Cardiac Parasympathetic Withdrawal and Sympathetic Activity: Effect of Heat Exposure on Heart Rate Variability
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horn, E.; Lee, S. Electronic evaluations of the fetal heart rate patterns preceding fetal death: Further observation. Am. J. Obster. Gynecol. 1965, 87, 824–826. [Google Scholar]
- Pomeranz, B.; Macaulay, R.; Caudill, M.A.; Kutz, I.; Adam, D.; Gordon, D.; Kilborn, K.M.; Barger, A.C.; Shannon, D.C.; Cohen, R.J.; et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am. J. Physiol. Heart Circ. 1985, 248, H151–H153. [Google Scholar] [CrossRef]
- Pagani, M.; Lombardi, F.; Guzzetti, S.; Rimoldi, O.; Furlan, R.; Pizzinelli, P.; Sandrone, G.; Malfatto, G.; Dell’Orto, S.; Piccaluga, E. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res. 1986, 59, 178–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furlan, R.; Guzzetti, S.; Crivellaro, W.; Dassi, S.; Tinelli, M.; Baselli, G.; Cerutti, S.; Lombardi, F.; Pagani, M.; Malliani, A. Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation 1990, 81, 537–547. [Google Scholar] [CrossRef] [Green Version]
- Kleiger, R.E.; Miller, J.; Bigger, J.; Moss, A.J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 1987, 59, 256–262. [Google Scholar] [CrossRef]
- Malik, M.; Farrell, T.; Cripps, T.; Camm, A.J. Heart rate variability in relation to prognosis after myocardial infarction: Selection of optimal processing techniques. Eur. Heart J. 1989, 10, 1060–1074. [Google Scholar] [CrossRef]
- Bigger, J.T.; Fleiss, J.L.; Steinman, R.C.; Rolnitzky, L.M.; Kleiger, R.E.; Rottman, J.N. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation 1992, 85, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Kitney, R. Heart rate variability in the assessment of autonomic diabetic neuropathy. Automedica 1982, 4, 155–167. [Google Scholar]
- Pagani, M.; Malfatto, G.; Pierini, S.; Casati, R.; Masu, A.M.; Poli, M.; Guzzetti, S.; Lombardi, F.; Cerutti, S.; Malliani, A. Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy. J. Auton. Nerv. Syst. 1988, 23, 143–153. [Google Scholar] [CrossRef]
- Malliani, A.; Pagani, M.; Lombardi, F.; Cerutti, S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991, 84, 482–492. [Google Scholar] [CrossRef] [Green Version]
- Appel, M.L.; Berger, R.D.; Saul, J.; Smith, J.M.; Cohen, R.J. Beat to beat variability in cardiovascular variables: Noise or music? J. Am. Coll. Cardiol. 1989, 14, 1139–1148. [Google Scholar] [CrossRef] [Green Version]
- Miu, A.C.; Heilman, R.M.; Miclea, M. Reduced heart rate variability and vagal tone in anxiety: Trait versus state, and the effects of autogenic training. Auton. Neurosci. 2009, 145, 99–103. [Google Scholar] [CrossRef]
- Furlan, R.; Piazza, S.; Dell’Orto, S.; Gentile, E.; Cerutti, S.; Pagani, M.; Malliani, A. Early and late effects of exercise and athletic training on neural mechanisms controlling heart rate. Cardiovasc. Res. 1993, 27, 482–488. [Google Scholar] [CrossRef]
- Arai, Y.; Saul, J.P.; Albrecht, P.; Hartley, L.H.; Lilly, L.S.; Cohen, R.J.; Colucci, W.S. Modulation of cardiac autonomic activity during and immediately after exercise. Am. J. Physiol. 1989, 256, H132–H141. [Google Scholar] [CrossRef]
- Kaikkonen, P.; Hynynen, E.; Mann, T.; Rusko, H.; Nummela, A. Can HRV be used to evaluate training load in constant load exercises? Eur. J. Appl. Physiol. 2010, 108, 435–442. [Google Scholar] [CrossRef]
- Kaikkonen, P.; Hynynen, E.; Mann, T.; Rusko, H.; Nummela, A. Heart rate variability is related to training load variables in interval running exercises. Eur. J. Appl. Physiol. 2012, 112, 829–838. [Google Scholar] [CrossRef] [Green Version]
- Chalencon, S.; Busso, T.; Lacour, J.-R.; Garet, M.; Pichot, V.; Connes, P.; Gabel, C.P.; Roche, F.; Barthélémy, J.C. A model for the training effects in swimming demonstrates a strong relationship between parasympathetic activity, performance and index of fatigue. PLoS ONE 2012, 7, e52636. [Google Scholar] [CrossRef] [Green Version]
- Buchheit, M.; Chivot, A.; Parouty, J.; Mercier, D.; Al Haddad, H.; Laursen, P.B.; Ahmaidi, S. Monitoring endurance running performance using cardiac parasympathetic function. Graefe’s Arch. Clin. Exp. Ophthalmol. 2009, 108, 1153–1167. [Google Scholar] [CrossRef] [PubMed]
- Umetani, K.; Singer, D.H.; McCraty, R.; Atkinson, M. Twenty-four hour time domain heart rate variability and heart rate: Relations to age and gender over nine decades. J. Am. Coll. Cardiol. 1998, 31, 593–601. [Google Scholar] [CrossRef]
- Antelmi, I.; De Paula, R.S.; Shinzato, A.R.; Peres, C.A.; Mansur, A.J.; Grupi, C.J. Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. Am. J. Cardiol. 2004, 93, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Tulppo, M.; Mäkikallio, T.H.; Seppänen, T.; Laukkanen, R.T.; Huikuri, H.V. Vagal modulation of heart rate during exercise: Effects of age and physical fitness. Am. J. Physiol. 1998, 274, H424–H429. [Google Scholar] [CrossRef] [PubMed]
- Gregoire, J.; Tuck, S.; Yamamoto, Y.; Hughson, R. Heart rate variability at rest and exercise: Influence of age, gender, and physical training. Can. J. Appl. Physiol. 1996, 21, 455. [Google Scholar] [CrossRef] [PubMed]
- Orellana, J.N.; Torres, B.C.; Cachadiña, E.S.; de Hoyo, M.; Cobo, S.D. Two new indexes for the assessment of autonomic balance in elite soccer players. Int. J. Sports Physiol. 2015, 10, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Crandall, C.G.; Wilson, T.E. Human cardiovascular adaptations supporting human exercise-heat acclimation. Compr. Physiol. 2015, 5, 17. [Google Scholar] [PubMed] [Green Version]
- Périard, J.D.; Travers, G.J.; Racinais, S.; Sawka, M.N. Cardiovascular adaptations supporting human exercise-heat acclimation. Auton. Neurosci. 2016, 196, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Cheshire, W.P. Thermoregulatory disorders and illness related to heat and cold stress. Auton. Neurosci. 2016, 196, 91–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, C.; O’neill, M.S.; Park, S.K.; Sparrow, D.; Vokonas, P.; Schwartz, J. Ambient temperature, air pollution, and heart rate variability in an aging population. Am. J. Epidemiol. 2011, 173, 1013–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, I.K.M.; Thomas, S.; Shephard, R.J. Spectral analysis of heart rate variability during heat exposure and repeated exercise. Graefe’s Arch. Clin. Exp. Ophthalmol. 1997, 76, 145–156. [Google Scholar] [CrossRef]
- Sollers, J.J.; Sanford, T.A.; Nabors-Oberg, R.; Anderson, C.A.; Thayer, J.F. Examining changes in HRV in response to varying ambient temperature. IEEE Eng. Med. Biol. 2002, 21, 30–34. [Google Scholar] [CrossRef]
- Yamamoto, S.; Iwamoto, M.; Inoue, M.; Harada, N. Evaluation of the Effect of Heat Exposure on the Autonomic Nervous System by Heart Rate Variability and Urinary Catecholamines. J. Occup. Health 2007, 49, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Camm, A.J.; Malik, M.; Bigger, J.; Breithardt, G.; Cerutti, S.; Cohen, R.; Singer, D.H. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Peçanha, T.; Forjaz, C.L.D.M.; Low, D.A. Additive effects of heating and exercise on baroreflex control of heart rate in healthy males. J. Appl. Physiol. 2017, 123, 1555–1562. [Google Scholar] [CrossRef]
- Kleiger, R.; Stein, P.K.; Bosner, M.S.; Rottman, J.N. Time domain measurements of heart rate variability. Cardiol. Clin. 1992, 10, 487–498. [Google Scholar] [CrossRef]
- Nolan, J.; Batin, P.D.; Andrews, R.; Lindsay, S.J.; Brooksby, P.; Mullen, M.; Baig, W.; Flapan, A.D.; Cowley, A.; Prescott, R.J.; et al. Prospective study of heart rate variability and mortality in chronic heart failure. Circulation 1998, 98, 1510–1516. [Google Scholar] [CrossRef] [Green Version]
- Kamath, M.V.; Fallen, E.L. Power spectral analysis of heart rate variability: A noninvasive signature of cardiac autonomic function. Crit. Rev. Biomed. Eng. 1993, 21, 245–311. [Google Scholar] [PubMed]
- Saboul, D.; Balducci, P.; Millet, G.; Pialoux, V.; Hautier, C. A pilot study on quantification of training load: The use of HRV in training practice. Eur. J. Sport Sci. 2015, 16, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Tulppo, M.; Makikallio, T.H.; Takala, T.E.; Seppanen, T.; Huikuri, H.V. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am. J. Physiol. 1996, 271, H244–H252. [Google Scholar] [CrossRef]
- Ciccone, A.B.; Siedlik, J.A.; Wecht, J.M.; Deckert, J.A.; Nguyen, N.D.; Weir, J.P. Reminder: RMSSD and SD1 are identical heart rate variability metrics. Muscle Nerve 2017, 56, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Sandercock, G.R.; Bromley, P.D.; Brodie, D.A. The reliability of short-term measurements of heart rate variability. Int. J. Cardiol. 2005, 103, 238–247. [Google Scholar] [CrossRef]
- Bruce-Low, S.S.; Cotterrell, D.; Jones, G.E. Heart rate variability during high ambient heat exposure. Aviat. Space Environ. Med. 2006, 77, 915–920. [Google Scholar]
- Gorman, A.J.; Proppe, D.W. Mechanisms producing tachycardia in conscious baboons during environmental heat stress. J. Appl. Physiol. 1984, 56, 441–446. [Google Scholar] [CrossRef] [PubMed]
Experimental Group (n = 12) | Control Group (n = 10) | |||
---|---|---|---|---|
Outcome | M | SD | M | S |
Age (years) | 25 | 3 | 24 | 3 |
Height (cm) | 174 | 7 | 176 | 8 |
Weight (kg) | 68 | 11 | 71 | 9 |
Body mass index (kg∙m2) | 22.4 | 2.2 | 22.9 | 1.4 |
ANOVA (F, p, η2p) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19 °C | 35 °C EG 19 °C CG | Temperature Effect | Group Effect | Group*Temperature Effect | |||||||||||
Outcome | Group | M | SD | M | SD | p | F | p | η2p | F | p | η2p | F | p | η2p |
RR | EG | 1066.44 | 184.00 | 876.17 | 326.35 | 0.004 | 13.157 | 0.002 | 0.409 | 0.015 | 0.905 | 0.001 | 3.848 | 0.065 | 0.168 |
CG | 982.28 | 177.69 | 996.61 | 159.77 | 1 | ||||||||||
SDNN | EG | 75.43 | 21.80 | 64.25 | 20.73 | 0.333 | 0.025 | 0.876 | 0.001 | 1.224 | 0.282 | 0.061 | 2.34 | 0.143 | 0.11 |
CG | 71.43 | 21.13 | 73.90 | 21.54 | 0.258 | ||||||||||
RMSSD | EG | 76.14 | 28.92 | 52.85 | 29.46 | 0.096 | 0.38 | 0.545 | 0.2 | 0.087 | 0.771 | 0.005 | 3.255 | 0.087 | 0.146 |
CG | 60.74 | 22.37 | 61.18 | 26.74 | 0.422 | ||||||||||
pNN50 | EG | 45.74 | 18.90 | 28.43 | 22.26 | 0.021 | 2.338 | 0.143 | 0.11 | 0.612 | 0.444 | 0.031 | 3.72 | 0.069 | 0.164 |
CG | 38.76 | 17.20 | 37.35 | 27.75 | 0.785 | ||||||||||
LFln (ms2) | EG | 7.14 | 0.66 | 6.95 | 0.70 | 0.449 | 0.051 | 0.824 | 0.003 | 0.06 | 0.81 | 0.003 | 1.671 | 0.212 | 0.081 |
CG | 6.89 | 0.77 | 6.85 | 0.84 | 0.307 | ||||||||||
LFnu | EG | 44.35 | 21.43 | 52.60 | 18.58 | 0.049 | 0.7 | 0.413 | 0.036 | 1.154 | 0.296 | 0.057 | 3.593 | 0.073 | 0.159 |
CG | 56.49 | 17.60 | 50.97 | 21.68 | 0.473 | ||||||||||
HFln (ms2) | EG | 7.4 | 0.75 | 6.82 | 0.89 | 0.032 | 0.179 | 0.677 | 0.009 | 1.495 | 0.236 | 0.073 | 4.034 | 0.059 | 0.175 |
CG | 6.67 | 0.89 | 6.72 | 1.38 | 0.287 | ||||||||||
HFnu | EG | 55.63 | 21.44 | 47.20 | 18.36 | 0.049 | 0.782 | 0.388 | 0.04 | 1.172 | 0.293 | 0.058 | 3.68 | 0.07 | 0.162 |
CG | 43.38 | 17.60 | 48.90 | 21.69 | 0.484 | ||||||||||
TPln | EG | 8.38 | 0.50 | 8.06 | 0.61 | 0.233 | 0.001 | 0.98 | <0.001 | 0.007 | 0.932 | <0.001 | 2.981 | 0.1 | 0.136 |
CG | 6.64 | 1.79 | 6.51 | 1.55 | 0.241 | ||||||||||
LF/HF | EG | 1.30 | 1.72 | 1.68 | 1.95 | 0.281 | 0.985 | 0.333 | 0.049 | 0.214 | 0.649 | 0.011 | 0.292 | 0.595 | 0.015 |
CG | 1.94 | 0.59 | 1.53 | 0.57 | 0.758 | ||||||||||
SD1 | EG | 53.95 | 20.48 | 40.20 | 18.62 | 0.095 | 0.380 | 0.545 | 0.02 | 0.086 | 0.773 | 0.004 | 3.268 | 0.087 | 0.147 |
CG | 43.04 | 15.85 | 49.00 | 37.37 | 0.421 | ||||||||||
SD2 | EG | 91.08 | 26.65 | 81.07 | 24.30 | 0.491 | 0.15 | 0.703 | 0.008 | 1.665 | 0.212 | 0.081 | 1.842 | 0.191 | 0.088 |
CG | 91.46 | 29.72 | 89.93 | 22.93 | 0.243 | ||||||||||
SD2/SD1 | EG | 1.82 | 0.58 | 2.19 | 0.59 | 0.04 | 3.153 | 0.092 | 0.142 | 1.503 | 0.235 | 0.073 | 1.597 | 0.222 | 0.078 |
CG | 2.96 | 2.09 | 2.21 | 0.69 | 0.728 | ||||||||||
SS | EG | 10.97 | 2.62 | 13.32 | 3.83 | 0.187 | 0.511 | 0.483 | 0.026 | 0.91 | 0.352 | 0.046 | 1.375 | 0.255 | 0.067 |
CG | 13.28 | 3.34 | 12.92 | 3.81 | 0.755 | ||||||||||
S/PS | EG | 0.23 | 0.12 | 0.43 | 0.27 | 0.045 | 1.852 | 0.189 | 0.089 | 0.052 | 0.822 | 0.003 | 2.566 | 0.126 | 0.119 |
CG | 0.32 | 0.30 | 0.50 | 0.42 | 0.87 |
ANOVA (F, p, η2p) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19 °C | 35 °C EG 19 °C CG | Temperature Effect | Group Effect | Group*Temperature Effect | |||||||||||
Outcome | Group | M | SD | M | SD | p | F | p | η2p | F | p | η2p | F | p | η2p |
RR | EG | 1078.84 | 174.80 | 932.56 | 128.32 | <0.001 | 17.093 | 0.001 | 0.474 | 0.08 | 0.78 | 0.004 | 4.127 | 0.056 | 0.178 |
CG | 1018.06 | 127.96 | 1048.88 | 112.37 | 0.163 | ||||||||||
SDNN | EG | 76.42 | 21.54 | 65.52 | 20.47 | 0.932 | 0.348 | 0.562 | 0.018 | 2.383 | 0.139 | 0.111 | 0.503 | 0.487 | 0.026 |
CG | 71.83 | 21.67 | 74.02 | 22.32 | 0.381 | ||||||||||
RMSSD | EG | 79.38 | 32.51 | 52.37 | 26.70 | 0.042 | 0.58 | 0.456 | 0.03 | 0.123 | 0.73 | 0.006 | 3.62 | 0.072 | 0.16 |
CG | 61.50 | 33.54 | 61.45 | 29.44 | 0.44 | ||||||||||
pNN50 | EG | 46.72 | 17.64 | 27.64 | 18.07 | 0.019 | 3.395 | 0.081 | 0.152 | 0.138 | 0.714 | 0.007 | 2.882 | 0.106 | 0.132 |
CG | 39.77 | 23.16 | 37.57 | 20.81 | 0.921 | ||||||||||
LFln (ms2) | EG | 7.08 | 0.74 | 6.95 | 0.63 | 0.655 | 0.546 | 0.469 | 0.028 | 0.233 | 0.635 | 0.012 | 0.013 | 0.912 | 0.001 |
CG | 6.84 | 0.79 | 6.84 | 0.64 | 0.563 | ||||||||||
LFnu | EG | 41.70 | 18.97 | 57.05 | 19.47 | 0.026 | 1.876 | 0.187 | 0.09 | 0.041 | 0.842 | 0.002 | 3.821 | 0.065 | 0.167 |
CG | 58.25 | 15.95 | 51.99 | 18.03 | 0.691 | ||||||||||
HFln (ms2) | EG | 7.44 | 0.75 | 6.64 | 0.89 | 0.038 | 1.86 | 0.189 | 0.089 | 0.422 | 0.524 | 0.022 | 1.888 | 0.185 | 0.09 |
CG | 6.47 | 1.15 | 6.72 | 1.03 | 0.994 | ||||||||||
HFnu | EG | 58.22 | 18.98 | 42.89 | 19.46 | 0.026 | 1.865 | 0.188 | 0.089 | 0.044 | 0.836 | 0.002 | 3.841 | 0.065 | 0.168 |
CG | 41.65 | 15.85 | 47.84 | 18.03 | 0.686 | ||||||||||
TPln | EG | 8.51 | 0.55 | 8.16 | 0.66 | 0.156 | 1.903 | 0.184 | 0.091 | 0.42 | 0.525 | 0.022 | 0.434 | 0.518 | 0.022 |
CG | 6.65 | 1.03 | 6.78 | 0.84 | 0.624 | ||||||||||
LF/HF | EG | 1.04 | 1.24 | 1.82 | 1.31 | 0.47 | 0.5 | 0.488 | 0.026 | <0.001 | 0.988 | <0.001 | 2.505 | 0.13 | 0.116 |
CG | 1.77 | 0.36 | 1.57 | 0.50 | 0.493 | ||||||||||
SD1 | EG | 56.24 | 23.04 | 37.08 | 18.92 | 0.042 | 0.583 | 0.455 | 0.03 | 0.124 | 0.729 | 0.006 | 3.625 | 0.072 | 0.16 |
CG | 43.56 | 23.76 | 43.53 | 20.83 | 0.44 | ||||||||||
SD2 | EG | 91.66 | 23.08 | 83.95 | 25.63 | 0.473 | 0.211 | 0.651 | 0.011 | 0.203 | 0.657 | 0.011 | 0.303 | 0.588 | 0.016 |
CG | 90.92 | 31.15 | 87.92 | 24.84 | 0.95 | ||||||||||
SD2/SD1 | EG | 1.75 | 0.47 | 2.54 | 0.79 | 0.048 | 2.924 | 0.104 | 0.133 | 0.034 | 0.856 | 0.002 | 5.062 | 0.037 | 0.21 |
CG | 2.29 | 0.49 | 2.23 | 0.61 | 0.238 | ||||||||||
SS | EG | 13.32 | 3.83 | 12.89 | 3.65 | 0.337 | 1.311 | 0.266 | 0.065 | 0.002 | 0.962 | <0.001 | 0.046 | 0.833 | 0.002 |
CG | 13.65 | 3.31 | 12.72 | 3.36 | 0.528 | ||||||||||
S/PS | EG | 0.25 | 0.15 | 0.47 | 0.35 | 0.041 | 3.681 | 0.07 | 0.162 | 0.257 | 0.618 | 0.013 | 0.463 | 0.504 | 0.024 |
CG | 0.38 | 0.07 | 0.37 | 0.07 | 0.403 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abellán-Aynés, O.; Manonelles, P.; Alacid, F. Cardiac Parasympathetic Withdrawal and Sympathetic Activity: Effect of Heat Exposure on Heart Rate Variability. Int. J. Environ. Res. Public Health 2021, 18, 5934. https://doi.org/10.3390/ijerph18115934
Abellán-Aynés O, Manonelles P, Alacid F. Cardiac Parasympathetic Withdrawal and Sympathetic Activity: Effect of Heat Exposure on Heart Rate Variability. International Journal of Environmental Research and Public Health. 2021; 18(11):5934. https://doi.org/10.3390/ijerph18115934
Chicago/Turabian StyleAbellán-Aynés, Oriol, Pedro Manonelles, and Fernando Alacid. 2021. "Cardiac Parasympathetic Withdrawal and Sympathetic Activity: Effect of Heat Exposure on Heart Rate Variability" International Journal of Environmental Research and Public Health 18, no. 11: 5934. https://doi.org/10.3390/ijerph18115934
APA StyleAbellán-Aynés, O., Manonelles, P., & Alacid, F. (2021). Cardiac Parasympathetic Withdrawal and Sympathetic Activity: Effect of Heat Exposure on Heart Rate Variability. International Journal of Environmental Research and Public Health, 18(11), 5934. https://doi.org/10.3390/ijerph18115934