Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,836)

Search Parameters:
Keywords = cold

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3622 KB  
Article
Haplotype-Phased Chromosome-Level Genome Assembly of Floccularia luteovirens Provides Insights into Its Taxonomy, Adaptive Evolution, and Biosynthetic Potential
by Jianzhao Qi, Xiu-Zhang Li, Ming Zhang, Yuying Liu, Zhen-xin Wang, Chuyu Tang, Rui Xing, Khassanov Vadim, Minglei Li and Yuling Li
J. Fungi 2025, 11(9), 621; https://doi.org/10.3390/jof11090621 (registering DOI) - 25 Aug 2025
Abstract
Floccularia luteovirens is a valuable medicinal and edible ectomycorrhizal fungus that is endemic to alpine meadows on the Qinghai–Tibet Plateau. It is of significant ecological and pharmacological importance. To overcome the genomic limitations of previous fragmented assemblies, we present the first haplotype-phased, chromosome-scale [...] Read more.
Floccularia luteovirens is a valuable medicinal and edible ectomycorrhizal fungus that is endemic to alpine meadows on the Qinghai–Tibet Plateau. It is of significant ecological and pharmacological importance. To overcome the genomic limitations of previous fragmented assemblies, we present the first haplotype-phased, chromosome-scale genome of the Qinghai-derived QHU-1 strain using an integrated approach of PacBio HiFi, Hi-C, and Illumina sequencing. The high-contiguity assembly spans 13 chromosomes with 97.6% BUSCO completeness. Phylogenomic analysis of 31 basidiomycetes clarified a historical misclassification by placing F. luteovirens closest to Mycocalia denudata/Crucibulum laeve, thus confirming its distinct lineage from Armillaria spp. through low synteny and divergent gene family dynamics. Analyses of adaptive evolution revealed strong purifying selection and stable transposable elements, suggesting genomic adaptations to extreme UV/cold stress. AntiSMASH identified 15 biosynthetic gene clusters (BGCs), which encode diverse terpenoids (7), NRPS-like enzymes (4), PKSs (2), and a hybrid synthase with unique KS-AT-PT-A domains, which have the potential to generate novel metabolites. This chromosome-level resource sheds light on the genetic basis of F. luteovirens’ taxonomy, alpine survival, and symbiotic functions while also unlocking its potential for bioprospecting bioactive compounds. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

38 pages, 24180 KB  
Article
Optimizing Urban Thermal Comfort Through Multi-Criteria Architectural Approaches in Arid Regions: The Case of Béchar, Algeria
by Radia Benziada, Malika Kacemi, Abderahemane Mejedoub Mokhtari, Naima Fezzioui, Zouaoui R. Harrat, Mohammed Chatbi, Nahla Hilal, Walid Mansour and Md. Habibur Rahman Sobuz
Sustainability 2025, 17(17), 7658; https://doi.org/10.3390/su17177658 (registering DOI) - 25 Aug 2025
Abstract
Urban planning in arid climates must overcome numerous nonclimatic constraints that often result in outdoor thermal discomfort. This is particularly evident in Béchar, a city in southern Algeria known for its long, intense summers with temperatures frequently exceeding 45 °C. This study investigates [...] Read more.
Urban planning in arid climates must overcome numerous nonclimatic constraints that often result in outdoor thermal discomfort. This is particularly evident in Béchar, a city in southern Algeria known for its long, intense summers with temperatures frequently exceeding 45 °C. This study investigates the influence of urban morphology on thermal comfort and explores architectural and digital solutions to enhance energy performance in buildings. This research focuses on Béchar’s city center, where various urban configurations were analyzed using a multidisciplinary approach that combines typomorphological and climatic analysis with numerical simulations (ENVI-met 3.0 and TRNSYS 16). The results show that shaded zones near buildings have lower thermal loads (under +20 W/m2), while open areas may reach +100 W/m2. The thermal comfort rate varies between 22% and 60%, depending on wall materials and occupancy patterns. High thermal inertia materials, such as stone and compressed stabilized earth blocks (CSEBs), reduce hot discomfort hours to under 1700 h/year but may increase cold discomfort. Combining these materials with targeted insulation improves thermal balance. Key recommendations include compact urban forms, vegetation, shading devices, and high-performance envelopes. Early integration of these strategies can significantly enhance thermal comfort and reduce energy demand in Saharan cities. Full article
Show Figures

Figure 1

20 pages, 4719 KB  
Article
Experimental Investigation on the Bonding Performance of Steel Bars in Desert Sand Concrete After Freeze–Thaw Cycles
by Min Li, Zhiqiang Li and Jian Jiao
Materials 2025, 18(17), 3971; https://doi.org/10.3390/ma18173971 (registering DOI) - 25 Aug 2025
Abstract
Desert sand (DS) serves as a sustainable alternative to river sand in concrete production, delivering environmental and economic benefits. Furthermore, the durability of concrete structures in cold regions is severely affected by freeze–thaw (F-T) cycles. Therefore, this study employed a central pull-out test [...] Read more.
Desert sand (DS) serves as a sustainable alternative to river sand in concrete production, delivering environmental and economic benefits. Furthermore, the durability of concrete structures in cold regions is severely affected by freeze–thaw (F-T) cycles. Therefore, this study employed a central pull-out test to examine the bond performance between desert sand concrete (DSC) and steel bars subjected to F-T cycles, considering the effects of the number of F-T cycles, DS replacement ratios (i.e., the replacement ratio of river sand by DS), and the type of reinforcement. The F-T cycle numbers tested were 0, 25, 50, and 75 cycles. The DS replacement ratios were varied at 0%, 20%, 40%, 60%, 80%, and 100%. The plain and threaded steel bars (PSBs and TSBs) were selected for the experiment. The results indicate a decrease in bond strength for both PSB and TSB specimens with increasing F-T cycle numbers. Regarding the DS replacement ratios, bond strength initially decreased, with an increasing replacement rate, then increased, and eventually reduced again. Notably, significantly improved bonding was observed for steel reinforcement in DSC containing 40% or 60% DS compared to plain concrete. Additionally, the bond strengths of PSB specimens were lower than those of TSB specimens under identical conditions. A calculation formula for the bond–slip characteristic was derived using statistical regression, which considered multiple factors. Eventually, a bond–slip constitutive model was developed for the interface between DSC and reinforced steel, showing a high degree of consistency with the experimental data. Full article
Show Figures

Figure 1

25 pages, 7861 KB  
Article
Research on Flexural Performance of Low-Strength Foamed Concrete Cold-Formed Steel Framing Composite Enclosure Wall Panels
by Xinliang Liu, Kunpeng Wang, Quanbin Zhao and Chenyuan Luo
Buildings 2025, 15(17), 3018; https://doi.org/10.3390/buildings15173018 (registering DOI) - 25 Aug 2025
Abstract
To meet the requirements of a prefabricated building with specific strength limitations and assembly rate criteria, the research proposes a Low-Strength Foamed Concrete Cold-Formed Steel (CFS) Framing Composite Enclosure Wall Panel (LFSW). The ABAQUS 2024 finite element analysis (FEA) combined with bending performance [...] Read more.
To meet the requirements of a prefabricated building with specific strength limitations and assembly rate criteria, the research proposes a Low-Strength Foamed Concrete Cold-Formed Steel (CFS) Framing Composite Enclosure Wall Panel (LFSW). The ABAQUS 2024 finite element analysis (FEA) combined with bending performance tests on five specimens were employed to examine crack propagation and failure modes of wall panels under wind load, investigating the influence mechanisms of foamed concrete strength, CFS framing wall thickness, CFS framing section height, and concrete cover thickness on the flexural performance of wall panels. The experimental results demonstrate that increasing the steel thickness from 1.8 mm to 2.5 mm enhances the ultimate load-carrying capacity by 46.15%, while enlarging the section height from 80 mm to 100 mm improves capacity by 26.67%. When the foamed concrete strength increased from 0.5 MPa to 1.0 MPa, the wall panel cracking load increased by 50%, while the ultimate load capacity changed by less than 5%. Increasing the concrete cover thickness from 25 mm to 35 mm enhanced the ultimate capacity by 7%, indicating that both parameters exert limited influence on the composite wall panel’s flexural capacity. Finite element simulations demonstrate excellent agreement with experimental results, confirming effective composite action between foamed concrete and CFS framing under service conditions. This validation establishes that the simplified analytical model neglecting interface slip provides better accuracy for engineering design, offering theoretical foundations and practical references for optimizing prefabricated building envelope systems. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

55 pages, 2972 KB  
Review
The Impact of Brewing Methods on the Quality of a Cup of Coffee
by Alessandro Genovese, Nicola Caporaso and Antonietta Baiano
Beverages 2025, 11(5), 125; https://doi.org/10.3390/beverages11050125 (registering DOI) - 25 Aug 2025
Abstract
A comprehensive overview is provided on factors and processes influencing the final quality of a cup of coffee, with an emphasis on the brewing method’s central role. Coffee quality assessment, both at the bean and cup level, combines objective parameters (color, moisture, bean [...] Read more.
A comprehensive overview is provided on factors and processes influencing the final quality of a cup of coffee, with an emphasis on the brewing method’s central role. Coffee quality assessment, both at the bean and cup level, combines objective parameters (color, moisture, bean defects, density) with a notable degree of subjectivity, as consumer sensory perception is ultimately decisive. The brewing technique is described as a critical determinant of the final chemical, physical, and sensory attributes. Key parameters such as aroma profile, pH, titratable acidity, total and filtered solids, lipid and fatty acid content, viscosity, foam (crema), and colorimetric indices are detailed as essential metrics in coffee quality evaluation. Roasting creates most of coffee’s key aroma compounds. The brewing method further shapes the extraction of both volatile and other bioactive compounds like caffeine, chlorogenic acids, and lipids. Brewing methods significantly affect acidity, “body,” and crema stability, while water quality, temperature, and pressure are shown to impact extraction results and sensory properties. Attention is paid to how methods such as Espresso, filter, French press, and cold brew yield distinct physicochemical and sensory profiles in the cup. Overall, the review highlights the multifaceted nature of coffee cup quality and the interplay between raw material, processing, and preparation, ultimately shaping the coffee sensory experience and market value. Full article
Show Figures

Graphical abstract

11 pages, 250 KB  
Article
Effects of Forage-to-Concentrate Ratio During Cold-Season Supplementation on Growth Performance, Serum Biochemistry, Hormones, and Antioxidant Capacity in Yak Calves on the Qinghai–Tibet Plateau
by Yuhong Bao, Jia Zhou, Xuetao Yang, Ruizhi Shi and Yangci Liao
Animals 2025, 15(17), 2490; https://doi.org/10.3390/ani15172490 - 25 Aug 2025
Abstract
This study investigated the effects of different forage-to-concentrate (F:C) ratios during cold-season supplementation on growth performance, serum biochemical parameters, hormone levels, and antioxidant capacity in yak calves on the Qinghai–Tibet Plateau. Eighteen 8-months-old male yaks with similar body weights (110.01 ± 2.08 kg) [...] Read more.
This study investigated the effects of different forage-to-concentrate (F:C) ratios during cold-season supplementation on growth performance, serum biochemical parameters, hormone levels, and antioxidant capacity in yak calves on the Qinghai–Tibet Plateau. Eighteen 8-months-old male yaks with similar body weights (110.01 ± 2.08 kg) were randomly assigned to two groups receiving diets with high (F:C = 7:3) or low (F:C = 3:7) forage. The trial lasted 60 days, including early (days 0–30) and late (days 31–60) experimental stages. Body weight was measured, and serum samples were collected on days 30 and 60 for biochemical and hormonal analyses. Yaks in the low-forage group showed significantly greater average daily gain during both stages and the entire experiment (p < 0.05), with a 7.92% increase in final body weight. Serum total protein and globulin levels were significantly higher in the low-forage group throughout the trial (p < 0.05 or p < 0.01), while other biochemical parameters remained unaffected. Growth hormone concentrations were significantly elevated in the low-forage group at both stages (p < 0.05). Additionally, malondialdehyde levels tended to decrease in the early stage (p = 0.056), and total antioxidant capacity was significantly lower in the late experimental stage (p = 0.040) in the low-forage group. A higher net economic benefit was observed in the group fed an F:C ratio of 3:7 than in the 7:3 group. These findings suggest that cold-season supplementation with a low-forage diet improves growth performance and protein utilization in yak calves but may negatively impact antioxidant status. An optimal F:C balance should therefore be considered to support both performance and health in yak husbandry under harsh environmental conditions. Full article
(This article belongs to the Special Issue Production, Breeding and Disease Management of Plateau Animals)
12 pages, 805 KB  
Article
OSMAC-Driven Discovery of Six New Alkaloids from the Cold-Seep-Derived Fungus Talaromyces amestolkiae HDN21-0307
by Xinsheng Huang, Jiajin Wu, Luning Zhou, Zhengjie Wang, Qian Che, Liangzhen Chen, Wenxue Wang, Tianjiao Zhu and Dehai Li
Mar. Drugs 2025, 23(9), 337; https://doi.org/10.3390/md23090337 - 25 Aug 2025
Abstract
Six new alkaloid compounds, including two rare aromatic nitrile compounds talaronitriles A–B (12), a novel oxime-functionalized azadiphilone analogue talarooxime A (3), a new phenylhydrazone alkaloid talarohydrazone E (4), and two new dipeptide compounds talarodipeptides A–B [...] Read more.
Six new alkaloid compounds, including two rare aromatic nitrile compounds talaronitriles A–B (12), a novel oxime-functionalized azadiphilone analogue talarooxime A (3), a new phenylhydrazone alkaloid talarohydrazone E (4), and two new dipeptide compounds talarodipeptides A–B (56), were isolated from the deep-sea cold-seep-derived fungus Talaromyces amestolkiae HDN21-0307 via OSMAC approach. Compound 1 is the first natural naphthalene compound with cyano groups. Compound 3 represents the first natural product containing an oxime-functionalized azadiphilone scaffold. Their structures and absolute configurations were elucidated through spectroscopic data analysis and quantum chemical calculations. Notably, compound 3 demonstrated moderate DPPH free-radical-scavenging activity, with an IC50 value of 29.41 μM. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Figure 1

17 pages, 2659 KB  
Article
Retrofitting Design of Residential Building Rooftops with Attached Solar Photovoltaic Panels and Thermal Collectors: Weighing Carbon Emissions Against Cost Benefits
by Sheng Yao, Ying Wu, Xuan Liu, Jing Wu, Shiya Zhao and Min Li
Buildings 2025, 15(17), 3012; https://doi.org/10.3390/buildings15173012 - 25 Aug 2025
Abstract
To reduce the carbon emissions of existing residential buildings while pursuing maximum cost benefits, a multi-optimization design method for the existing residential building rooftops, retrofitted by attaching the solar photovoltaic panels and thermal collectors, was proposed in the study. At first, the life [...] Read more.
To reduce the carbon emissions of existing residential buildings while pursuing maximum cost benefits, a multi-optimization design method for the existing residential building rooftops, retrofitted by attaching the solar photovoltaic panels and thermal collectors, was proposed in the study. At first, the life cycle carbon emission and cost benefit of the retrofitted buildings were assigned as the optimization objectives, and the models of carbon emission and cost benefit were developed. Furthermore, a typical existing residential community located in the cold zone of China was selected to perform the multi-optimization based on the Grasshopper platform. Meanwhile, the laying area, laying angle, and allocation ratio of the solar photovoltaic panels and thermal collectors were selected as the design parameters. And then the best retrofitting solution suitable for the existing residential buildings was proposed. The results show that the weightings of the carbon emission of retrofitting life cycle are 42.68%, and that for the cost benefit is 57.32%. Significantly, there is a 31% reduction in carbon emissions compared to the building before retrofitting, and a 24.7% reduction in cost benefit. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

28 pages, 881 KB  
Review
Innovative Non-Thermal Processing Technologies for Shelf Life Extension and Retention of Bioactive Compounds in Liquid Foods: Current Status and Future Prospects
by Muhammad Arslan, Muhammad Zareef, Mubrrah Afzal, Haroon Elrasheid Tahir, Zhihua Li, Halah Aalim, Hamza M. A. Abaker and Xiaobo Zou
Foods 2025, 14(17), 2953; https://doi.org/10.3390/foods14172953 - 25 Aug 2025
Abstract
Consumer demands for fresh and minimally processed liquid foods that support disease prevention and promote health emphasize the need for innovative processing technologies that ensure microbiological safety and preserve bioactive compounds. In addition, consumers are becoming more concerned about the presence of chemical [...] Read more.
Consumer demands for fresh and minimally processed liquid foods that support disease prevention and promote health emphasize the need for innovative processing technologies that ensure microbiological safety and preserve bioactive compounds. In addition, consumers are becoming more concerned about the presence of chemical additives in liquid foods. Non-thermal processing technologies, including high-pressure processing, high-pressure homogenization, pulsed electric field, pulsed magnetic field, high-pressure carbon dioxide, ultrasound treatment, radiation processing, ozone processing, cold plasma, and membrane processing, offer excellent prospects for the application in liquid foods. The given technologies aim to retain bioactive properties, deactivate enzymatic activity, and destroy microorganisms, thereby extending the shelf life of liquid foods. Thus, this current review, without a doubt, could be valuable to the liquid food industries and the scientific world by offering great insight into the latest developments in the use of innovative non-thermal processing technologies, which can be employed for shelf life extension and the retention of bioactive compounds in liquid foods. This paper also discusses the challenges faced by the liquid food industry that need to be addressed in future studies. Full article
(This article belongs to the Special Issue Emerging Processing Technology and Equipment for Foods)
Show Figures

Figure 1

24 pages, 3086 KB  
Article
Uracil–DNA Glycosylase from Beta vulgaris: Properties and Response to Abiotic Stress
by Daria V. Petrova, Maria V. Zateeva, Lijun Zhang, Jiajia Zhang, Ying Zhao, Natalya V. Permyakova, Alla A. Zagorskaya, Vasily D. Zharkov, Anton V. Endutkin, Bing Yu, Chunquan Ma, Haiying Li, Dmitry O. Zharkov and Inga R. Grin
Int. J. Mol. Sci. 2025, 26(17), 8221; https://doi.org/10.3390/ijms26178221 (registering DOI) - 24 Aug 2025
Abstract
Uracil−DNA glycosylases (UNGs) are DNA repair enzymes responsible for the removal of uracil, a canonical RNA nucleobase, from DNA, where it appears through cytosine deamination or incorporation from the cellular dUTP pool. While human and Escherichia coli UNGs have been extensively investigated, much [...] Read more.
Uracil−DNA glycosylases (UNGs) are DNA repair enzymes responsible for the removal of uracil, a canonical RNA nucleobase, from DNA, where it appears through cytosine deamination or incorporation from the cellular dUTP pool. While human and Escherichia coli UNGs have been extensively investigated, much less is known about their plant counterparts, of which UNGs from Arabidopsis thaliana are the only studied examples. Here, we show that in sugar beet (Beta vulgaris L.), an important crop species, cold and salt stress induce the expression of the UNG gene (BvUNG) and modulate the level of the uracil-excising activity in the roots. Purified recombinant BvUNG efficiently removes uracil from DNA both in vitro and in an E. coli reporter strain but does not excise 5-hydroxyuracil, 5,6-dihydrouracil, or 5-hydroxymethyluracil. The activity is abolished by Ugi, a protein UNG inhibitor from PBS1 bacteriophage, and by a mutation of a conserved active site His residue. Structural modeling shows the presence of a disordered N-tail prone to undergo phase separation, followed by a long α helix oriented differently from its counterpart in human UNG. Overall, BvUNG is a functional uracil–DNA glycosylase that might participate in the response to abiotic stress. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

18 pages, 8946 KB  
Article
Dissimilar Resistance Spot Weld of Ni-Coated Aluminum to Ni-Coated Magnesium Using Cold Spray Coating Technology
by Mazin Oheil, Dulal Saha, Hamid Jahed and Adrian Gerlich
Metals 2025, 15(9), 940; https://doi.org/10.3390/met15090940 - 24 Aug 2025
Abstract
Direct fusion welding of aluminum (Al) to magnesium (Mg) results in the formation of brittle intermetallic compounds (IMCs) that significantly restrict the application of these joints in structural applications. In this study, cold spray, a promising solid-state coating deposition technology, was employed to [...] Read more.
Direct fusion welding of aluminum (Al) to magnesium (Mg) results in the formation of brittle intermetallic compounds (IMCs) that significantly restrict the application of these joints in structural applications. In this study, cold spray, a promising solid-state coating deposition technology, was employed to introduce a nickel (Ni) interlayer to facilitate joining of Al to Mg sheets by means of resistance spot welding (RSW). The ability of cold spraying to deposit metallic powder on the substrate without melting proves beneficial in mitigating the formation of the Al-Mg IMCs. The Ni-coated coupons were subsequently welded via resistance spot welding at optimized parameters: 27 kA for 15 cycles in two pulses with a 5-cycle inter-pulse delay. Scanning electron microscopy confirmed metallurgical bonding between the Al, Mg, and Ni coatings in the fusion zone. It is shown that the bonding between the three elements inhibits the formation of deleterious IMCs. Tensile shear testing showed joint strength exceeding 4.2 kN, highlighting the potential of the proposed cold spray RSW approach for dissimilar joining in structural applications. Full article
Show Figures

Figure 1

47 pages, 6459 KB  
Article
A Novel Swarm Optimization Algorithm Based on Hive Construction by Tetragonula carbonaria Builder Bees
by Mildret Guadalupe Martínez Gámez and Hernán Peraza Vázquez
Mathematics 2025, 13(17), 2721; https://doi.org/10.3390/math13172721 (registering DOI) - 24 Aug 2025
Abstract
This paper introduces a new optimization problem-solving method based on how the stingless bee Tetragonula carbonaria builds and regulates temperature in the hive. The Tetragonula carbonaria Optimization Algorithm (TGCOA) models three different behaviors: strengthening the structure’s hive when it is cold, building combs [...] Read more.
This paper introduces a new optimization problem-solving method based on how the stingless bee Tetragonula carbonaria builds and regulates temperature in the hive. The Tetragonula carbonaria Optimization Algorithm (TGCOA) models three different behaviors: strengthening the structure’s hive when it is cold, building combs in a spiral pattern at medium temperatures, and stabilizing the hive when it is hot. These temperature-dependent strategies dynamically balance global exploitation and local exploration within the solution space, enabling a more efficient search. To validate the efficiency and effectiveness of the proposed method, the TGCOA algorithm was tested using ten unimodal and ten multimodal benchmark functions, twenty-eight constrained problems with dimensions set to 10, 30, 50, and 100 taken from the IEEE CEC 2017, and seven real-world engineering design challenges. Furthermore, it was compared with ten algorithms from the literature. Wilcoxon signed-rank and Friedman statistical tests were performed to assess the outcomes. The results on the benchmark problems showed that the approach outperformed 80% of the algorithms at a 5% significance level in the Wilcoxon signed-rank test and ranked first overall according to the Friedman test. Additionally, in multidimensional problems, the TGCOA was ranked first in dimensions 30, 50, and 100. Moreover, in engineering problems, the approach demonstrated a high capacity to solve constraint problems, obtaining better results than the algorithms that were compared. Full article
(This article belongs to the Special Issue Numerical Optimization: Algorithms and Applications)
Show Figures

Figure 1

12 pages, 4386 KB  
Article
The Role of Local Orientations Gradients in the Formation of the Recrystallisation Texture in Cold-Rolled IF Steel
by Estefania A. Sepulveda Hernández, Felipe M. Castro Cerda and Leo A. I. Kestens
Metals 2025, 15(9), 939; https://doi.org/10.3390/met15090939 - 24 Aug 2025
Abstract
This study investigates the subsequent stages of recrystallisation in Interstitial-Free (IF) steel subjected to an unconventional continuous annealing process with a controlled thermal gradient. A cold-rolled steel strip was exposed to varying annealing temperatures along its length, enabling the analysis of microstructural evolution [...] Read more.
This study investigates the subsequent stages of recrystallisation in Interstitial-Free (IF) steel subjected to an unconventional continuous annealing process with a controlled thermal gradient. A cold-rolled steel strip was exposed to varying annealing temperatures along its length, enabling the analysis of microstructural evolution during the course of recrystallisation. The microstructure and stored energy were assessed at various positions along the strip using Electron Backscatter Diffraction (EBSD). The results underscore the significant influence of local misorientation and structural inhomogeneity on orientation selection during recrystallisation. The remaining non-recrystallised volume fraction (NRF) strongly correlates with the average misorientation gradient, obeying a phenomenological power-law correspondence with an exponent of ~3.7. This indicates that the recrystallisation process is highly sensitive to small changes in local orientation gradients. These findings highlight the crucial role of stored energy distribution for texture evolution, particularly during the early stages of recrystallisation in continuous annealing. It is observed that g-fiber grains, in comparison to a-fiber grains, are much more susceptible to grain fragmentation and therefore develop more robust intra-granular misorientation gradients, allowing for successful nucleation events to occur. In the present study, these phenomena are documented in a statistically representative manner. These insights are valuable for optimising thermal processing in interstitial-free (IF) steels. Full article
Show Figures

Figure 1

17 pages, 2172 KB  
Article
Genome-Wide Identification, Phylogenetic Analysis, and Expression Pattern of Polyamine Biosynthesis Gene Family in Pepper
by Duo Lin, Xianqi Zhao, Qingshan Hu, Su Wang, Yan Zhang and Zijian Xu
Int. J. Mol. Sci. 2025, 26(17), 8208; https://doi.org/10.3390/ijms26178208 - 24 Aug 2025
Abstract
Polyamines (PAs), including putrescine, spermidine, spermine, and thermospermine, play essential roles in plant growth, development, and responses to stress. However, the structure and function of PA biosynthetic genes in pepper remain poorly characterized. This study aimed to identify PA biosynthesis genes in the [...] Read more.
Polyamines (PAs), including putrescine, spermidine, spermine, and thermospermine, play essential roles in plant growth, development, and responses to stress. However, the structure and function of PA biosynthetic genes in pepper remain poorly characterized. This study aimed to identify PA biosynthesis genes in the pepper genome using bioinformatics approaches and to assess their expression under various stress conditions. A total of 16 PA biosynthesis-related genes were identified, representing members of the arginine decarboxylase (ADC), ornithine decarboxylase (ODC), agmatine iminohydrolase (AIH), N-carbamoylputrescine amidohydrolase (CPA), S-adenosylmethionine decarboxylase (SAMDC), spermidine synthase (SPDS), spermine synthase (SPMS), and ACAULIS5 (ACL5) gene families. These genes encode proteins with an average molecular weight of approximately 40 kDa, primarily localized in the mitochondria and cytoplasm. Promoter analysis revealed multiple cis-acting elements associated with stress and phytohormone responsiveness. Gene expression was induced by various abiotic stresses, including saline-alkaline, drought, heat, cold, and hydrogen peroxide, as well as by phytohormones such as abscisic acid, ethylene, salicylic acid, auxin, and gibberellin. Overall, this study provides a comprehensive analysis of PA biosynthesis genes in pepper and highlights their potential roles in stress adaptation and hormone signalling, offering a foundation for further exploration of PA-mediated stress tolerance mechanisms. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

22 pages, 1750 KB  
Article
An Analysis of Alignments of District Housing Targets in England
by David Gray
Land 2025, 14(9), 1710; https://doi.org/10.3390/land14091710 - 23 Aug 2025
Abstract
Context: It has been claimed that recently, in England, the places with the greatest amount of housing built were the places that least needed them. This is an accusation that has echoes in a number of countries around the globe. The lack of [...] Read more.
Context: It has been claimed that recently, in England, the places with the greatest amount of housing built were the places that least needed them. This is an accusation that has echoes in a number of countries around the globe. The lack of construction leads to greater unaffordability and a lower level of economic activity than could have been achieved if labour, particularly those with high human capital, was not so constrained as to where they could afford to live. The recent National Planning Policy Framework for England imposes mandatory targets on housing planning authorities. As such, the following question is raised: will the targets result in additional residential homes being located in places of greater need than the prevailing pattern? Research Questions: The paper sets out to consider the spatial mismatch between housing additions and national benefit in terms of unaffordability and productivity. Specifically, do the concentrations of high and/or low rates of the prevailing rates of additional dwellings and the target rates of adding dwellings correspond with the clusters of high and/or low unaffordability and productivity? A further question considered is: does the spatial distribution of additional dwellings match the clusters of population growth? Method: The values of the variables are transformed at the first stage into Anselin’s LISA categories. LISA maps can reveal unusually high spatial concentrations of values, or clusters. The second stage entails comparing sets of the transformed data for agreement of the classifications. An agreement coefficient is provided by Fleiss’s kappa. Data: The data used is of additional dwellings, the total number of dwellings, population estimates, gross value added per hour worked (productivity data), and house price–earnings ratios. The period of study covers the eight years prior to 2020 and the two years after, omitting 2020 itself due to the unusual impact on economic activity. All the data is at local authority district level. Findings: The hot and cold spots of additional dwellings do not correspond those of house price–earnings ratios or productivity. However, population growth hot spots show moderate agreement with those of where additional dwellings are concentrated. This is in line with findings from elsewhere, suggesting that population follows housing supply. Concentrations of districts with relatively high targets per unit of existing stocks are found correspond (agree strongly) with clusters of house price–earnings ratios. Links between productivity and housing are much weaker. Conclusions: The strong link between targets and affordability suggests that if the targets are met, the claim that the places that build the most housing are the places that least need them can be challenged. That said, house-price–earnings ratios present a view of unaffordability that will favour greater building in the countryside rather than cities outside of London, which runs against concentrating new housing in urban areas consistent with fostering clusters/agglomerations implicit in the new modern industrial strategy. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

Back to TopTop