hig. 2016, 67, 309–314. [Google Scholar]
- Zhang, J.; Yang, R.; Chen, R.; Peng, Y.; Wen, X.; Gao, L. Accumulation of Heavy Metals in Tea Leaves and Potential Health Risk Assessment: A Case Study from Puan County, Guizhou Province, China. Int. J. Environ. Res. Public Health 2018, 15, 133. [Google Scholar] [CrossRef] [Green Version]
- Winiarska-Mieczan, A.; Kwiatkowska, K.; Kwiecień, M.; Zaricka, E. Assessment of the risk of exposure to cadmium and lead as a result of the consumption of coffee infusions. Biol. Trace Elem. Res. 2020, 199, 2420–2428. [Google Scholar] [CrossRef]
- Kowalska, G.; Pankiewicz, U.; Kowalski, R. Determination of the level of selected elements in canned meat and fish and risk assessment for consumer health. J. Anal. Methods Chem. 2020, 2148794, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, G.; Pankiewicz, U.; Kowalski, R.; Mazurek, A. Determination of the content of selected trace elements in Polish commercial fruit juices and health risk assessment. Open Chem. 2020, 18, 443–452. [Google Scholar] [CrossRef]
- Malec, A.; Borowski, G. Assessment of soil contamination in the lubelskie province based on monitoring studies. Ecol. Eng. 2017, 18, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Kuziemska, B.; Pakuła, K.; Pieniak-Lendzion, K.; Becher, M. Heavy metals in soil along transport routes. Zesz. Nauk. UPH w Siedlcach Ser. Administracja i Zarządzanie 2017, 39, 112. [Google Scholar]
- Skwaryło-Bednarz, B.; Kwapisz, M. Assesment of the content of heavy metals and catalase activity in soil located in protected zone of the Roztocze National Park. Acta Agrophys. 2014, 21, 351–359. [Google Scholar]
- Rolka, E.; Żołnowski, A.C.; Sadowska, M.M. Assessment of Heavy Metal Content in Soils Adjacent to the DK16-Route in Olsztyn (North-Eastern Poland). Pol. J. Environ. Stud. 2020, 29, 4303–4311. [Google Scholar] [CrossRef]
- Mazurek, R.; Kowalska, J.; Gąsiorek, M.; Zadrożny, P.; Józefowska, A.; Zaleski, T.; Kępka, W.; Tymczuk, M.; Orłowska, K. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere 2017, 168, 839–850. [Google Scholar] [CrossRef]
Validation Parameters | Metals | |||
---|---|---|---|---|
Hg | Cd | Pb | As | |
LOD * (mg/kg) | 0.002 | 0.01 | 0.005 | 0.05 |
LOQ ** (mg/kg) * | 0.005 | 0.02 | 0.01 | 0.1 |
Linearity | 0.9999 | 0.9999 | 0.9999 | 0.9999 |
Working range (mg/kg) | 0.005–5 | 0.02–2 | 0.01–5 | 0.1–10 |
Reproducibility (%) | 3.80 | 2.42 | 6.07 | 3.18 |
Recovery (%) | 90 | 99 | 99 | 101 |
Expanded uncertainty (%) | 24 | 6 | 12 | 7 |
Parts Used | Botanical Name | Samples Analysed | Cd (mg/kg) | Pb (mg/kg) | As (mg/kg) | Hg (mg/kg) |
---|---|---|---|---|---|---|
Herbs | ||||||
Herbs | Hoary rockrose Cistus incanus L. | 7 | <LOQ = 0.02–2.17 0.935 | <LOQ = 0.01–2.01 0.979 | <LOQ = 0.1 | <LOQ = 0.005–0.016 0.009 |
Lemon balm Melissa officinalis L. | 4 | 0.026–0.040 0.034 | 0.531–3.47 1.91 | <LOQ = 0.1 | <LOQ = 0.005 | |
Common sage Salvia officinalis L. | 4 | <LOQ = 0.02–0.035 0.009 | 1.96–2.55 2.21 | <LOQ = 0.1 | <LOQ = 0.005 | |
Common thyme Thymus vulgaris L. | 3 | 0.102–0.147 0.125 | <LOQ = 0.01 | <LOQ = 0.1 | <LOQ = 0.005 | |
Field horsetail Equisetum arvense L. | 3 | <LOQ = 0.02 | <LOQ = 0.01 | <LOQ = 0.1 | 0.007–0.020 0.015 | |
Heath speedwell Veronica officinalis L. | 3 | 0.399–0.485 0.453 | 0.99–1.15 1.07 | <LOQ = 0.1 | <LOQ = 0.005 | |
Common mugwort Artemisia vulgaris L. | 3 | 1.39–1.67 1.53 | 0.482–0.601 0.554 | <LOQ = 0.1 | 0.006–0.008 0.007 | |
Yellow bedstraw Galium verum L. | 3 | 0.380–0.481 0.434 | 0.189–0.246 0.209 | <LOQ = 0.1 | <LOQ = 0.005 | |
Ground ivy Glechoma hederacea L. | 3 | 0.157–0.201 0.183 | 0.295–0.405 0.359 | <LOQ = 0.1 | 0.009–0.017 0.012 | |
Smallflower hairy willowherb Epilobium parviflorum Schreb. | 3 | <LOQ = 0.02–0.119 0.040 | 0.328–0.588 0.460 | <LOQ = 0.1 | 0.006–0.007 0.006 | |
Southernwood Artemisia abrotanum L. | 3 | 0.295–0.427 0.368 | 1.20–1.85 1.57 | <LOQ = 0.1 | <LOQ = 0.005 | |
Common oat Avena sativa L. | 3 | <LOQ = 0.02–0.053 0.018 | 0.022–0.343 0.197 | <LOQ = 0.1 | <LOQ = 0.005 | |
Rhizome | Valerian Valeriana officinalis L. | 17 | <LOQ = 0.02–0.333 0.117 | 0.120–5.68 1.730 | <LOQ = 0.1–0.535 0.127 | <LOQ = 0.005–0.013 0.003 |
Liquorice Glycyrrhiza glabra L. | 8 | <LOQ = 0.02 | 0.174–0.334 0.270 | <LOQ = 0.1 | <LOQ = 0.005 | |
Dandelion Taraxacum officinale Web. | 3 | <LOQ = 0.02 | 0.299–0.407 0.337 | <LOQ = 0.1 | <LOQ = 0.005 | |
Greater burdock Arctium lappa L. | 3 | <LOQ = 0.02–0.316 0.189 | 0.36–0.46 0.41 | <LOQ = 0.1 | <LOQ = 0.005 | |
Japanese knotweed Reynoutria japonica Houtt. | 3 | 0.052–0.128 0.077 | 0.28–0.35 0.30 | <LOQ = 0.1 | <LOQ = 0.005 | |
Marshmallow Althaea officinalis L. | 3 | 0.220–0.461 0.340 | 0.258–0.389 0.331 | <LOQ = 0.1 | 0.006–0.007 0.006 | |
Common chicory Cichorium intybus L. | 3 | 0.075–0.124 0.091 | 0.073–0.201 0.116 | <LOQ = 0.1 | 0.006–0.007 0.006 | |
Leaves | European blueberry Vaccinium myrtillus L. | 3 | 0.202–0.322 0.256 | 1.23–1.99 0.60 | <LOQ = 0.1 | 0.010–0.030 0.02 |
Blackcurrant Ribes nigrum L. | 3 | 0.223–0.382 0.287 | 0.198–0.281 0.230 | 0.166–0.202 0.184 | <LOQ = 0.005 | |
White mulberry Morus alba L. | 3 | <LOQ = 0.02 | <LOQ = 0.01–0.20 0.067 | <LOQ = 0.1 | <LOQ = 0.005–0.015 0.009 | |
Globe artichoke Cynara scolymus L. | 3 | 0.554–0.654 0.603 | <LOQ = 0.01 | <LOQ = 0.1 | <LOQ = 0.005 | |
Red raspberry Rubus idaeus L. | 3 | 0.211–0.613 0.345 | 0.242–0.507 0.330 | <LOQ = 0.1 | <LOQ = 0.005–0.010 0.007 | |
Goutweed Aegopodium podagraria L. | 3 | <LOQ = 0.02 | 0.482–0.599 0.528 | <LOQ = 0.1 | 0.007–0.009 0.008 | |
Bear’s garlic Allium ursinum L. | 3 | 0.020–0.040 0.030 | 0.382–0.450 0.416 | <LOQ = 0.1 | 0.007–0.009 0.008 | |
Flowers | Blackthorn Prunus spinosa L. | 3 | 0.049–0.061 0.054 | 1.282–1.421 1.341 | <LOQ = 0.1 | 0.006–0.007 0.006 |
Red clover Trifolium pratense L. | 3 | <LOQ = 0.02 | 0.322–0.462 0.384 | <LOQ = 0.1 | <LOQ = 0.005 | |
Common heather Calluna vulgaris L. | 3 | <LOQ = 0.02 | 0.402–0.502 0.462 | <LOQ = 0.1 | <LOQ = 0.005 | |
Hollyhock Alcea rosea L. | 3 | 0.392–0.552 0.465 | 0.254–0.345 0.299 | <LOQ = 0.1 | <LOQ = 0.005 | |
Camomile Matricaria chamomilla L. | 4 | 0.198–0.244 0.217 | 0.587–2.99 1. 572 | <LOQ = 0.1 | <LOQ = 0.005 | |
Common sunflower Helianthus annuus L. | 3 | <LOQ = 0.02 | 0.025–0.053 0.034 | <LOQ = 0.1 | <LOQ = 0.005 | |
Small-leaved lime Tilia cordata Mill. | 3 | 0.057–0.077 0.047 | 0.119–0.284 0.207 | <LOQ = 0.1 | <LOQ = 0.005 | |
White nettle Lamium album L. | 3 | <LOQ = 0.02 | 0.426–0.585 0.499 | <LOQ = 0.1 | < LOQ = 0.005 | |
Fruits | Dog rose Rosa canina L. | 3 | <LOQ = 0.02 | <LOQ = 0.01 | <LOQ = 0.1 | <LOQ = 0.005 |
Rowan Sorbus aucuparia L. | 4 | 0.030–0.052 0.041 | 0.048–0.062 0.056 | <LOQ = 0.1 | <LOQ = 0.005 | |
Midland hawthorn Crataegus oxyacantha L. | 3 | <LOQ = 0.02–0.520 0.322 | 0.034–0.295 0.175 | <LOQ = 0.1 | <LOQ = 0.005 | |
Chasteberry Vitex agnus-castus L. | 3 | <LOQ = 0.02 | <LOQ = 0.01 | <LOQ = 0.1 | <LOQ = 0.005 | |
Seeds | Common flax Linum usitatissimum L. | 24 | <LOQ = 0.02–0.322 0.137 | <LOQ = 0.01–0.707 0.089 | <LOQ = 0.1 | <LOQ = 0.005 |
Narrowleaf plantain Plantago lanceolata L. | 3 | <LOQ = 0.02 | 0.025–0.053 0.034 | <LOQ = 0.1 | <LOQ = 0.005 | |
Spices | ||||||
Herbs | Basil Ocimum basilicum L. | 3 | <LOQ = 0.02 | 1.34–1.92 1.66 | <LOQ = 0.1 | <LOQ = 0.005 |
Tubers | Common onion Allium cepa L. | 3 | 0.036–0.060 0.047 | 0.126–0.305 0.231 | <LOQ = 0.1 | <LOQ = 0.005 |
Common garlic Allium sativum L. | 3 | 0.029–0.045 0.038 | 0.069–0.092 0.082 | <LOQ = 0.1 | <LOQ = 0.005 | |
Rhizome | Turmeric Curcuma longa L. | 3 | <LOQ = 0.02 | <LOQ = 0.01–0.256 0.138 | <LOQ = 0.1 | <LOQ = 0.005 |
Fruits | Black pepper Piper nigrum L. | 26 | <LOQ = 0.02–0.080 0.006 | <LOQ = 0.01–0.740 0.159 | <LOQ = 0.1–0.863 0.053 | <LOQ = 0.005 |
Peppers Capsicum annuum L. | 8 | <LOQ = 0.02–0.044 0.002 | 0.070–0.775 0.338 | <LOQ = 0.01–0.178 0.077 | <LOQ = 0.005 | |
Allspice Pimenta dioica L. | 3 | <LOQ = 0.02 | 0.309–0.422 0.361 | <LOQ = 0.1 | <LOQ = 0.005 | |
Seeds | Cumin Cuminum cyminum L. | 3 | 0.057–0.082 0.072 | 0.32–0.55 0.43 | <LOQ = 0.1 | <LOQ = 0.005 |
Fennel Foeniculum vulgare Mill. | 3 | <LOQ = 0.02 | 0.253–0.382 0.321 | <LOQ = 0.1 | <LOQ = 0.005 | |
Fenugreek Trigonella foenum-graecum L. | 3 | 0.026–0.041 0.034 | 0.159–0.202 0.173 | <LOQ = 0.1 | <LOQ = 0.005 | |
Flowers | Clove tree Eugenia caryophyllus L. | 3 | <LOQ = 0.02 | 0.254–0.422 0.343 | <LOQ = 0.1 | <LOQ = 0.005 |
Tea and Coffee | ||||||
Leaf of China tea | 8 | 0.069–0.098 0.034 | <LOQ = 0.01–0.150 0.070 | <LOQ = 0.1 | <LOQ = 0.005–0.007 0.006 | |
Beans of Arabica coffee | 8 | <LOQ = 0.02–0.088 0.058 | 0.021–0.791 0.140 | <LOQ = 0.1 | <LOQ = 0.005–0.007 0.006 |
Pb | Hg | Cd | As | |
---|---|---|---|---|
* THQ | ||||
Spices (mean) | 1.07 × 10−3 | 0 | 1.80 × 10−3 | 4.33 × 10−3 |
Spices (max) | 5.33 × 10−3 | 0 | 8.20 × 10−3 | 2.88 × 10−2 |
Herbs (mean) | 1.41 × 10−3 | 1.00 × 10−4 | 1.94 × 10−2 | 2.70 × 10−4 |
Herbs (max) | 1.58 × 10−2 | 6.70 × 10−4 | 2.17 × 10−1 | 1.78 × 10−2 |
Tea (mean) | 7.50 × 10−4 | 7.70 × 10−4 | 1.31 × 10−2 | 0 |
Tea (max) | 1.61 × 10−3 | 9.00 × 10−4 | 3.78 × 10−2 | 0 |
Coffee (mean) | 4.33 × 10−3 | 1.11 × 10−3 | 6.46 × 10−2 | 0 |
Coffee (max) | 2.45 × 10−2 | 2.60 × 10−3 | 9.81 × 10−2 | 0 |
** TTHQ | ||||
Spices (mean) | 7.20 × 10−3 | |||
Spices (max) | 4.23 × 10−2 | |||
Herbs (mean) | 2.12 × 10−2 | |||
Herbs (max) | 2.51 × 10−1 | |||
Tea (mean) | 1.46 × 10−2 | |||
Tea (max) | 4.03 × 10−2 | |||
Coffee (mean) | 7.01 × 10−2 | |||
Coffee (max) | 1.25 × 10−1 | |||
*** EDI | ||||
Spices (mean) | 3.85 × 10−3 | 0 | 1.80 × 10−4 | 1.30 × 10−3 |
Spices (max) | 1.92 × 10−2 | 0 | 8.20 × 10−4 | 8.63 × 10−3 |
Herbs (mean) | 5.08 × 10−3 | 3.00 × 10−5 | 1.94 × 10−3 | 8.00 × 10−5 |
Herbs (max) | 5.68 × 10−2 | 2.00 × 10−4 | 2.17 × 10−2 | 5.35 × 10−3 |
Tea (mean) | 2.70 × 10−3 | 2.30 × 10−4 | 1.31 × 10−3 | 0 |
Tea (max) | 5.79 × 10−3 | 2.70 × 10−4 | 3.78 × 10−3 | 0 |
Coffee (mean) | 1.56 × 10−2 | 3.30 × 10−4 | 6.46 × 10−3 | 0 |
Coffee (max) | 8.81 × 10−2 | 7.80 × 10−4 | 9.81 × 10−3 | 0 |
CR | |
---|---|
Spices (mean) | 1.95 × 10−6 |
Spices (max) | 1.29 × 10−5 |
Herbs (mean) | 1.20 × 10−7 |
Herbs (max) | 8.03 × 10−6 |
Tea (mean) | 0 |
Tea (max) | 0 |
Coffee (mean) | 0 |
Coffee (max) | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalska, G. The Safety Assessment of Toxic Metals in Commonly Used Herbs, Spices, Tea, and Coffee in Poland. Int. J. Environ. Res. Public Health 2021, 18, 5779. https://doi.org/10.3390/ijerph18115779
Kowalska G. The Safety Assessment of Toxic Metals in Commonly Used Herbs, Spices, Tea, and Coffee in Poland. International Journal of Environmental Research and Public Health. 2021; 18(11):5779. https://doi.org/10.3390/ijerph18115779
Chicago/Turabian StyleKowalska, Grażyna. 2021. "The Safety Assessment of Toxic Metals in Commonly Used Herbs, Spices, Tea, and Coffee in Poland" International Journal of Environmental Research and Public Health 18, no. 11: 5779. https://doi.org/10.3390/ijerph18115779
APA StyleKowalska, G. (2021). The Safety Assessment of Toxic Metals in Commonly Used Herbs, Spices, Tea, and Coffee in Poland. International Journal of Environmental Research and Public Health, 18(11), 5779. https://doi.org/10.3390/ijerph18115779