Relationship Between Air Pollution and the Concentration of Nitric Oxide in the Exhaled Air (FeNO) in 8–9-Year-Old School Children in Krakow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measurement of FeNO
2.3. Information on Concentration of Ambient Air Pollution
2.4. Statistical Analysis
3. Results
3.1. Characteristic of Participants
3.2. Distribution of Obtained FeNO Measurements
3.3. The Level of Air Pollution on The Days of FeNO Measurements
3.4. Relationship Between FeNO and Air Pollution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. 2016. Available online: http://www.who.int/phe/publications/air-pollution-global-assessment/en/ (accessed on 20 October 2020).
- UNICEF. Clear the Air for Children. 2016. Available online: https://www.unicef.org/publications/index_92957.html (accessed on 20 October 2020).
- World Health Organization. Noncommunicable Diseases and Air Pollution. WHO European High-Level Conference on Noncommunicable Diseases. Available online: https://www.euro.who.int/__data/assets/pdf_file/0005/397787/Air-Pollution-and-NCDs.pdf (accessed on 20 October 2020).
- Jędrak, J.; Konduracka, E.; Badyga, A.J.; Dąbrowiecki, P. Wpływ Zanieczyszczeń Powietrza na Zdrowia; Stowarzyszenie Krakowski Alarm Smogowy: Krakow, Poland, 2017. [Google Scholar]
- European Environment Agency. Air quality standards. EEA. 2017. Available online: https://www.eea.europa.eu/themes/air/explore-air-pollution-data (accessed on 20 October 2020).
- Biuro, ds. Ochrony Zdrowia Urzędu Miasta Krakowa. Raport o Zdrowiu Mieszkańców Miasta Krakowa i jego Uwarunkowaniach. Krąków, 2016 Ministerstwo Zdrowia. Mapa Potrzeb Zdrowotnych dla Polski. Available online: http://www.mpz.mz.gov.pl (accessed on 20 October 2020).
- International Energy Agency. Energyand Air Pollution. World Energy Outlook Special Report. 2016. Available online: https://www.iea.org/publications/freepublications/publication/WorldEnergyOutlookSpecialReport2016EnergyandAirPollution.pdf (accessed on 20 October 2020).
- Carlsten, C. Air pollution and children’s respiratory health. Can. Respir. J. 2015, 22, 256. [Google Scholar] [CrossRef]
- Madsen, C.; Haberg, S.E.; Magnus, M.C.; Aamodt, G.; Stigum, H.; London, S.J.; Nystad, W.; Nafstad, P. Pregnancy exposure to air pollution and early childhood respiratory health in the Norwegian Motherand Child Cohort Study (MoBa). BMJ Open. 2017, 7, e015796. [Google Scholar] [CrossRef] [PubMed]
- Koranteng, S.; Vargas, A.R.; Buka, I. Ambient air pollution and children’s health: A systematic review of Canadian epidemiological studies. Paediatr. Child. Health. 2007, 12, 225–233. [Google Scholar] [PubMed]
- Sublett, J.L. Effectiveness of air filters and air cleaners in allergic respiratory diseases: A review of the recent literature. Curr. Allergy Asthma Rep. 2011, 11, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Stern, D.A.; Morgan, W.J.; Wright, A.L.; Guerra, S.; Martinez, F.D. Poor airway function in early infancy and lung function by age 22 years: A non-selective longitudinal cohort study. Lancet 2007, 370, 758–764. [Google Scholar] [CrossRef] [Green Version]
- Johansson, C.; Lövenheim, B.; Schantz, P.; Wahlgren, L.; Almström, P.; Markstedt, A.; Strömgren, M.; Forsberg, B.; Sommar, J.N. Impacts on air pollution and health by changing commuting from car to bicycle. Sci. Total Environ. 2017, 584–585, 55–63. [Google Scholar] [CrossRef]
- Kowalska, M.; Skrzypek, M.; Kowalski, M.; Cyrys, J.; Ewa, N.; Czech, E. The Relationship between Daily Concentration of Fine Particulate Matterin Ambient Air and Exacerbation of Respiratory Diseases in Silesian Agglomeration, Poland. Int. J. Environ. Res. Public Health. 2019, 16, 1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holt, P.G.; Jones, C.A. The development of the immune system during pregnancy and early life. Allergy 2000, 55, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Rurarz, A.; Feleszko, W. Smog: Nowe zagrożenie w chorobach układu oddechowego dla dzieci oraz metody unikania jego skutków—praktycznie. Terapia 2017, 11, 53–56. [Google Scholar]
- Health Effects Institute. Understanding the Health Effects of Ambient Ultrafine Particles. 2013. HEI Review Panel on Ultrafine Particles. HEI Perspectives 3. Available online: http://pubs.healtheffects.org/view.php?id=394 (accessed on 20 October 2020).
- Chauhan, A.J.; Johnston, S.L. Air pollution and infection in respiratory illness. Br. Med. Bull. 2003, 68, 95–112. [Google Scholar] [CrossRef]
- Malec, K.; Bednarek, M.; Bartkiewicz-Skrabania, P.; Piórkowska, P. The impact of particulate matter (PM2.5, PM10) concentration on the occurrence of acute cardiorespiratory disorders and its exacerbations in children in Krakow agglomeration on the basis of Admission to the Voivodship Children Specialist Hospitalin Krakow. Nowa Pediatr. 2016, 4, 168–173. [Google Scholar]
- Ziętkowski, Z.; Siepko, R.; Czarniakowska-Bołuć, M.; Budny, W.; Łukaszyk, M.; Skiepko, U.; Bodzenta-Łukaszyk, A. The usefulness of exhaled nitric oxide in monitoring of treatment in patients with severe asthma. Alerg. Astma Immunilogia 2013, 18, 114–117. [Google Scholar]
- Kłak, A.; Krzych-Fałta, E.; Samoliński, B. The role of nitric oxide in the inflamed airways. Alerg. Astma Immunilogia 2013, 18, 91–96. [Google Scholar]
- Taylor, D.R. Nitric oxide as a clinical guide for asthma management. J. Allergy Clin. Immunol. 2006, 117, 259–262. [Google Scholar] [CrossRef]
- Sánchez-García, S.; Habernau Mena, A.; Quirce, S. Biomarkers in inflammometry pediatric asthma: Utility in daily clinical practice. Eur. Clin. Respir. J. 2017, 4, 1356160. [Google Scholar] [CrossRef] [Green Version]
- Rachel, M.; Biesiadecki, M.; Aebisher, D.; Galiniak, S. Exhaled nitric oxide in pediatric patients with respiratory disease. J. Breath Res. 2019, 13, 046007. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.W.; Liu, E.K.; Leung, T.F.; Yung, E.; Ko, F.W.; Hui, D.S.; Fok, T.F.; Lai, C.K. High levels and gender difference of exhaled nitric oxide in Chinese schoolchildren. Clin. Exp. Allergy 2005, 35, 889–893. [Google Scholar] [CrossRef]
- Mierzejewska, A.; Jodłowska, M.; Kućko, A.; Rybak, K.; Sołtysiak, M.; Sroka, S.; Kalicki, B. Usefulness of determining exhaled nitric oxide levels for the assessment of asthma severity in children. Pediatr. Med. Rodz. 2015, 11, 186–196. [Google Scholar] [CrossRef]
- Alving, K.; Weitzberg, E.; Lundberg, J.M. Increased amount of nitric oxide in exhaled air of asthmatics. Eur. Respir. J. 1993, 6, 1368–1370. [Google Scholar]
- Ziętkowski, Z.; Ziętkowska, E.; Bodzenta-Łukaszyk, A. Exhaled nitric oxide measurements in the diagnosis of respiratory diseases. Alerg. Astma Immunol. 2009, 14, 215–222. [Google Scholar]
- Kharitonov, S.A.; Yates, D.; Robbins, R.A.; Logan-Sinclair, R.; Shinebourne, E.A.; Barnes, P.J. Increased nitric oxide in exhaled air of asthmatic patients. Lancet 1994, 343, 133–135. [Google Scholar] [CrossRef]
- Silvestri, M.; Spallarossa, D.; FrangovaYourukova, V.; Battistini, E.; Fregonese, B.; Rossi, G.A. Orally exhaled nitric oxide levels are related to the degree of blood eosinophilia in atopic children with mild-intermittent asthma. Eur. Respir. J. 1999, 13, 321–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanz, M.J.; Leung, D.Y.; McCormick, D.R.; Harbeck, R.; Szefler, S.J.; White, C.W. Comparison of exhaled nitric oxide, serum eosinophilic cationic protein, and soluble interleukin-2 receptor in exacerbations of pediatric asthma. Pediatr. Pulmonol. 1997, 24, 305–311. [Google Scholar] [CrossRef]
- Mattes, J.; Stormvan’s Gravesande, K.; Reining, U.; Alving, K.; Ihorst, G.; Henschen, M.; Kuehr, J. NO in exhaled air is correlated with markers of eosinophilic airway inflammation in corticosteroid-dependent childhood asthma. Eur. Respir. J. 1999, 13, 1391–1395. [Google Scholar] [PubMed]
- Petsky, H.L.; Kew, K.M.; Chang, A.B. Exhaled nitric oxide levels to guide treatment for children with asthma. Cochrane Database Syst. Rev. 2016, 11, CD011439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dadas-Stasiak, E.; Jung, A.; Jobs, K.; Kalicka, B. An assessment of fractional exhaled nitric oxide in children with allergic rhinitis. Pediatr. Med. Rodz. 2016, 12, 285–295. [Google Scholar] [CrossRef]
- American Thoracic Society; European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care. Med. 2005, 171, 912–930. [Google Scholar] [CrossRef] [PubMed]
- Dweik, R.A.; Boggs, P.B.; Erzurum, S.C.; Irvin, C.G.; Leigh, M.W.; Lundberg, J.O.; Olin, A.C.; Plummer, A.L.; Taylor, D.R.; American Thoracic Society Committee on Interpretation of Exhaled Nitric Oxide Levels (FENO) for Clinical Applications. An official ATS clinical practice guideline: Interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care. Med. 2011, 184, 602–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ducharme, F.M.; Dell, S.D.; Radhakrishnan, D.; Grad, R.M.; Watson, W.T.; Yang, C.L.; Zelman, M. Diagnosis and management of asthma in preschoolers: A Canadian Thoracic Society and Canadian Paediatric Society position paper. Paediatr. Child. Health. 2015, 20, 353–371. [Google Scholar] [CrossRef] [Green Version]
- British Thoracic Society. BTS/SIGN British guideline on the management of asthma 2016. Available online: https://www.brit-thoracic.org.uk/document-library/clinical-information/asthma/btssign-asthma-guideline-2016/ (accessed on 20 October 2020).
- Karrasch, S.; Linde, K.; Rücker, G.; Sommer, H.; Karsch-Völk, M.; Kleijnen, J.; Jörres, R.A.; Schneider, A. Accuracy of FENO for diagnosing asthma: A systematic review. Thorax 2017, 72, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Gjurow-Podlecki, D.; Majak, P.; Kałuzińska-Parzyszek, I.; Jerzyńska, J.; Stelmach, I. Fractional exhaled nitric oxide correlates with FEV1 in bronchial reversibility test in children with asthma. Alerg. Astma Immunol. 2010, 15, 203–207. [Google Scholar]
- Woo, S.I.; Lee, J.H.; Kim, H.; Kang, J.W.; Sun, Y.H.; Hahn, Y.S. Utility of fractional exhaled nitric oxide (F(E)NO) measurements in diagnosing asthma. Respir. Med. 2012, 106, 1103–1109. [Google Scholar] [CrossRef] [Green Version]
- Katial, R.; Stewart, L. Exhaled nitric oxide: A test for diagnosis and control of asthma? Curr. Allergy Asthma Rep. 2007, 7, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Gan, W.Q.; FitzGerald, J.M.; Carlsten, C.; Sadatsafavi, M.; Brauer, M. Associations of ambient air pollution with chronic obstructive pulmonary disease hospitalization and mortality. Am. J. Respir. Crit. Care Med. 2013, 187, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Berhane, K.; Eckel, S.P.; Muchmore, P.; Molshatzki, N.B.-A.; Rappaport, E.B.; Linn, W.S.; Habre, R.; Gilliland, F.D. Adverse effects of annual fluctuations in air pollution on feno in children: A longitudinal study. Am. J. Respir. Crit. Care Med. 2020, 201, A1020. [Google Scholar]
- Koenig, J.Q.; Jansen, K.; Mar, T.F.; Lumley, T.; Kaufman, J.; Trenga, C.A.; Sullivan, J.; Liu, L.J.; Shapiro, G.G.; Larson, T.V. Measurement of offline exhaled nitric oxide in a study of community exposure to air pollution. Environ. Health. Perspect. 2003, 111, 1625–1629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Idavain, J.; Julge, K.; Rebane, T.; Lang, A.; Orru, H. Respiratory symptoms, asthma and levels of fractional exhaled nitric oxide in school children in the industrial areas of Estonia. Sci. Total Environ. 2019, 650, 65–72. [Google Scholar] [CrossRef]
- Berhane, K.; Zhang, Y.; Linn, W.S.; Rappaport, E.B.; Bastain, T.M.; Salam, M.T.; Islam, T.; Lurmann, F.; Gilliland, F.D. The effect of ambient air pollution on exhaled nitric oxide in the Children’s Health Study. Eur. Respir. J. 2011, 37, 1029–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delfino, R.J.; Staimer, N.; Gillen, D.; Tjoa, T.; Sioutas, C.; Fung, K.; George, S.C.; Kleinman, M.T. Personal and ambient air pollution is associated with increased exhaled nitric oxide in children with asthma. Environ. Health Perspect. 2006, 114, 1736–1743. [Google Scholar] [CrossRef] [Green Version]
- Permaul, P.; Gaffin, J.M.; Petty, C.R.; Baxi, S.N.; Lai, P.S.; Sheehan, W.J.; Camargo, C.A., Jr.; Gold, D.R.; Phipatanakul, W. Obesity may enhance the adverse effects of NO2 exposure in urban schools on asthma symptoms in children. J. Allergy Clin. Immunol. 2020, 146, 813–820.e2. [Google Scholar] [CrossRef]
- Kobza, J.; Geremek, M.; Dul, L. Characteristics of air quality and sources affecting high levels of PM10 and PM2.5 in Poland, Upper Silesia urban area. Environ. Monit. Assess 2018, 190, 515. [Google Scholar] [CrossRef] [Green Version]
- American Thoracic Society. Recommendations for standardized procedures for the on-line and off-line measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide in adults and children-1999. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, July 1999. Am. J. Respir. Crit. Care. Med. 1999, 160, 2104–2117. [Google Scholar]
- Kim, H.B.; Eckel, S.P.; Kim, J.H.; Gilliland, F.D. Exhaled NO: Determinants and clinical application in children with allergic airway disease. Allergy Asthma Immunol. Res. 2016, 8, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Wang, W.; Niu, Y.; Xia, Y.; Lei, X.; Huo, J.; Zhao, Q.; Zhang, Y.; Duan, Y.; Cai, J.; et al. The effects of fine particulate matter constituents on exhaled nitric oxide and DNA methylation in the arginase-nitric oxide synthase pathway. Environ. Int. 2019, 131, 105019. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Chen, R.; Lin, Z.; Cai, J.; Yang, Y.; Yang, D.; Norback, D.; Kan, H. Ambient carbon monoxide associated with alleviated respiratory inflammation in healthy young adults. Environ. Pollut. 2016, 208, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Delfino, R.J.; Staimer, N.; Tjoa, T.; Gillen, D.L.; Schauer, J.J.; Shafer, M.M. Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel. J. Exp. Sci. Environ. Epidemiol. 2013, 23, 466–473. [Google Scholar] [CrossRef]
- Delfino, R.J.; Staimer, N.; Tjoa, T.; Arhami, M.; Polidori, A.; Gillen, D.L.; George, S.C.; Shafer, M.M.; Schauer, J.J.; Sioutas, C. Associations of primary and secondary organic aerosols with airway and systemic inflammation in an elderly panel cohort. Epidemiology 2010, 21, 892–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Poon, R.; Chen, L.; Frescura, A.M.; Montuschi, P.; Ciabattoni, G.; Wheeler, A.; Dales, R. Acute effects of air pollution on pulmonary function, airway inflammation, and oxidative stress in asthmatic children. Environ. Health Perspect. 2009, 117, 668–674. [Google Scholar] [CrossRef]
- Maikawa, C.L.; Weichenthal, S.; Wheeler, A.J.; Dobbin, N.A.; Smargiassi, A.; Evans, G.; Liu, L.; Goldberg, M.S.; Pollitt, K.J. Particulate oxidative burden as a predictor of exhaled nitric oxide in children with asthma. Environ. Health Perspect. 2016, 124, 1616–1622. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liu, F.; Niu, Z.; Mao, S.; Tang, H.; Li, N.; Chen, G.; Liu, S.; Lu, Y.; Xiang, H. The association between short-term exposure to ambient air pollution and fractional exhaled nitric oxide level: A systematic review and meta-analysis of panel studies. Environ. Pollut. 2020, 265, 114833. [Google Scholar] [CrossRef]
- MacIntyre, E.A.; Gehring, U.; Mölter, A.; Fuertes, E.; Klümper, C.; Krämer, U.; Quass, U.; Hoffmann, B.; Gascon, M.; Brunekreef, B.; et al. Air pollution and respiratory infections during early childhood: Ananalysis of 10 European birth cohorts within the ESCAPE Project. Environ. Health Perspect. 2014, 122, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Fan, Q.; Bai, X.; Li, T.; Zhao, Z.; Fan, X.; Norbäck, D. Levels of fractional exhaled nitric oxide in children in relation to air pollutionin Chinese day care centres. Int. J. Tuberc. Lung Dis. 2018, 22, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Steerenberg, P.A.; Nierkens, S.; Fischer, P.H.; van Loveren, H.; Opperhuizen, A.; Vos, J.G.; van Amsterdam, J.G. Traffic-related air pollution affects peak expiratory flow, exhaled nitric oxide, and inflammatory nasal markers. Arch. Environ. Health. 2001, 56, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Ricciardolo, F.L. Revisiting the role of exhaled nitric oxide in asthma. Curr. Opin. Pulm. Med. 2014, 20, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Adamkiewicz, G.; Ebelt, S.; Syring, M.; Slater, J.; Speizer, F.E.; Schwartz, J.; Suh, H.; Gold, D.R. Association between air pollution exposure and exhaled nitric oxide in an elderly population. Thorax 2004, 59, 204–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breton, C.V.; Byun, H.M.; Wang, X.; Salam, M.T.; Siegmund, K.; Gilliland, F.D. DNA methylation in the arginase-nitric oxide synthase pathway is associated with exhaled nitric oxide in children with asthma. Am. J. Respir. Crit. Care Med. 2011, 184, 191–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, G.C.; Fish, J.E.; Mawji, I.A.; Leung, D.D.; Rachlis, A.C.; Marsden, P.A. Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells. J. Immunol. 2005, 175, 3846–3861. [Google Scholar] [CrossRef] [PubMed]
- Nhung, N.T.T.; Amini, H.; Schindler, C.; Kutlar Joss, M.; Dien, T.M.; Probst-Hensch, N.; Perez, L.; Künzli, N. Short-term association between ambient air pollution and pneumonia in children: A systematic review and meta-analysis of time-series and case-crossover studies. Environ. Pollut. 2017, 230, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Zu, K.; Shi, L.; Prueitt, R.L.; Liu, X.; Goodman, J.E. Critical review of long-term ozone exposure and asthma development. Inhal. Toxicol. 2018, 30, 99–113. [Google Scholar] [CrossRef]
- Niu, T.; Lv, C.; Yi, G.; Tang, H.; Gong, C.; Niu, S. Therapeutic effect of medical ozone on lumbar disc herniation. Med. Sci. Monit. 2018, 24, 1962–1969. [Google Scholar] [CrossRef]
- Barraza-Villarreal, A.; Sunyer, J.; Hernandez-Cadena, L.; Escamilla-Nuñez, M.C.; Sienra-Monge, J.J.; Ramírez-Aguilar, M.; Cortez-Lugo, M.; Holguin, F.; Diaz-Sánchez, D.; Olin, A.C.; et al. Air pollution, airway inflammation, and lung function in a cohort study of Mexico City school children. Environ. Health Perspect. 2008, 116, 832–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nickmilder, M.; de Burbure, C.; Carbonnelle, S.; Dumont, X.; Bernard, A.; Derouane, A. Increase of exhaled nitric oxide in children exposed to low levels of ambient ozone. J. Toxicol. Environ. Health A 2007, 70, 270–274. [Google Scholar] [CrossRef]
- Karakatsani, A.; Samoli, E.; Rodopoulou, S.; Dimakopoulou, K.; Papakosta, D.; Spyratos, D.; Grivas, G.; Tasi, S.; Angelis, N.; Thirios, A.; et al. Weekly personal ozone exposure and respiratory health in a panel of Greek school children. Environ. Health Perspect. 2017, 125, 077016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altuğ, H.; Gaga, E.O.; Döğeroğlu, T.; Brunekreef, B.; Hoek, G.; Van Doorn, W. Effects of ambient air pollution on respiratory tract complaints and airway inflammation in primary school children. Sci. Total Environ. 2014, 479–480, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Barath, S.; Mills, N.L.; Ädelroth, E.; Olin, A.-C.; Blomberg, A. Diesel exhaust but not ozone increases fraction of exhaled nitric oxide in a randomized controlled experimental exposure study of healthy human subjects. Environ. Health 2013, 12, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laoudi, Y.; Nikasinovic, L.; Sahraoui, F.; Grimfeld, A.; Momas, I.; Just, J. Passive smoking is a major determinant of exhaled nitric oxide levels in allergic asthmatic children. Allergy 2010, 65, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Kougias, M.; Vardavas, C.I.; Anagnostopoulos, N.; Matsunaga, Y.; Tzwrtzi, A.; Lymberi, M.; Connolly, G.N.; Behrakis, P.K. The acute effect of cigarette smoking on the respiratory function and FENO production among young smokers. Exp. Lung Res. 2013, 39, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Traczyk, P.; Gruszecka-Kosowska, A. The condition of air pollution in Kraków, Poland, in 2005–2020, with health risk assessment. Int. J. Environ. Res. Public Health 2020, 17, 6063. [Google Scholar] [CrossRef] [PubMed]
- Bokwa, A. Environmental impacts of long-term air pollution changes in Krakow, Poland. Pol. J. Environ. Stud. 2008, 17, 673–686. [Google Scholar]
FeNO (ppb) | ||||||||
---|---|---|---|---|---|---|---|---|
Month | n | Me (Q1–Q3); Min.–Max | p | 0–20 n (%) | 21–50 n (%) | 51–99 n (%) | ≥100 n (%) | p |
Stage I (autumn–winter period): | ||||||||
October | 191 | 11 (8–15); 2–104 | 0.14 A | 165 (86.4) | 22 (11.5) | 3 (1.6) | 1 (0.5) | 0.068 C |
November | 1883 | 11 (7–17); 2–136 | 1545 (82.1) | 292 (15.5) | 40 (2.1) | 6 (0.3) | ||
December | 1673 | 12 (8–17); 2–144 | 1374 (82.3) | 231 (13.8) | 56 (3.1) | 12 (0.8) | ||
January | 833 | 11 (8–16); 4–125 | 704 (84.5) | 104 (12.5) | 23 (2.6) | 2 (0.4) | ||
Stage II (springer–summer period): | ||||||||
May | 2279 | 12 (9–18); 1–154 | 0.23 B | 1832 (80.4) | 365 (16.0) | 74 (3.3) | 8 (0.4) | 0.15 C |
June | 2301 | 11 (8–18); 1–196 | 1796 (78.0) | 400 (17.4) | 98 (4.3) | 7 (0.3) |
Stage/Month | NO (µg/m3) | CO8h (µg/m3) | C6H6 (µg/m3) | PM10 (µg/m3) | PM2.5 (µg/m3) |
---|---|---|---|---|---|
Stage I (autumn–winter period): | |||||
45 (14–91); 1–331 | 1063 (744–1501); 343–3250 | 2 (1.2–3.9); 0.4–25.4 | 43 (26–67); 7–192 | 31 (18–51); 4–163 | |
October | 32 (14–78); 1–181 | 834 (658–1093); 353–1588 | 1 (1.0–2.2); 0.6–3.5 | 30 (21–50); 7–107 | 22 (13–37) 4–79 |
November | 55 (20–115); 2–278 | 1247 (919–1907.5); 365–3080 | 3 (1.6–4.0) 0.7–5.4 | 48 (29–75); 13–127 | 34 (22–57); 7–93 |
December | 45 (14–83); 2–202 | 1072 (772–1498); 343–2016 | 2 (1.3–3.1); 0.5–7.0 | 44 (29–65); 12–121 | 30 (20–50); 5–111 |
January | 38 (10–107); 1–331 | 1202 (820–1624); 467–3250 | 3 (1.9–5.5); 0.4–25.4 | 53 (32–76); 13–192 | 40 (21–62); 7–163 |
Stage II (spring–summer period): | |||||
12 (4–47); 0–108 | 627 (527–741); 234–1185 | 1 (0.4–1.4); 0.2–2.9 | 28 (22–37); 9–59 | 17 (13–21); 4–39 | |
May | 13 (4–41); 0–99 | 666 (532–741); 234–899 | 1 (0.5–1.7); 0.2–2.9 | 30 (24–40); 12–59 | 17 (13–21); 7–39 |
June | 8 (4–50); 0–108 | 612 (475–724); 330–1185 | 1 (0.4–1.2); 0.2–2.1 | 27 (22–35); 9–52 | 16 (4–35); 11–21 |
FeNO | Stage I (Autumn–Winter Period): | Stage II (Spring–Summer Period): | ||
---|---|---|---|---|
r | p | r | p | |
The day of measurement: | ||||
NO (µg/m3) | 0.053 | <0.001 | 0.031 | 0.035 |
CO8h (µg/m3) | 0.149 | <0.001 | 0.067 | <0.001 |
C6H6 (µg/m3) | 0.143 | <0.001 | 0.016 | 0.271 |
PM10 (µg/m3) | 0.097 | <0.001 | 0.027 | 0.065 |
PM2.5 (µg/m3) | 0.106 | <0.001 | 0.039 | 0.022 |
The median value from the week before: | ||||
NO (µg/m3) | 0.028 | 0.016 | 0.051 | <0.001 |
CO8h (µg/m3) | 0.057 | <0.001 | 0.056 | 0.001 |
C6H6 (µg/m3) | 0.043 | 0.018 | 0.024 | 0.106 |
PM10 (µg/m3) | 0.053 | <0.001 | 0.012 | 0.417 |
PM2.5 (µg/m3) | 0.044 | <0.001 | 0.002 | 0.899 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czubaj-Kowal, M.; Kurzawa, R.; Mazurek, H.; Sokołowski, M.; Friediger, T.; Polak, M.; Nowicki, G.J. Relationship Between Air Pollution and the Concentration of Nitric Oxide in the Exhaled Air (FeNO) in 8–9-Year-Old School Children in Krakow. Int. J. Environ. Res. Public Health 2021, 18, 6690. https://doi.org/10.3390/ijerph18136690
Czubaj-Kowal M, Kurzawa R, Mazurek H, Sokołowski M, Friediger T, Polak M, Nowicki GJ. Relationship Between Air Pollution and the Concentration of Nitric Oxide in the Exhaled Air (FeNO) in 8–9-Year-Old School Children in Krakow. International Journal of Environmental Research and Public Health. 2021; 18(13):6690. https://doi.org/10.3390/ijerph18136690
Chicago/Turabian StyleCzubaj-Kowal, Marta, Ryszard Kurzawa, Henryk Mazurek, Michał Sokołowski, Teresa Friediger, Maciej Polak, and Grzegorz Józef Nowicki. 2021. "Relationship Between Air Pollution and the Concentration of Nitric Oxide in the Exhaled Air (FeNO) in 8–9-Year-Old School Children in Krakow" International Journal of Environmental Research and Public Health 18, no. 13: 6690. https://doi.org/10.3390/ijerph18136690
APA StyleCzubaj-Kowal, M., Kurzawa, R., Mazurek, H., Sokołowski, M., Friediger, T., Polak, M., & Nowicki, G. J. (2021). Relationship Between Air Pollution and the Concentration of Nitric Oxide in the Exhaled Air (FeNO) in 8–9-Year-Old School Children in Krakow. International Journal of Environmental Research and Public Health, 18(13), 6690. https://doi.org/10.3390/ijerph18136690