Urban Green Spaces, Greenness Exposure and Species Richness in Residential Environments and Relations with Physical Activity and BMI in Portuguese Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design
2.3. Sample
2.4. Individual Anthropometric and Sociodemographic Data
2.5. Socioeconomic Deprivation
2.6. Physical Activity
2.7. Assessment of the Geographical Accessibility of Urban Green Spaces
2.8. Normalized Difference Vegetation Index
2.9. Species Richness Assessment
2.10. Statistical Analysis
3. Results
4. Discussion
5. Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jastreboff, A.M.; Kotz, C.M.; Kahan, S.; Kelly, A.S.; Heymsfield, S.B. Obesity as a Disease: The Obesity Society 2018 Position Statement. Obesity 2019, 27, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Ortega, F.B.; Lavie, C.J.; Blair, S.N. Obesity and cardiovascular disease. Circ. Res. 2016, 118, 1752–1770. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.K.; Siahpush, M.; Kogan, M.D. Neighborhood socioeconomic conditions, built environments, and childhood obesity. Health Aff. 2010, 29, 503–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Grosse, Y.; Bianchini, F.; Straif, K.; International Agency for research on cancer handbook working group. Body fatness and cancer—Viewpoint of the IARC working group. N. Engl. J. Med. 2016, 375, 794–798. [Google Scholar] [CrossRef] [Green Version]
- Molina-Garcia, P.; Migueles, J.H.; Cadenas-Sanchez, C.; Esteban-Cornejo, I.; Mora-Gonzalez, J.; Rodriguez-Ayllon, M.; Plaza-Florido, A.; Vanrenterghem, J.; Ortega, F.B. A systematic review on biomechanical characteristics of walking in children and adolescents with overweight/obesity: Possible implications for the development of musculoskeletal disorders. Obes. Rev. 2019, 20, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Ryder, J.R.; Jacobs, D.R.; Sinaiko, A.R.; Kornblum, A.P.; Steinberger, J. Longitudinal changes in weight status from childhood and adolescence to adulthood. J. Pediatr. 2019, 214, 187–192. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; World Health Organization: Geneva, Switzerland, 2003; Volume 916. [Google Scholar]
- James, P.; Hart, J.E.; Arcaya, M.C.; Feskanich, D.; Laden, F.; Subramanian, S. Neighborhood Self-Selection: The Role of Pre-Move Health Factors on the Built and Socioeconomic Environment. Int. J. Environ. Res. Public Health 2015, 12, 12489–12504. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.; Foley, L.; Panter, J. Activity spaces in studies of the environment and physical activity: A review and synthesis of implications for causality. Health Place 2019, 58, 102113. [Google Scholar] [CrossRef] [PubMed]
- Kenney, E.L.; Gortmaker, S.L. United States adolescents’ television, computer, videogame, smartphone, and tablet use: Associations with sugary drinks, sleep, physical activity, and obesity. J. Pediatr. 2017, 182, 144–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, A.; Gibbons, C.; Finlayson, G.; Blundell, J. Associations among sedentary and active behaviours, body fat and appetite dysregulation: Investigating the myth of physical inactivity and obesity. Br. J. Sports Med. 2017, 51, 1540–1544. [Google Scholar] [CrossRef]
- Sallis, J.F.; Cervero, R.B.; Ascher, W.L.; Henderson, K.A.; Kraft, M.K.; Kerr, J. An ecological approach to creating active living communities. Annu. Rev. Public Health 2006, 27, 297–322. [Google Scholar] [CrossRef] [Green Version]
- Sallis, J.F.; Owen, N.; Fisher, E. Ecological models of health behavior. Health Behav. Theory Res. Pract. 2015, 5, 43–64. [Google Scholar]
- Bauman, A.E.; Reis, R.S.; Sallis, J.F.; Wells, J.; Loos, R.; Martin, B.W. Correlates of physical activity: Why are some people physically active and others not? Lancet 2012, 380, 258–271. [Google Scholar] [CrossRef]
- Andersen, H.B.; Christiansen, L.B.; Klinker, C.D.; Ersbøll, A.K.; Troelsen, J.; Kerr, J.; Schipperijn, J. Increases in use and activity due to urban renewal: Effect of a natural experiment. Am. J. Prev. Med. 2017, 53, e81–e87. [Google Scholar] [CrossRef]
- Aznar, S.; Queralt, A.; García-Massó, X.; Villarrasa-Sapiña, I.; Molina-García, J. Multifactorial combinations predicting active vs inactive stages of change for physical activity in adolescents considering built environment and psychosocial factors: A classification tree approach. Health Place 2018, 53, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Sallis, J.F.; Kerr, J.; Lee, S.; Rosenberg, D.E. Neighborhood environment and physical activity among youth: A review. Am. J. Prev. Med. 2011, 41, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Kubik, M.Y.; Lytle, L.; Fulkerson, J.A. Fruits, vegetables, and football: Findings from focus groups with alternative high school students regarding eating and physical activity. J. Adolesc. Health 2005, 36, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Hannay, J.; Dudley, R.; Milan, S.; Leibovitz, P.K. Combining Photovoice and focus groups: Engaging latina teens in community assessment. Am. J. Prev. Med. 2013, 44, S215–S224. [Google Scholar] [CrossRef] [Green Version]
- Finkelstein, D.M.; Petersen, D.M.; Schottenfeld, L.S. Promoting children’s physical activity in low-income communities in colorado: What are the barriers and opportunities? Prev. Chronic Dis. 2017, 14, E134. [Google Scholar] [CrossRef]
- Carlson, J.A.; Saelens, B.E.; Kerr, J.; Schipperijn, J.; Conway, T.L.; Frank, L.D.; Chapman, J.E.; Glanz, K.; Cain, K.L.; Sallis, J.F. Association between neighborhood walkability and GPS-measured walking, bicycling and vehicle time in adolescents. Health Place 2015, 32, 1–7. [Google Scholar] [CrossRef] [Green Version]
- An, R.; Shen, J.; Yang, Q.; Yang, Y. Impact of built environment on physical activity and obesity among children and adolescents in China: A narrative systematic review. J. Sport Health Sci. 2019, 8, 153–169. [Google Scholar] [CrossRef]
- Sanders, T.; Feng, X.; Fahey, P.P.; Lonsdale, C.; Astell-Burt, T. Greener neighbourhoods, slimmer children? Evidence from 4423 participants aged 6 to 13 years in the Longitudinal Study of Australian children. Int. J. Obes. 2015, 39, 1224–1229. [Google Scholar] [CrossRef] [PubMed]
- Peirson, L.; Fitzpatrick-Lewis, D.; Morrison, K.M.; Warren, R.; Ali, M.; Raina, P. Treatment of overweight and obesity in children and youth: A systematic review and meta-analysis. CMAJ Open 2015, 3, E35–E46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lachowycz, K.; Jones, A.P. Greenspace and obesity: A systematic review of the evidence. Obes. Rev. 2011, 12, e183–e189. [Google Scholar] [CrossRef] [PubMed]
- Kabisch, N.; van den Bosch, M.; Lafortezza, R. The health benefits of nature-based solutions to urbanization challenges for children and the elderly—A systematic review. Environ. Res. 2017, 159, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Sandifer, P.A.; Sutton-Grier, A.E.; Ward, B.P. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Dallimer, M.; Irvine, K.N.; Skinner, A.M.J.; Davies, Z.G.; Rouquette, J.R.; Maltby, L.; Warren, P.H.; Armsworth, P.R.; Gaston, K.J. Biodiversity and the Feel-good factor: Understanding associations between self-reported human well-being and species richness. BioScience 2012, 62, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Douglas, O.; Lennon, M.; Scott, M. Green space benefits for health and well-being: A life-course approach for urban planning, design and management. Cities 2017, 66, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Lai, H.; Flies, E.J.; Weinstein, P.; Woodward, A. The impact of green space and biodiversity on health. Front. Ecol. Environ. 2019, 17, 383–390. [Google Scholar] [CrossRef]
- Instituto Português de Geografia. Carta Administrativa Oficial de Portugal (CAOP); Instituto Português de Geografia: Lisbon, Portugal, 2013.
- Instituto Nacional de Estatística. Censos 2011—Quadros de Apuramento por Freguesia; Instituto Nacional de Estatística: Lisbon, Portugal, 2012.
- Taherdoost, H. Determining sample size; how to calculate survey sample size. Int. J. Econ. Manag. Syst. 2017, 2, 3. [Google Scholar]
- World Health Organization. Physical status: The Use of and Interpretation of Anthropometry, Report of a WHO Expert Committee; WHO: Geneva, Switzerland, 1995. [Google Scholar]
- Ribeiro, A.I.; Launay, L.; Guillaume, E.; Launoy, G.; Barros, H. The Portuguese version of the European Deprivation Index: Development and association with all-cause mortality. PLoS ONE 2018, 13, e0208320. [Google Scholar] [CrossRef] [Green Version]
- Pigeyre, M.; Rousseaux, J.; Trouiller, P.; Dumont, J.; Goumidi, L.; Bonte, D.; Dumont, M.-P.; Chmielewski, A.; Duhamel, A.; Amouyel, P.; et al. How obesity relates to socio-economic status: Identification of eating behavior mediators. Int. J. Obes. 2016, 40, 1794–1801. [Google Scholar] [CrossRef]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Nyström, C.D.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef] [PubMed]
- Evenson, K.R.; Catellier, D.J.; Gill, K.; Ondrak, K.S.; McMurray, R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008, 26, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Hoffimann, E.; Barros, H.; Ribeiro, A.I. Socioeconomic Inequalities in Green Space Quality and Accessibility—Evidence from a Southern European City. Int. J. Environ. Res. Public Health 2017, 14, 916. [Google Scholar] [CrossRef] [PubMed]
- Rufo, J.C.; Paciência, I.; Ribeiro, A.I. Green environments and allergic diseases in children: A scoping review. Curr. Epidemiol. Rep. 2019, 6, 442–448. [Google Scholar] [CrossRef]
- Paciência, I.; Moreira, A.; Moreira, C.; Rufo, J.C.; Sokhatska, O.; Rama, T.; Hoffimann, E.; Santos, A.C.; Barros, H.; Ribeiro, A.I. Neighbourhood green and blue spaces and allergic sensitization in children: A longitudinal study based on repeated measures from the Generation XXI cohort. Sci. Total Environ. 2021, 772, 145394. [Google Scholar] [CrossRef]
- Gomes, V.; Ribeiro, R.; Carretero, M. Effects of urban habitat fragmentation on common small mammals: Species versus communities. Biodivers. Conserv. 2011, 20, 3577–3590. [Google Scholar] [CrossRef]
- Guilherme, F.; Carretero, M.A.; Farinha-Marques, P. Vertebrates and invertebrates of European cities: Selected non-avian fauna. In Vertebrates and Invertebrates of European Cities; Kelcey, J.G., Ed.; Springer: New York, NY, USA, 2015. [Google Scholar]
- Rufo, J.C.; Paciência, I.; Hoffimann, E.; Moreira, A.; Barros, H.; Ribeiro, A.I. The neighbourhood natural environment is associated with asthma in children: A birth cohort study. Allergy 2021, 76, 348–358. [Google Scholar] [CrossRef]
- Rufo, J.C.; Ribeiro, A.I.; Paciência, I.R.; Delgado, L.; Moreira, A.M.A. The influence of species richness in primary school surroundings on children lung function and allergic disease development. Pediatr. Allergy Immunol. 2020, 31, 358–363. [Google Scholar] [CrossRef]
- Merlo, J.; Chaix, B.; Ohlsson, H.; Beckman, A.; Johnell, K.; Hjerpe, P.; Råstam, L.; Larsen, K. A brief conceptual tutorial of multilevel analysis in social epidemiology: Using measures of clustering in multilevel logistic regression to investigate contextual phenomena. J. Epidemiology Community Health 2006, 60, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, T.; Cerin, E.; Owen, N.; Oyeyemi, A.L.; Conway, T.L.; Van Dyck, D.; Schipperijn, J.; Macfarlane, D.J.; Salvo, D.; Reis, R.S.; et al. Perceived neighbourhood environmental attributes associated with adults’ recreational walking: IPEN Adult study in 12 countries. Health Place 2014, 28, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Stanners, D.; Bourdeau, P. Europe’s Environment: The Dobris Assessment; European Environment Agency: Copenhagen, Danmark, 1995.
- Nielsen, T.S.; Hansen, K.B. Do green areas affect health? Results from a Danish survey on the use of green areas and health indicators. Health Place 2007, 13, 839–850. [Google Scholar] [CrossRef]
- Kaczynski, A.T.; Besenyi, G.M.; Stanis, S.A.W.; Koohsari, M.J.; Oestman, K.B.; Bergstrom, R.D.; Potwarka, L.R.; Reis, R.S. Are park proximity and park features related to park use and park-based physical activity among adults? Variations by multiple socio-demographic characteristics. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, D.; Gebel, K. Built environment, physical activity, and obesity: What have we learned from reviewing the literature? Health Place 2012, 18, 100–105. [Google Scholar] [CrossRef] [Green Version]
- McCrorie, P.R.; Fenton, C.; Ellaway, A. Combining GPS, GIS, and accelerometry to explore the physical activity and environment relationship in children and young people—A review. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klompmaker, J.O.; Hoek, G.; Bloemsma, L.D.; Gehring, U.; Strak, M.; Wijga, A.H.; Brink, C.V.D.; Brunekreef, B.; Lebret, E.; Janssen, N.A. Green space definition affects associations of green space with overweight and physical activity. Environ. Res. 2018, 160, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.F.; Christian, H.; Veitch, J.; Astell-Burt, T.; Hipp, J.; Schipperijn, J. The impact of interventions to promote physical activity in urban green space: A systematic review and recommendations for future research. Soc. Sci. Med. 2015, 124, 246–256. [Google Scholar] [CrossRef] [Green Version]
- Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.; de Vries, S.; Triguero-Mas, M.; Brauer, M.; Nieuwenhuijsen, M.J.; et al. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ. Res. 2017, 158, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Schipperijn, J.; Stigsdotter, U.K.; Randrup, T.B.; Troelsen, J. Influences on the use of urban green space—A case study in Odense, Denmark. Urban For. Urban Green. 2010, 9, 25–32. [Google Scholar] [CrossRef]
- James, P.; Banay, R.F.; Hart, J.E.; Laden, F. A Review of the health benefits of greenness. Curr. Epidemiol. Rep. 2015, 2, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Mueller, W.; Steinle, S.; Pärkkä, J.; Parmes, E.; Liedes, H.; Kuijpers, E.; Pronk, A.; Sarigiannis, D.; Karakitsios, S.; Chapizanis, D.; et al. Urban greenspace and the indoor environment: Pathways to health via indoor particulate matter, noise, and road noise annoyance. Environ. Res. 2020, 180, 108850. [Google Scholar] [CrossRef]
- Annerstedt, M.; Östergren, P.-O.; Björk, J.; Grahn, P.; Skärbäck, E.; Währborg, P. Green qualities in the neighbourhood and mental health—results from a longitudinal cohort study in Southern Sweden. BMC Public Health 2012, 12, 337. [Google Scholar] [CrossRef] [Green Version]
- Ekkel, E.D.; de Vries, S. Nearby green space and human health: Evaluating accessibility metrics. J. Landsc. Urban Plan. 2017, 157, 214–220. [Google Scholar] [CrossRef]
- Hansen, A.Y.; Meyer, M.R.U.; Lenardson, J.D.; Hartley, D. Built environments and active living in rural and remote areas: A review of the literature. Curr. Obes. Rep. 2015, 4, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.W.; Brigham, C.A.; Hoeksema, J.D.; Lyons, K.G.; Mills, M.H.; Van Mantgem, P. Linking biodiversity to ecosystem function: Implications for conservation ecology. Oecologia 2000, 122, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Leemans, R.; de Groot, R. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Hough, R.L. Biodiversity and human health: Evidence for causality? Biodivers. Conserv. 2014, 23, 267–288. [Google Scholar] [CrossRef]
- Mills, J.G.; Brookes, J.D.; Gellie, N.J.; Liddicoat, C.; Lowe, A.J.; Sydnor, H.R.; Thomas, T.; Weinstein, P.; Weyrich, L.S.; Breed, M.F. Relating urban biodiversity to human health with the ‘holobiont’concept. J. Front. Microbiol. 2019, 10, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, I.; Boyce, W.F.; Simpson, K.; Pickett, W. Influence of individual- and area-level measures of socioeconomic status on obesity, unhealthy eating, and physical inactivity in Canadian adolescents. Am. J. Clin. Nutr. 2006, 83, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, R.; Albaladejo, R.; Astasio, P.; Ortega, P.; Santos, J.; Regidor, E. Socio-economic environment, area facilities and obesity and physical inactivity among children. Eur. J. Public Health 2015, 26, 267–271. [Google Scholar] [CrossRef]
- Gordon-Larsen, P.; Nelson, M.C.; Page, P.; Popkin, B. Inequality in the built environment underlies key health disparities in physical activity and obesity. Pediatrics 2006, 117, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Noonan, R.J. Prevalence of Childhood Overweight and Obesity in Liverpool between 2006 and 2012: Evidence of Widening Socioeconomic Inequalities. Int. J. Environ. Res. Public Health 2018, 15, 2612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; He, Q.; Chen, Y.; Lin, J.; Wang, S. Dismantling the fence for social justice? Evidence based on the inequity of urban green space accessibility in the central urban area of Beijing. Environ. Plan B Urban Anal. City Sci. 2020, 47, 626–644. [Google Scholar] [CrossRef]
- Chung, A.; Backholer, K.; Wong, E.; Palermo, C.; Keating, C.; Peeters, A. Trends in child and adolescent obesity prevalence in economically advanced countries according to socioeconomic position: A systematic review. Obes. Rev. 2016, 17, 276–295. [Google Scholar] [CrossRef] [PubMed]
- Denny, S.; Lewycka, S.; Utter, J.; Fleming, T.; Peiris-John, R.; Sheridan, J.; Rossen, F.; Wynd, D.; Teevale, T.; Bullen, P.; et al. The association between socioeconomic deprivation and secondary school students’ health: Findings from a latent class analysis of a national adolescent health survey. Int. J. Equity Health 2016, 15, 109. [Google Scholar] [CrossRef] [Green Version]
- Sherry, B.; Jefferds, M.E.; Grummer-Strawn, L.M. Accuracy of adolescent self-report of height and weight in assessing overweight status: A literature review. Arch. Pediatr. Adolesc. Med. 2007, 161, 1154–1161. [Google Scholar] [CrossRef]
- Karchynskaya, V.; Kopcakova, J.; Klein, D.; Gába, A.; Madarasova-Geckova, A.; Van Dijk, J.P.; De Winter, A.F.; Reijneveld, S.A. Is bmi a valid indicator of overweight and obesity for adolescents? Int. J. Environ. Res. Public Health 2020, 17, 4815. [Google Scholar] [CrossRef]
- Gosse, M. How accurate is self-reported BMI? Nutr. Bull. 2014, 39, 105–114. [Google Scholar] [CrossRef]
- He, J.; Cai, Z.; Fan, X. Accuracy of using self-reported data to screen children and adolescents for overweight and obesity status: A diagnostic meta-analysis. Obes. Res. Clin. Pract. 2017, 11, 257–267. [Google Scholar] [CrossRef]
- Hackshaw, A. Small studies: Strengths and limitations. Eur. Respir. J. 2008, 32, 1141–1143. [Google Scholar] [CrossRef]
- Snijders, T.A.B. Power and sample size in multilevel linear models. Encycl. Stat. Behav. Sci. 2005. [Google Scholar] [CrossRef]
Normal Weight | Overweight and Obesity | ||||||
---|---|---|---|---|---|---|---|
Total Sample (n = 62) | Total Sample (n = 48) | Girls (n = 25) | Boys (n = 23) | Total Sample (n = 14) | Girls (n = 7) | Boys (n = 7) | |
Age (years), M ± SD | 16.4 ± 1.5 | 16.3 ± 1.4 | 16.0 ± 1.5 | 16.6 ± 1.3 | 16.1 ± 1.3 | 16.2 ± 1.6 | 16.0 ± 1.1 |
Weight (kg), M ± SD | 61.4 ± 11.1 | 58.3 ± 8.8 | 54.9 ± 8.6 | 61.9 ± 7.8 | 74.0 ± 10.2 | 70.3 ± 8.3 | 77.6 ± 11.2 |
Height (m), M ± SD | 1.67 ± 0.10 | 1.67 ± 0.1 | 1.62 ± 0.9 | 1.72 ± 0.7 | 1.65 ± 0.1 | 1.6 ± 0.1 | 1.7 ± 0.1 |
BMI (kg/m2), M ± SD | 21.9 ± 3.2 | 20.7 ± 2.0 | 20.6 ± 2.4 | 20.8 ± 1.6 | 26.9 ± 1.8 | 27.1 ± 2.2 | 26.6 ± 1.4 |
MVPA Average Daily (minutes), M ± SD | 41.2 ± 20.8 | 41.5 ± 22.2 | 38.4 ± 184 | 44.1 ± 25.7 | 42.2 ± 16.6 | 42.2 ± 13.9 | 42.2 ± 20.1 |
EDI-PT, M ± SD | 2.1 ± 0.8 | 2.19 ± 0.8 | 2.8 ± 0.8 | 2.3 ± 0.8 | 1.7 ± 0.8 | 2.1 ± 0.6 | 1.4 ± 0.7 |
Girls (n = 32) | Boys (n = 30) | |||||
---|---|---|---|---|---|---|
Normal Weight (n = 25) | Overweight and Obesity (n = 7) | p (within Groups) | Normal Weight (n = 23) | Overweight and Obesity (n = 7) | p (within Groups) | |
BMI (kg/m2), M ± SD | 20.7 ± 2.5 | 27.2 ± 2.2 | 0.71 | 20.8 ± 1.7 | 26.6 ±1.4 | 0.62 |
MVPA Average Daily (minutes), M ± SD | 38.4 ± 18.5 | 42.2 ± 13.9 | 0.25 | 44.1 ± 25.8 | 42.3 ± 20.1 | 0.63 |
EDI-PT (terciles), M ± SD | 2.1 ± 0.8 | 2.2 ± 0.7 | 0.37 | 2.3 ± 0.8 | 1.4 ± 0.8 | 0.48 |
UGS Counts [300 m], M ± SD | 0.4 ± 0.5 | 0.5 ± 0.7 | 0.27 | 0.2 ± 0.4 | 0.7 ± 0.7 | 0.04 * |
UGS Counts [500 m], M ± SD | 1.0 ± 0.9 | 1.0 ± 1.1 | 0.53 | 0.8 ± 0.7 | 1.4 ± 1.0 | 0.53 |
UGS Counts [1000 m], M ± SD | 3.4 ± 2.1 | 3.4 ± 3.2 | 0.05 | 3.0 ± 2.4 | 4.8 ± 2.6 | 0.80 |
UGS Counts [1500 m], M ± SD | 6.8 ± 3.6 | 7.4 ± 3.9 | 0.64 | 5.8 ± 3.7 | 8.2 ± 3.3 | 0.70 |
NDVI [300 m], M ± SD | 0.17 ± 0.04 | 0.15 ± 0.03 | 0.08 | 0.18 ± 0.05 | 0.16 ± 0.03 | 0.16 |
NDVI [500 m], M ± SD | 0.18 ± 0.04 | 0.15 ± 0.03 | 0.71 | 0.18 ± 0.05 | 0.16 ± 0.02 | 0.36 |
NDVI [1000 m], M ± SD | 0.18 ± 0.03 | 0.17 ± 0.03 | 0.59 | 0.19 ± 0.03 | 0.17 ± 0.01 | 0.18 |
NDVI [1500 m], M ± SD | 018 ± 0.03 | 0.17 ± 0.03 | 0.41 | 0.19 ± 0.02 | 0.17 ± 0.02 | 0.22 |
SRI [300 m], M ± SD | 3.4 ± 3.9 | 2.4 ± 2.4 | 0.40 | 3.3 ± 3.3 | 3.1 ± 2.8 | 0.33 |
SRI [500 m], M ± SD | 3.7± 2.6 | 2.6 ± 2.2 | 0.47 | 3.6 ± 2.7 | 3.4± 2.5 | 0.85 |
SRI [1000 m], M ± SD | 3.7 ± 1.5 | 3.1 ± 1.4 | 0.59 | 4.1 ± 1.4 | 3.2 ± 0.9 | 0.33 |
SRI [1500 m], M ± SD | 3.7 ± 1.1 | 3.4 ± 1.3 | 0.39 | 4.0 ± 1.1 | 3.2 ± 0.5 | 0.06 |
Model | Variables | 95% Confidence Interval for B | ||||||
---|---|---|---|---|---|---|---|---|
B | SE B | β | Lower Bound | Upper Bound | t | p | ||
1 | UGS Counts [300 m] | 0.508 | 0.758 | 0.091 | −1.010 | 2.077 | 0.670 | 0.505 |
SRI [300 m] | −0.218 | 0.191 | −0.224 | −0.600 | 0.165 | −1.138 | 0.260 | |
NDVI [300 m] | 6.742 | 15.608 | 0.086 | −24.502 | 37.986 | 0.432 | 0.667 | |
Constant | 21.445 | 2.442 | 16.557 | 26.33 | 8.782 | <0.001 ** | ||
Model | 0.582 | |||||||
2 | UGS Counts [500 m] | −0.338 | 0.486 | −0.094 | −1.310 | 0.635 | −0.694 | 0.490 |
SRI [500 m] | −0.045 | 0.268 | −0.036 | −0.583 | 0.492 | −0.169 | 0.866 | |
NDVI [500 m] | −7.598 | 18.662 | −0.088 | −44.954 | 28.759 | −0.407 | 0.685 | |
Constant | 23.976 | 2.833 | 18.305 | 29.647 | 8.463 | <0.001 ** | ||
Model | 0.789 | |||||||
3 | UGS [1000 m] | −0.038 | 0.226 | −0.028 | −0.491 | 0.416 | −0.167 | 0.868 |
SRI [1000 m] | −0.298 | 0.563 | −0.124 | −1.426 | 0.831 | −0.528 | 0.599 | |
NDVI [1000 m] | 10.094 | 30.792 | 0.086 | −51.566 | 71.754 | 0.328 | 0.774 | |
Constant | 21.443 | 4.817 | 11.798 | 31.088 | 4.452 | <0.001 ** | ||
Model | 0.956 | |||||||
4 | UGS [1500 m] | −0.023 | 0.203 | −0.025 | −0.429 | 0.384 | −0.112 | 0.911 |
SRI [1500 m] | −0.314 | 0.711 | −0.105 | −1.727 | 1.119 | −0.428 | 0.670 | |
NDVI [1500 m] | 11.940 | 37.403 | 0.091 | −62.931 | 9.811 | 0.319 | 0.751 | |
Constant | 21.216 | 6.725 | 7.755 | 34.577 | 3.155 | 0.033 * | ||
Model | 0.974 |
Model | Variables | 95% Confidence Interval for B | ||||||
---|---|---|---|---|---|---|---|---|
B | SE B | β | Lower Bound | Upper Bound | t | p | ||
1 | UGS Counts [300 m] | 0.145 | 0.794 | 0.026 | −1.445 | 1.734 | 0.182 | 0.856 |
SRI [300 m] | −0.214 | 0.190 | −0.221 | −0.594 | 0.165 | −1.132 | 0.263 | |
NDVI [300 m] | 9.467 | 15.588 | 0.121 | −21.749 | 40.682 | 0.607 | 0.546 | |
EDI-PT | −0.795 | 0.557 | −0.199 | −1.911 | 0.321 | −1.427 | 0.159 | |
Constant | 22.788 | 2.597 | 17.588 | 27.989 | 8.774 | <0.001 ** | ||
Model | 0.410 | |||||||
2 | UGS Counts [500 m] | −0.575 | 0.494 | −0.160 | −1.563 | 0.414 | −1.164 | 0.249 |
SRI [500 m] | −0.102 | 0.265 | −0.080 | −0.633 | 0.428 | −0.385 | 0.701 | |
NDVI [500 m] | −2.541 | 18.502 | −0.029 | −39.592 | 34.509 | −0.137 | 0.891 | |
EDI-PT | 0.988 | 0.540 | −0.248 | −2.068 | 0.093 | −1.830 | 0.072 | |
Constant | 25.582 | 2.913 | 19.749 | 31.415 | 8.783 | <0.001 ** | ||
Model | 0.360 | |||||||
3 | UGS Counts [1000 m] | −0.129 | 0.226 | −0.096 | −0.581 | 0.324 | −0.569 | 0.572 |
SRI [1000 m] | −0.615 | 0.574 | −0256 | −1.766 | 0.535 | −1.071 | 0.289 | |
NDVI [1000 m] | 20.237 | 30.531 | 0.172 | −40.924 | 81.398 | 0.663 | 0.510 | |
EDI-PT | −1.053 | 0.544 | −0.267 | −2.143 | 0.038 | −1.934 | 0.058 | |
Constant | 23.268 | 4.799 | 13.655 | 32.881 | 4.849 | <0.001 ** | ||
Model | 0.405 | |||||||
4 | UGS Counts [1500 m] | −0.064 | 0.201 | −0.071 | −0.466 | 0.339 | −0.317 | 0.753 |
SRI [1500 m] | −0.486 | 0.707 | −0.167 | −1.903 | 0.930 | −0.687 | 0.495 | |
NDVI [1500 m] | 14.705 | 36.834 | 0.113 | −59.053 | 88.463 | 0.399 | 0.691 | |
EDI-PT | −0.894 | 0.593 | −0.224 | −1.940 | 0.153 | −1.710 | 0.093 | |
Constant | 23.527 | 6.753 | 10.005 | 37.049 | 3.484 | <0.001 ** | ||
Model | 0.538 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, J.; Ribeiro, A.I.; Aznar, S.; Pizarro, A.; Santos, M.P. Urban Green Spaces, Greenness Exposure and Species Richness in Residential Environments and Relations with Physical Activity and BMI in Portuguese Adolescents. Int. J. Environ. Res. Public Health 2021, 18, 6588. https://doi.org/10.3390/ijerph18126588
Melo J, Ribeiro AI, Aznar S, Pizarro A, Santos MP. Urban Green Spaces, Greenness Exposure and Species Richness in Residential Environments and Relations with Physical Activity and BMI in Portuguese Adolescents. International Journal of Environmental Research and Public Health. 2021; 18(12):6588. https://doi.org/10.3390/ijerph18126588
Chicago/Turabian StyleMelo, Juliana, Ana Isabel Ribeiro, Susana Aznar, Andreia Pizarro, and Maria Paula Santos. 2021. "Urban Green Spaces, Greenness Exposure and Species Richness in Residential Environments and Relations with Physical Activity and BMI in Portuguese Adolescents" International Journal of Environmental Research and Public Health 18, no. 12: 6588. https://doi.org/10.3390/ijerph18126588
APA StyleMelo, J., Ribeiro, A. I., Aznar, S., Pizarro, A., & Santos, M. P. (2021). Urban Green Spaces, Greenness Exposure and Species Richness in Residential Environments and Relations with Physical Activity and BMI in Portuguese Adolescents. International Journal of Environmental Research and Public Health, 18(12), 6588. https://doi.org/10.3390/ijerph18126588