Healthy Urban Environmental Features for Poverty Resilience: The Case of Detroit, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Scope
2.2. Data Sources
2.3. Analysis Methods
3. Results
3.1. Spatial Distributions of Each Variable
3.1.1. Change in Household Income
3.1.2. Public and Alternative Transportation
3.1.3. Urban Facilities
3.1.4. Environmental Pollution
3.1.5. Urban Decay
3.2. Correlations between Income Change and Environmental and Urban Features
3.2.1. Public and Alternative Transportation
3.2.2. Urban Facilities
3.2.3. Environmental Pollution
3.2.4. Urban Decay
3.3. Correlations among Environmental and Urban Feature Variables
3.3.1. Public and Alternative Transportation
3.3.2. Urban Facilities
3.3.3. Environmental Pollution
3.3.4. Urban Decay
3.4. Summary
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jargowsky, P.A. Architecture of Segregation; The Century Foundation: Washington, DC, USA, 2015; Available online: https://tcf.org/content/report/architecture-of-segregation/ (accessed on 1 January 2017).
- OECD; WHO. Poverty and Health, DAC Guidelines and Reference Series. 2003. Available online: http://www.who.int/tobacco/research/economics/publications/oecd_dac_pov_health.pdf (accessed on 1 May 2017).
- Benzeval, M.; Taylor, J.; Judge, K. Evidence on the relationship between low income and poor health: Is the Government Doing Enough? Fisc. Stud. 2000, 21, 375–399. [Google Scholar] [CrossRef]
- Jackson, L.E. The relationship of urban design to human health and condition. Landsc. Urban Plan. 2003, 64, 191–200. [Google Scholar] [CrossRef]
- Marshall, J.D.; Brauer, M.; Frank, L.D. Healthy neighborhoods: Walkability and air pollution. Environ. Health Perspect 2009, 117, 1752–1759. [Google Scholar] [CrossRef] [PubMed]
- Keralis, J.M.; Javanmardi, M.; Khanna, S.; Dwivedi, P.; Huang, D.; Tasdizen, T.; Nguyen, Q.C. Health and the built environment in United States cities: Measuring associations using Google Street View-derived indicators of the built environment. BMC Public Health 2020, 20, 215. [Google Scholar] [CrossRef] [PubMed]
- Marmot, M. The influence of income on health: Views of an epidemiologist. Health Aff. 2002, 21, 31–46. [Google Scholar] [CrossRef]
- Taylor, D.E.; Ard, K.J. Research Article: Food availability and the food desert frame in Detroit: An overview of the city’s food system. Environ. Pract. 2015, 17, 102–133. [Google Scholar] [CrossRef]
- Lee, V.; Mikkelsen, L.; Srikantharajah, J.; Cohen, L. Strategies for Enhancing the Built Environment to Support Healthy Eating and Active Living; Prevention Institute: Oakland, CA, USA, 2008; Available online: https://www.preventioninstitute.org/publications/strategies-for-enhancing-the-built-environment-to-support-healthy-eating-and-active-living (accessed on 28 June 2021).
- Galea, S.; Ahern, J.; Nandi, A.; Tracy, M.; Beard, J.; Vlahov, D. Urban neighborhood poverty and the incidence of depression in a population-based cohort study. Ann. Epidemiol. 2007, 17, 171–179. [Google Scholar] [CrossRef]
- Molina-García, J.; Menescardi, C.; Estevan, I.; Martínez-Bello, V.; Queralt, A. Neighborhood built environment and socioeconomic status are associated with active commuting and sedentary behavior, but not with leisure-time physical activity, in university students. Int. J. Environ. Res. Public Health 2019, 16, 3176. [Google Scholar] [CrossRef]
- The Lancet. Urbanisation, inequality, and health in Asia and the Pacific. Lancet 2017, 389, 1370. [Google Scholar] [CrossRef]
- Braveman, P.A.; Cubbin, C.; Egerter, S.; Chideva, S.; Marchi, K.S.; Metzler, M.; Posner, S. Socioeconomic status in health research: One size does not fit all. JAMA 2005, 294, 2879–2888. [Google Scholar] [CrossRef]
- Boyle, K. The Ruins of Detroit: Exploring the urban crisis in the motor city. Mich. Hist. Rev. 2001, 27, 109–127. [Google Scholar] [CrossRef]
- Fasenfest, D. Social sustainability and urban inequality: Detroit and the ravages of neoliberalism. In Cities and Inequalities in a Global and Neoliberal World; Taylor & Francis Group: Abingdon, UK, 2015; p. 15. [Google Scholar]
- Newman, A.; Campbell, L.; Safransky, S.; Stallmann, T.; Hale, J.; Miles, T. A People’s Atlas of Detroit; Wayne State University Press: Detroit, MI, USA, 2019. [Google Scholar]
- City Data. Available online: http://www.city-data.com/poverty/poverty-Detroit-Michigan.html (accessed on 18 April 2017).
- Cortright, J.; Mahmoudi, D. Lost in Place. City Observatory. 2014. Available online: http://cityobservatory.org/wp-content/uploads/2014/12/LostinPlace_12.4.pdf (accessed on 1 May 2017).
- Drawing Detroit Atlas. Available online: http://www.drawingdetroit.com/tag/detroit-vacancy/ (accessed on 18 April 2017).
- Detroit Future City. Available online: https://detroitfuturecity.com/framework/ (accessed on 1 January 2017).
- US Census Bureau. Available online: https://data.census.gov/cedsci/? (accessed on 1 January 2017).
- Fitzpatrick, T. 3–Community disaster resilience. In Disasters and Public Health, 2nd ed.; Clements, B.W., Casani, J.A.P., Eds.; Butterworth-Heinemann: Oxford, UK, 2016; pp. 57–85. [Google Scholar]
- Gibson, C.A.; Tarrant, M. A “Conceptual Models” Approach to Organisational Resilience; Australian Emergency Management Institute: Mount Macedon, Australia, 2010; Volume 25, pp. 6–12. [Google Scholar]
- Amaratunga, D.; Haigh, R. Disaster management and the built environment, Guest editorial. Disaster Prev. Manag. Int. J. 2009, 18, 5–8. [Google Scholar]
- Murembya, L.; Guthrie, E. Demographic and Labor Market Profile: Detroit City. State of Michigan Department of Technology, Management, and Budget. 2015. Available online: https://milmi.org/Portals/198/publications/Detroit_City_Demographic_and_Labor_Mkt_Profile.pdf (accessed on 1 January 2017).
- Grengs, J. Job accessibility and the modal mismatch in Detroit. J. Transp. Geogr. 2010, 18, 42–54. [Google Scholar] [CrossRef]
- Onolemhemhen, D.N. Meeting the challenges of urban aging: Narratives of poor elderly women of Detroit, Michigan. J. Gerontol. Soc. Work 2009, 52, 729–743. [Google Scholar] [CrossRef]
- Darden, J.T.; Kamel, S.M. Black residential segregation in the city and suburbs of Detroit: Does socioeconomic status matter? J. Urban Aff. 2000, 22, 1–13. [Google Scholar] [CrossRef]
- Saelens, B.; Handy, S. Built environment correlates of walking: A review. Med. Sci. Sports Exerc. 2008, 40, S550–S566. [Google Scholar] [CrossRef]
- Jiang, Y.; Zegras, P.C.; Mehndiratta, S. Walk the line: Station context, corridor type and bus rapid transit walk access in Jinan, China. J. Transp. Geogr. 2012, 20, 1–14. [Google Scholar] [CrossRef]
- Urban Accessibility Planning Support Systems: A Case Study in Wuhan, China (English); Energy Sector Management Assistace Program (ESMAP); World Bank Group: Washington, DC, USA, 2012; Available online: http://documents.worldbank.org/curated/en/881491468024666331/Urban-accessibility-planning-support-systems-with-a-case-study-in-Wuhan-China (accessed on 1 January 2017).
- Johnston, R.J.; Gregory, D.; Pratt, G.; Watts, M. The Dictionary of Human Geography, 11th ed.; Blackwell Publishers: Hoboken, NJ, USA, 2000. [Google Scholar]
- Macintyre, S.; Macdonald, L.; Ellaway, A. Do poorer people have poorer access to local resources and facilities? The distribution of local resources by area deprivation in Glasgow, Scotland. Soc. Sci. Med. 2008, 67, 900–914. [Google Scholar] [CrossRef]
- Hu, L.; Giuliano, G. Poverty concentration, job access, and employment outcomes. J. Urban Aff. 2017, 39, 1–16. [Google Scholar] [CrossRef]
- Walker, R.E.; Keane, C.R.; Burke, J.G. Disparities and access to healthy food in the United States: A review of food deserts literature. Health Place 2010, 16, 876–884. [Google Scholar] [CrossRef]
- Gobillon, L.; Selod, H.; Zenou, Y. The mechanisms of spatial mismatch. Urban Stud. 2007, 44, 2401–2427. [Google Scholar] [CrossRef]
- Hussey, L.; Turner, S.; Thorley, K.; McNamee, R.; Agius, R. Work-related sickness absence as reported by UK general practitioners. Occup. Med. 2012, 62, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, M.; Piha, K.; Martikainen, P.; Rahkonen, O.; Lahelma, E. Health-related behaviours and sickness absence from work. Occup. Environ. Med. 2009, 66, 840–847. [Google Scholar] [CrossRef]
- Nazarov, S.; Manuwald, U.; Leonardi, M.; Silvaggi, F.; Foucaud, J.; Lamore, K.; Guastafierro, E.; Scaratti, C.; Lindström, J.; Rothe, U. Chronic diseases and employment: Which interventions support the maintenance of work and return to work among workers with chronic illnesses? A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 1864. [Google Scholar] [CrossRef]
- Vuong, T.D.; Wei, F.; Beverly, C.J. Absenteeism due to functional limitations caused by seven common chronic diseases in US Workers. J. Occup. Env. Med. 2015, 57, 779–784. [Google Scholar] [CrossRef] [PubMed]
- America After 3PM Special Report: Afterschool in Communities of Concentrated Poverty. Afterschool Alliance. 2016. Available online: http://afterschoolalliance.org//AA3PM/Concentrated_Poverty.pdf (accessed on 1 May 2017).
- van den Berg, M.; Wendel-Vos, W.; van Poppel, M.; Kemper, H.; van Mechelen, W.; Maas, J. Health benefits of green spaces in the living environment: A systematic review of epidemiological studies. Urban For. Urban Green. 2015, 14, 806–816. [Google Scholar] [CrossRef]
- Nardo, F.; Saulle, R.; Torre, G. Green areas and health outcomes: A systematic review of the scientific literature. Ital. J. Public Health 2010, 7, 402–413. [Google Scholar]
- 2017 Parks and Recreation Improvement Plan. City of Detroit General Services and Detroit Recreation Departments. 2017. Available online: https://detroitmi.gov/Portals/0/docs/Parks/2017%20Parks%20and%20Recreation%20Improvement%20Plan.pdf (accessed on 1 May 2017).
- Bischoff, K.; Reardon, S.F. Residential segregation by income, 1970–2009. In Diversity and Disparities: America Enters a New Century; The Russel Sage Foundation: New York, NY, USA, 2013. [Google Scholar]
- Sanchez, T.W. Poverty, policy, and public transportation. Transp. Res. Part A Policy Pract. 2008, 42, 833–841. [Google Scholar] [CrossRef]
- Gurram, S.; Stuart, A.L.; Pinjari, A.R. Impacts of travel activity and urbanicity on exposures to ambient oxides of nitrogen and on exposure disparities. Air Qual. Atmos. Health 2015, 8, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, J. Automobiles, air toxics, and adverse health risks: Environmental inequities in Tampa Bay, Florida. Ann. Assoc. Am. Geogr. 2009, 99, 674–697. [Google Scholar] [CrossRef]
- Rauh, V.A.; Landrigan, P.J.; Claudio, L. Housing and health: Intersection of poverty and environmental exposures. Ann. N. Y. Acad. Sci. 2008, 1136, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Perlin, S.A.; Wong, D.; Sexton, K. Residential proximity to industrial sources of air pollution: Interrelationships among race, poverty, and age. J. Air Waste Manag. Assoc. 2001, 51, 406–421. [Google Scholar] [CrossRef] [PubMed]
- Sears, M.E.; Genuis, S.J. Environmental determinants of chronic disease and medical approaches: Recognition, avoidance, supportive therapy, and detoxification. J. Environ. Public Health 2012, 2012, 356798. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Goldberg, M.S. The effects of outdoor air pollution on chronic illnesses. Mcgill J. Med. 2009, 12, 58–64. [Google Scholar] [PubMed]
- Alirol, E.; Getaz, L.; Stoll, B.; Chappuis, F.; Loutan, L. Urbanisation and infectious diseases in a globalised world. Lancet Infect. Dis. 2011, 11, 131–141. [Google Scholar] [CrossRef]
- Ahianba, J.E.; Dimuna, K.O.; Okogun, G.R.A. Built environment decay and urban health in Nigeria. J. Hum. Ecol. 2008, 23, 259–265. [Google Scholar] [CrossRef]
- Kruger, D.J.; Reischl, T.M.; Gee, G.C. Neighborhood social conditions mediate the association between physical deterioration and mental health. Am. J. Community Psychol. 2007, 40, 261–271. [Google Scholar] [CrossRef]
- Geronimus, A.T. To mitigate, resist, or undo: Addressing structural influences on the health of urban populations. Am. J. Public Health 2000, 90, 867–872. [Google Scholar]
- Cozens, P.M. Urban planning and environmental criminology: Towards a new perspective for safer cities. Plan. Pract. Res. 2011, 26, 481–508. [Google Scholar] [CrossRef]
- White, R.; Sutton, A. Crime prevention, urban space and social exclusion. Aust. N. Z. J. Sociol. 1995, 31, 82–99. [Google Scholar] [CrossRef]
- Satterthwaite, D. The impact on health of urban environments. Environ. Urban. 1993, 5, 87–111. [Google Scholar] [CrossRef] [PubMed]
- Blakely, T.; Hales, S.; Kieft, C.; Wilson, N.; Woodward, A. The global distribution of risk factors by poverty level. Bull. World Health Organ. 2005, 83, 118–126. [Google Scholar] [PubMed]
- Troger, T.; Verwiebe, R. The role of education for poverty risks revisited: Couples, employment and profits from work–family policies. J. Eur. Soc. Policy 2015, 25, 286–302. [Google Scholar] [CrossRef]
- Orthner, D.K.; Jones-Sanpei, H.; Williamson, S. The resilience and strengths of low-income families. Fam. Relat. 2004, 53, 159–167. [Google Scholar] [CrossRef]
Variable a | Units | N | Mean | Median | Std. Dev. | Minimum | Maximum | Skewness |
---|---|---|---|---|---|---|---|---|
DMHI 2017–2013 b | US dollars | 151 | 1791 | 1160 | 6964 | −13,198 | 47,018 | 2.31 |
train/bus stations | count | 151 | 0.05 | 0.00 | 0.25 | 0 | 2 | 5.22 |
smart bus lines | count | 151 | 1.31 | 0.00 | 2.22 | 0 | 14 | 3.34 |
bike lanes | count | 151 | 1.59 | 0.00 | 2.48 | 0 | 13 | 2.06 |
bus stops | count | 151 | 35.16 | 36.00 | 16.36 | 0 | 82 | 0.15 |
airports | count | 151 | 0.03 | 0.00 | 0.16 | 0 | 1 | 5.96 |
toxic releases | count | 151 | 1.04 | 0.00 | 3.96 | 0 | 38 | 6.66 |
railways | feet | 151 | 3377 | 0.00 | 5421 | 0 | 28,372 | 2.05 |
AADT 5000 | feet | 151 | 31,281 | 27,817 | 15,966 | 0 | 81,890 | 0.73 |
industry | sq. feet | 151 | 1,332,463 | 417,467 | 1,881,540 | 1722 | 9,520,648 | 2.08 |
brownfields | count | 151 | 4.90 | 5.00 | 3.49 | 0 | 15 | 0.63 |
NAA-SO2 | yes = 1, no = 0 | 151 | 0.09 | 0.00 | 0.29 | 0 | 1 | 2.84 |
poor pavement | feet | 151 | 13,977 | 12,373 | 9113 | 247 | 48,529 | 1.15 |
demolitions | count | 151 | 74.90 | 62.00 | 74.48 | 0 | 446 | 1.96 |
vacancies | count | 151 | 311 | 298 | 240 | 1 | 966 | 0.70 |
public libraries | count | 151 | 0.13 | 0.00 | 0.34 | 0 | 1 | 2.19 |
schools | count | 151 | 1.54 | 1.00 | 1.46 | 0 | 6 | 1.07 |
colleges | count | 151 | 0.09 | 0.00 | 0.33 | 0 | 2 | 4.08 |
Head Start | count | 151 | 0.21 | 0.00 | 0.48 | 0 | 2 | 2.27 |
police stations | count | 151 | 0.05 | 0.00 | 0.22 | 0 | 1 | 4.03 |
fire stations | count | 151 | 0.25 | 0.00 | 0.45 | 0 | 2 | 1.38 |
office/commercial | sq. feet | 151 | 920,798 | 812,072 | 599,614 | 0 | 3,541,280 | 1.35 |
recreation centers | count | 151 | 0.25 | 0.00 | 0.46 | 0 | 2 | 1.60 |
hospitals | count | 151 | 0.05 | 0.00 | 0.43 | 0 | 5 | 10.59 |
health centers | count | 151 | 0.16 | 0.00 | 0.45 | 0 | 2 | 2.92 |
groceries | count | 151 | 0.77 | 1.00 | 1.00 | 0 | 7 | 2.33 |
parks | sq. feet | 151 | 627,966 | 226,333 | 1,213,780 | 0 | 11,097,581 | 5.27 |
cemeteries | sq. feet | 151 | 660,333 | 0.00 | 2,523,629 | 0 | 17,932,657 | 4.65 |
Variable a | Units | N | Mean | Median | Std. Dev. | Minimum | Maximum | Skewness |
---|---|---|---|---|---|---|---|---|
train/bus stations | count | 151 | 0.41 | 0.00 | 0.98 | 0 | 4.00 | 2.74 |
smart bus lines | count | 151 | 10.93 | 8.00 | 11.76 | 0 | 67.00 | 2.33 |
bike lanes | count | 151 | 13.34 | 8.00 | 14.70 | 0 | 57.00 | 1.27 |
bus stops | count | 151 | 293.70 | 314.00 | 110.80 | 41 | 541.00 | −0.19 |
airports | count | 151 | 0.24 | 0.00 | 0.78 | 0 | 4.00 | 3.64 |
toxic releases | count | 151 | 12.30 | 4.00 | 25.63 | 0 | 194.00 | 5.13 |
railways | feet | 151 | 27,487 | 20,413 | 27683 | 0 | 128,924 | 1.18 |
AADT 5000 | feet | 151 | 255,171 | 256,643 | 89,214 | 17,811 | 512,574 | 0.14 |
industry | sq. feet | 151 | 9,897,417 | 9,860,497 | 7,383,379 | 36,231 | 27,760,098 | 0.29 |
brownfields | count | 151 | 40.18 | 39.00 | 19.58 | 4 | 89.00 | 0.34 |
NAA-SO2 | yes = 1 no = 0 | 151 | 0.78 | 0.00 | 2.19 | 0 | 9.00 | 2.88 |
poor pavement | feet | 151 | 115,604 | 107,695 | 59,900 | 13,561 | 327,591 | 1.08 |
demolitions | count | 151 | 610 | 636 | 281 | 9 | 1369 | −0.14 |
vacancies | count | 151 | 2591 | 2478 | 1505 | 90 | 6727 | 0.46 |
public libraries | count | 151 | 1.14 | 1.00 | 0.98 | 0 | 4.00 | 0.84 |
schools | count | 151 | 12.53 | 12.00 | 5.95 | 2 | 31.00 | 0.82 |
colleges | count | 151 | 0.77 | 0.00 | 1.17 | 0 | 5.00 | 1.71 |
Head Start | count | 151 | 1.83 | 2.00 | 1.74 | 0 | 8.00 | 0.92 |
police stations | count | 151 | 0.46 | 0.00 | 0.53 | 0 | 2.00 | 0.45 |
fire stations | count | 151 | 2.11 | 2.00 | 1.41 | 0 | 6.00 | 0.58 |
office/commercial | sq. feet | 151 | 7,459,878 | 7,164,420 | 2,828,710 | 826,151 | 16,662,517 | 0.33 |
recreation centers | count | 151 | 1.93 | 2.00 | 1.30 | 0 | 6.00 | 0.88 |
hospitals | count | 151 | 0.46 | 0.00 | 1.26 | 0 | 6.00 | 3.36 |
health centers | count | 151 | 1.25 | 1.00 | 1.41 | 0 | 6.00 | 1.45 |
groceries | count | 151 | 6.34 | 6.00 | 2.96 | 0 | 15.00 | 0.17 |
parks | sq. feet | 151 | 4,590,674 | 3,814,780 | 3,355,732 | 592,477 | 19,396,548 | 2.34 |
cemeteries | sq. feet | 151 | 5,431,453 | 4058 | 11,172,928 | 0 | 57,662,212 | 3.06 |
Variable a | Cell Scale | Buffer Scale |
---|---|---|
train/bus stations | 0.09 | 0.11 |
smart bus lines | −0.03 | 0.10 |
bike lanes | 0.11 | 0.19 |
bus stops | 0.11 | 0.15 |
airports | −0.04 | 0.04 |
toxic releases | 0.03 | 0.11 |
railways | 0.20 | 0.14 |
AADT 5000 | 0.02 | 0.15 |
industry | 0.07 | 0.19 |
brownfields | 0.20 | 0.24 |
NAA-SO2 | 0.09 | 0.13 |
poor pavement | 0.23 | 0.18 |
demolitions | 0.12 | 0.14 |
vacancies | 0.12 | 0.10 |
public libraries | 0.18 | 0.14 |
schools | 0.10 | 0.19 |
colleges | 0.01 | 0.06 |
Head Start | 0.16 | 0.15 |
police stations | −0.02 | 0.06 |
fire stations | 0.06 | 0.11 |
office/commercial | 0.19 | 0.22 |
recreation centers | 0.20 | 0.23 |
hospitals | −0.09 | 0.09 |
health centers | 0.11 | 0.13 |
groceries | 0.03 | 0.20 |
parks | −0.04 | −0.12 |
cemeteries | 0.04 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leandro-Reguillo, P.; Stuart, A.L. Healthy Urban Environmental Features for Poverty Resilience: The Case of Detroit, USA. Int. J. Environ. Res. Public Health 2021, 18, 6982. https://doi.org/10.3390/ijerph18136982
Leandro-Reguillo P, Stuart AL. Healthy Urban Environmental Features for Poverty Resilience: The Case of Detroit, USA. International Journal of Environmental Research and Public Health. 2021; 18(13):6982. https://doi.org/10.3390/ijerph18136982
Chicago/Turabian StyleLeandro-Reguillo, Patricia, and Amy L. Stuart. 2021. "Healthy Urban Environmental Features for Poverty Resilience: The Case of Detroit, USA" International Journal of Environmental Research and Public Health 18, no. 13: 6982. https://doi.org/10.3390/ijerph18136982
APA StyleLeandro-Reguillo, P., & Stuart, A. L. (2021). Healthy Urban Environmental Features for Poverty Resilience: The Case of Detroit, USA. International Journal of Environmental Research and Public Health, 18(13), 6982. https://doi.org/10.3390/ijerph18136982