Regulation of Mindfulness-Based Music Listening on Negative Emotions Related to COVID-19: An ERP Study
Abstract
:1. Introduction
- First, the post-induction phase will exhibit lower ACC and slower RTs than the baseline and post-intervention phases in within-subjects conflict control performance on the face–word Stroop task.
- Second, in the early processing of cognitive conflict, attentional bias under induced negative mood states will allocate more cognitive resources to attentional responses of face-related stimuli. This will be reflected in greater N2 amplitudes at post-induction, and for the SMG in the post-intervention phase, compared to the baseline phase, and the HMG in the post-intervention phase.
- Third, the assumption that coping with negative mood states can lead to conflict in the face–word Stroop tasks will be reflected in greater N3 and smaller P3 amplitudes at post-induction, and post-intervention for the SMG, compared to the baseline, and HMG at the post-intervention phase.
- Finally, participants who completed the face–word Stroop task will be able to conduct higher-order cognitive processes in negative mood states. This will be reflected in enhanced LPC amplitudes at post-induction and for the SMG in the post-intervention phase, compared to the baseline and the HMG post-intervention.
2. Methods
2.1. Participants
2.2. Stimuli
2.2.1. Material Evaluation
2.2.2. Video of Experimental Simulation
2.2.3. Mindfulness Meditation Audio
2.2.4. Musical Stimuli
2.3. Self–Reported Measures
2.3.1. The Positive and Negative Affect Schedule (PANAS)
2.3.2. The Toronto Mindfulness Scale (TMS)
2.4. The Face–Word Stroop Task
2.5. Procedure
2.6. Behavioral Analyses
2.7. EEG Recording and Analyses
3. Results
3.1. Self-Reported Results
3.2. Questionnaire Results
3.3. Behavioral Results
3.4. The ERPs Results
3.4.1. N2
3.4.2. N3
3.4.3. P3
3.4.4. LPC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Diamond, L.M.; Aspinwall, L.G. Emotion regulation across the life span: An integrative perspective emphasizing self-regulation, positive affect, and dyadic processes. Motiv. Emot. 2003, 27, 125–156. [Google Scholar] [CrossRef]
- Burstyn, I.; Huynh, T. Symptoms of Anxiety and Depression in Relation to Work Patterns During the First Wave of the COVID-19 Epidemic in Philadelphia PA: A Cross-Sectional Survey. J. Occup. Environ. Med. 2021, 63, 283–293. [Google Scholar] [CrossRef]
- Pan, X.; Liu, W.-Z.; Xu, Z.-M.; Zhao, F.; Wang, J.-M.; Zhou, H.-Y.; Bai, Y.-H. Coronavirus disease 2019-related mental health: Research progress. Acad. J. Second Mil. Med. Univ. 2020, 41, 303–306. [Google Scholar]
- Wang, Y.; Gao, J.-L.; Chen, H.; Mao, Y.-M.; Chen, S.-H.; Dai, J.-M.; Fu, H. The relationship between media exposure and mental health problems during COVID-19 outbreak. Fudan Univ. J. Med. Sci. 2020, 47, 173–178. [Google Scholar]
- Goethem, V.A.; Sloboda, J. The functions of music for affect regulation. Musicae Sci. 2011, 15, 208–228. [Google Scholar] [CrossRef]
- Gross, J.J. Emotion regulation: Taking stock and moving forward. Emotion 2013, 13, 359–365. [Google Scholar] [CrossRef]
- Feldman, G.; Hayes, A.; Kumar, S.; Laurenceau, G.J.P. Mindfulness and Emotion Regulation: The Development and Initial Validation of the Cognitive and Affective Mindfulness Scale-Revised (CAMS-R). J. Psychopathol. Behav. Assess. 2007, 29, 177–190. [Google Scholar] [CrossRef]
- Lutz, J.; Herwig, U.; Opialla, S.; Hittmeyer, A.; Jäncke, L.; Rufer, M.; Brühl, A.B. Mindfulness and emotion regulation—An fMRI study. Soc. Cogn. Affect. Neurosci. 2014, 9, 776–785. [Google Scholar] [CrossRef] [Green Version]
- Millgram, Y.; Joormann, J.; Huppert, J.D.; Tamir, M. Sad as a Matter of Choice? Emotion-Regulation Goals in Depression. Emotion 2015, 26, 1216–1228. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, R.; Lecuona, O. Mindfulness and music: A promising subject of an unmapped field. Int. J. Behav. Res. Psychol. 2014, 2, 27–35. [Google Scholar]
- Lazarus, R.; Folkman, S. Stress, Appraisal, and Coping; Springer: New York, NY, USA, 1984. [Google Scholar]
- Carlson, E.; Saarikallio, S.; Toiviainen, P.; Bogert, B.; Kliuchko, M.; Brattico, E. Maladaptive and adaptive emotion regulation through music: A behavioral and neuroimaging study of males and females. Front. Hum. Neurosci. 2015, 9, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrido, S.; Schubert, E. Moody melodies: Do they cheer us up? A study of the effect of sad music on mood. Psychol. Music 2013, 43, 244–261. [Google Scholar] [CrossRef] [Green Version]
- Gross, J.J. The Emerging Field of Emotion Regulation: An Integrative Review. Rev. Gen. Psychol. 1998, 2, 271–299. [Google Scholar] [CrossRef]
- McAleer, M. Prevention Is Better Than the Cure: Risk Management of COVID-19. J. Risk Financ. Manag. 2020, 13, 46. [Google Scholar] [CrossRef] [Green Version]
- Pan, A.; Liu, L.; Wang, C.; Guo, H.; Hao, X.; Wang, Q.; Wu, T. Association of Public Health Interventions With the Epidemiology of the COVID-19 Outbreak in Wuhan, China. J. Am. Med. Assoc. 2020, 323, 1915–1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triukose, S.; Nitinawarat, S.; Satian, P.; Somboonsavatdee, A.; Chotikarn, P.; Thammasanya, T.; Poovorawan, Y. Effects of public health interventions on the epidemiological spread during the first wave of the COVID-19 outbreak in Thailand. PLoS ONE 2021, 16, e0246274. [Google Scholar] [CrossRef]
- Wang, S.; Wen, X.; Dong, Y.; Liu, B.; Cui, M. Psychological Influence of Coronovirus Disease 2019 (COVID-19) Pandemic on the General Public, Medical Workers, and Patients with Mental Disorders and its Countermeasures. Psychosomatics 2020, 61, 616–624. [Google Scholar] [CrossRef]
- Zhao, X.; Lan, M.; Li, H.; Yang, J. Perceived stress and sleep quality among the non-diseased general public in China during the 2019 coronavirus disease: A moderated mediation model. Sleep Med. 2021, 77, 339–345. [Google Scholar] [CrossRef]
- Groarke, J.M.; Hogan, M.J. Listening to self-chosen music regulates induced negative affect for both younger and older adults. PLoS ONE 2019, 14, e0218017. [Google Scholar] [CrossRef]
- Särkämö, T.; Ripollés, P.; Vepsäläinen, H.; Autti, T.; Silvennoinen, H.M.; Salli, E.; Rodríguez-Fornells, A. Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: A voxel-based morphometry study. Front. Hum. Neurosci. 2014, 8, 245. [Google Scholar]
- Stewart, J.; Garrido, S.; Hense, C.; McFerran, K. Music Use for Mood Regulation: Self-Awareness and Conscious Listening Choices in Young People with Tendencies to Depression. Front. Psychol. 2019, 10, 1199. [Google Scholar] [CrossRef] [PubMed]
- Chao, L.; Elvira, B.; Basel, A.J.; Pereira, C.S.; Thomas, J.; Nandi, A.K. Effect of Explicit Evaluation on Neural Connectivity Related to Listening to Unfamiliar Music. Front. Hum. Neurosci. 2017, 11, 611. [Google Scholar]
- Garrido, S.; Schubert, E. Adaptive and maladaptive attraction to negative emotions in music. Musicae Sci. 2013, 17, 147–166. [Google Scholar] [CrossRef]
- Juslin, P.N.; Vastfjall, D. Emotional responses to music: The need to consider underlying mechanisms. Behav. Brain Sci. 2008, 31, 559–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karreman, A.; Laceulle, O.M.; Hanser, W.E.; Vingerhoets, A.J.J.M. Effects of emotion regulation strategies on music-elicited emotions: An experimental study explaining individual differences. Personal. Individ. Differ. 2017, 114, 36–41. [Google Scholar] [CrossRef]
- Kawakami, A.; Furukawa, K.; Katahira, K.; Okanoya, K. Sad music induces pleasant emotion. Front. Psychol. 2013, 4, 311. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Tong, J.; Meng, J.; Yang, J.; Zhao, X.; He, F.; Qi, H.; Ming, D. Study on an effective cross-stimulus emotion recognition model using EEGs based on feature selection and support vector machine. Int. J. Mach. Learning Cyber. 2016, 9, 721–726. [Google Scholar] [CrossRef]
- Brown, K.W.; Ryan, R.M. The benefits of being present: Mindfulness and its role in psychological well-being. J. Personal. Soc. Psychol. 2003, 84, 822–848. [Google Scholar] [CrossRef] [Green Version]
- Diaz, F.M. Mindfulness, attention, and flow during music listening: An empirical investigation. Psychol. Music 2013, 41, 42–58. [Google Scholar] [CrossRef]
- Loo, L.-M.; Prince, J.B.; Correia, H.M. Exploring Mindfulness Attentional Skills Acquisition, Psychological and Physiological Functioning and Wellbeing: Using Mindful Breathing or Mindful Listening in a NonClinical Sample. Psychomusicol. Music Mind Brain 2020, 30, 103–118. [Google Scholar] [CrossRef]
- Smith, T.; Panfil, K.; Bailey, C.; Kirkpatrick, K. Cognitive and behavioral training interventions to promote self-control. J. Exp. Psychol. Anim. Learn. Cogn. 2019, 45, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, S.; Steindl, S.R.; Dingle, G.A.; Garcia, A. Comparing the Effects of Loving-Kindness Meditation (LKM), Music and LKM Plus Music on Psychological Well-Being. J. Psychol. 2018, 153, 267–287. [Google Scholar] [CrossRef] [PubMed]
- Bailey, N.W.; Freedman, G.; Raj, K.; Sullivan, C.M.; Rogasch, N.C.; Chung, S.W.; Fitzgerald, P.B. Mindfulness meditators show altered distributions of early and late neural activity markers of attention in a response inhibition task. PLoS ONE 2019, 14, e0203096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, S.J.; Duncan, J.; Lawrence, A.D. State anxiety modulation of the amygdala response to unattended threat-related stimuli. J Neurosci. 2004, 24, 10364–10368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bueno, V.F.; Kozasa, E.H.; da Silva, M.A.; Alves, T.M.; Louza, M.R.; Pompeia, S. Mindfulness Meditation Improves Mood, Quality of Life, and Attention in Adults with Attention Deficit Hyperactivity Disorder. Biomed. Res. Int. 2015, 2015, 962857. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Hongfang, W.; Chaoyang, C. The Influence of Mindfulness Training Level on Emotional Processing. J. Psychol. Sci. 2016, 39, 1519–1524. [Google Scholar]
- Tan, L.B.G.; Lo, B.C.Y.; Macrae, C.N. Brief Mindfulness Meditation Improves Mental State Attribution and Empathizing. PLoS ONE 2014, 9, e110510. [Google Scholar] [CrossRef] [Green Version]
- Bell, T.P.; Mcintyre, K.A.; Hadley, R.L. Listening to classical music results in a positive correlation between spatial reasoning and mindfulness. Psychomusicology 2016, 26, 226–235. [Google Scholar] [CrossRef]
- Tomaselli, K.A. The Effect of Mindfulness-Based Music Listening on the Anxiety Symptoms and Awareness of Older Adults in a Senior Living Facility; Florida State University: Tallahassee, FL, USA, 2014. [Google Scholar]
- Coderre, E.; Conklin, K.; Heuven, W.J.B.V. Electrophysiological measures of conflict detection and resolution in the Stroop task. Brain Res. 2011, 1413, 51–59. [Google Scholar] [CrossRef]
- Liu, Y.; Quan, H.; Song, S.; Zhang, X.; Chen, H. Decreased Conflict Control in Overweight Chinese Females: Behavioral and Event-Related Potentials Evidence. Nutrients 2019, 11, 1450. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, L.; Jackson, T.; Wang, J.; Yang, R.; Chen, H. Effects of negative mood state on event-related potentials of restrained eating subgroups during an inhibitory control task. Behav. Brain Res. 2020, 377, 112249. [Google Scholar] [CrossRef]
- Raschle, N.M.; Fehlbaum, L.V.; Menks, W.M.; Euler, F.; Sterzer, P.; Stadler, C. Investigating the Neural Correlates of Emotion-Cognition Interaction Using an Affective Stroop Task. Front. Psychol. 2017, 8, 1489. [Google Scholar] [CrossRef] [Green Version]
- Botvinick, M.M.; Carter, C.S.; Braver, T.S.; Barch, D.M.; Cohen, J.D. Conflict monitoring and cognitive control. Psychol. Rev. 2001, 108, 624–652. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, X.; Zhao, J.; Zhang, L.; Chen, H. Neurocognitive Correlates of Food-Related Response Inhibition in Overweight/Obese Adults. Brain Topogr. 2020, 33, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennis, T.A. Neurophysiological markers for child emotion regulation from the perspective of emotion-cognition integration: Current directions and future challenges. Dev. Neuropsychol. 2010, 35, 212–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ireland, M.J.; Day, J.J.; Clough, B.A. Exploring scale validity and measurement invariance of the Toronto Mindfulness Scale across levels of meditation experience and proficiency. J. Clin. Psychol. 2019, 75, 445–461. [Google Scholar] [CrossRef]
- Adam, M.; Thomas, G.; Jennifer, D.; Peter, M. Regular, brief mindfulness meditation practice improves electrophysiological markers of attentional control. Front. Hum. Neurosci. 2012, 6, 18. [Google Scholar]
- Clark, D.; Schumann, F.; Mostofsky, S.H. Mindful movement and skilled attention. Front. Hum. Neurosci. 2015, 9, 297. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Ding, X.; Sang, B. The Implications of the Spatial-Temporal Shifting Patterns of Late Positive Potential (LPP) in the Study of Emotion Regulation Development. J. Psychol. Sci. 2015, 38, 853–860. [Google Scholar]
- Jing, Z.; Zhou, R. Frontal EEG Laterality: An Index of the Capability of Emotion Regulation. Adv. Psychol. Sci. 2010, 18, 1679–1683. [Google Scholar]
- Liu, Y.; Ding, Y.; Lu, L.; Chen, X.J.S.R. Attention Bias of Avoidant Individuals to Attachment Emotion Pictures. Sci. Rep. 2017, 7, 41631. [Google Scholar] [CrossRef] [Green Version]
- Bowden, A.M.C. Aesthetic Perception, Attention and Aesthetic Psychology; Durham University: Durham, England, UK, 2015. [Google Scholar]
- Koelsch, S. Brain correlates of music-evoked emotions. Nat. Rev. Neurosci. 2014, 15, 170–180. [Google Scholar] [CrossRef]
- Brattico, E.; Bogert, B.; Jacobsen, T. It’s Sad but I Like It: The Neural Dissociation Between Musical Emotions and Liking in Experts and Laypersons. Front. Hum. Neurosci. 2016, 9, 676. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhao, J.; Zhang, X.; Gao, X.; Xu, W.; Chen, H. Overweight adults are more impulsive than normal weight adults: Evidence from ERPs during a chocolate-related delayed discounting task. Neuropsychologia 2019, 133, 107181. [Google Scholar] [CrossRef] [PubMed]
- Schupp, H.T.; Schmälzle, R.; Flaisch, T.; Weike, A.I.; Hamm, A.O. Affective picture processing as a function of preceding picture valence: An ERP analysis. Biol. Psychol. 2012, 91, 81–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.-S.; Fang, P.; Jiang, Y. The Status and Prospect in Research on Brain Mechanisms of Emotion Regulation. J. Psychol. Sci. 2011, 34, 1325–1331. [Google Scholar]
- Lamma, C.; Lewis, M.D. Developmental change in the neurophysiological correlates of self-regulation in high- and low-emotion conditions. Dev. Neuropsychol. 2010, 35, 156–176. [Google Scholar] [CrossRef]
- Draschkow, D.; Heikel, E.; Võ, M.L.-H.; Fiebach, C.J.; Sassenhagen, J. No evidence from MVPA for different processes underlying the N300 and N400 incongruity effects in object-scene processing. Neuropsychologia 2018, 120, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Maguire, M.J.; Magnon, G.; Ogiela, D.A.; Egbert, R.; Sides, L. The N300 ERP component reveals developmental changes in object and action identification. Dev. Cogn. Neurosci. 2013, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Truman, A.; Mudrik, L. Are incongruent objects harder to identify? The functional significance of the N300 component. Neuropsychologia 2018, 117, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Folstein, J.R.; Petten, C.V. Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology 2008, 45, 152–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olofsson, J.K.; Nordin, S.; Sequeira, H.; Polich, J. Affective picture processing: An integrative review of ERP findings. Biol. Psychol. 2008, 77, 247–265. [Google Scholar] [CrossRef] [Green Version]
- Carretié, L.; Iglesias, J.; García, T.; Ballesteros, M. N300, P300 and the emotional processing of visual stimuli. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 298–303. [Google Scholar] [CrossRef]
- Brianmcpherson, W.; Holcomb, P.J.J.P. An electrophysiological investigation of semantic priming with pictures of real objects. Psychophysiology 2010, 36, 53–65. [Google Scholar]
- Hamm, J.P.; Johnson, B.W.; Kirk, I.J. Comparison of the N300 and N400 ERPs to picture stimuli in congruent and incongruent contexts. Clin. Neurophysiol. 2002, 113, 1339–1350. [Google Scholar] [CrossRef]
- Mudrik, L.; Lamy, D.; Deouell, L.Y. ERP evidence for context congruity effects during simultaneous object–scene processing. Neuropsychologia 2010, 48, 507–517. [Google Scholar] [CrossRef]
- Vo, L.H.; Wolfe, J.M. Differential electrophysiological signatures of semantic and syntactic scene processing. Psychol. Sci. 2013, 24, 1816–1823. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Q.; Chen, A.; Li, H.; Wang, Q.; Zhuang, Z.; Jia, S. Are we sensitive to valence differences in emotionally negative stimuli? Electrophysiological evidence from an ERP study. Neuropsychologia 2007, 45, 2764–2771. [Google Scholar] [CrossRef]
- Albert, J.; López-Martín, S.; Hinojosa, J.A.; Carretié, L. Spatiotemporal characterization of response inhibition. Neuroimage 2013, 76, 272–281. [Google Scholar] [CrossRef]
- Huang, Y.-X.; Luo, Y.-J. Temporal course of emotional negativity bias: An ERP study. Neurosci. Lett. 2006, 398, 91–96. [Google Scholar] [CrossRef]
- I Ito, T.A.; Larsen, J.T.; Smith, N.K.; Cacioppo, J.T. Negative information weighs more heavily on the brain: The negativity bias in evaluative categorizations. J. Personal. Soc. Psychol. 1998, 75, 887–900. [Google Scholar] [CrossRef]
- Schupp, H.T.; Junghöfer, M.; Weike, A.I.; Hamm, A.O. Emotional Facilitation of Sensory Processing in The Visual Cortex. Psychol. Sci. 2003, 14, 7–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessing, I.; Rehbein, M.A.; Postert, C.; Fürniss, T.; Junghöfer, M. The neural basis of cognitive change: Reappraisal of emotional faces modulates neural source activity in a frontoparietal attention network. Neuroimage 2013, 81, 15–25. [Google Scholar] [CrossRef]
- Williams, L.M.; Kemp, A.H.; Felmingham, K.; Liddell, B.J.; Palmer, D.M.; Bryant, R.A. Neural Biases to Covert and Overt Signals of Fear: Dissociation by Trait Anxiety and Depression. J. Cogn. Neurosci. 2007, 19, 1595. [Google Scholar] [CrossRef]
- Langeslag, S.; Strien, J. Comparable modulation of the late positive potential by emotion regulation in younger and older adults. J. Psychophysiol. 2010, 24, 186–197. [Google Scholar] [CrossRef]
- Krompinger, J.W.; Moser, J.S.; Simons, R.F. Modulations of the electrophysiological response to pleasant stimuli by cognitive reappraisal. Emotion 2008, 8, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Hajcaka, G.; MacNamaraa, A.; Fotia, D.; Ferria, J.; Keilb, A. The dynamic allocation of attention to emotion: Simultaneous and independent evidence from the late positive potential and steady state visual evoked potentials. Biol. Psychol. 2013, 92, 447–455. [Google Scholar] [CrossRef]
- Hajcak, G.; Nieuwenhuis, S. Reappraisal modulates the electrocortical response to unpleasant pictures. Cogn. Affect. Behav. Neurosci. 2006, 6, 291–297. [Google Scholar] [CrossRef]
- Bond, A.; Lader, M. The use of analogue scales in rating subjective feelings. Br. J. Med. Psychol. 1974, 47, 211–218. [Google Scholar] [CrossRef]
- Diaz, F.M. A Preliminary Investigation into the Effects of a Brief Mindfulness Induction on Perceptions of Attention, Aesthetic Response, and Flow during Music Listening; The Florida State University: Tallahassee, FL, USA, 2010. [Google Scholar]
- Maattanen, P. Aesthetic Experience and Music Education. Philos. Music Educ. Rev. 2003, 11, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Zentner, M.; Grandjean, D.; Scherer, K.R. Emotions evoked by the sound of music: Characterization, classification, and measurement. Emotion 2008, 8, 494–521. [Google Scholar] [CrossRef] [Green Version]
- Zentner, M. Homer’s Prophecy:an Essay on Music’s Primary Emotions. Music Anal. 2010, 29, 102–125. [Google Scholar] [CrossRef]
- Watson, D.; Clark, L.A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Personal. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef]
- Lau, M.A.; Bishop, S.R.; Segal, Z.V.; Buis, T.; Anderson, N.D.; Carlson, L.; Devins, G. The toronto mindfulness scale: Development and validation. J. Clin. Psychol. 2006, 62, 1445–1467. [Google Scholar] [CrossRef] [PubMed]
- Chung, P.-K.; Zhang, C.-Q. Psychometric Validation of the Toronto Mindfulness Scale—Trait Version in Chinese College Students. Eur. J. Psychol. 2014, 10, 726–739. [Google Scholar] [CrossRef] [Green Version]
- Xue, S.; Ren, G.; Kong, X.; Liu, J.; Qiu, J. Electrophysiological correlates related to the conflict adaptation effect in an emotional conflict task. Neurosci. Lett. 2015, 584, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, Y.; Lou, X.; Li, S.; Yao, Y.; Gong, D.; Jianzhong, S. The Influence of Action Video Gaming Experience on the Perception of Emotional Faces and Emotional Word Meaning. Neural Plast. 2021, 2021, 8841156. [Google Scholar] [CrossRef]
- Zhu, X.R.; Zhang, H.J.; Wu, T.T.; Luo, W.B.; Luo, Y.J. Emotional conflict occurs at an early stage: Evidence from the emotional face-word Stroop task. Neurosci. Lett. 2010, 478, 1–4. [Google Scholar] [CrossRef]
- Yan, W.; Luo, Y. Standardization and Assessment of College Students’ Facial Expression of Emotion. Chin. J. Clin. Psychol. 2005, 13, 396–398. [Google Scholar]
- Johnstone, S.J.; Watt, A.J.; Dimoska, A. Varying required effort during interference control in children with AD/HD: Task performance and ERPs. Int. J. Psychophysiol. 2010, 76, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, G.; Wei, D.; Liu, Y.; Yuan, G.; Wang, G. Distinct neuronal entrainment to beat and meter: Revealed by simultaneous EEG-fMRI. Neuroimage 2019, 194, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, Y.; Du, J.; Chen, H. Effects of food exposure on food-related inhibitory control in restrained eaters: An ERP study. Neurosci. Lett. 2018, 672, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, N. The Relationship between Music Listening Habits and Global Emotion Regulation; University of Hartford: West Hartford, CT, USA, 2016. [Google Scholar]
- Gotlib, I.H.; McCann, C.D. Construct accessibility and depression: An examination of cognitive and affective factors. J. Personal. Soc. Psychol. 1984, 47, 427–439. [Google Scholar] [CrossRef]
- Yuan, J.; He, Y.; Qinglin, Z.; Chen, A.; Li, H. Gender differences in behavioral inhibitory control: ERP evidence from a two-choice oddball task. Psychophysiology 2008, 45, 986–993. [Google Scholar] [CrossRef]
Variable | CMG (M ± SD) | HMG (M ± SD) | SMG (M ± SD) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
n = 28 | n = 30 | n = 27 | ||||||||
Age | 20.71 (1.16) | 20.93 (0.73) | 20.41 (1.37) | |||||||
Sex | Male = 10, female = 18 | Male = 9, female = 21 | Male = 8, female = 19 | |||||||
Measure | Baseline | Post-induction | post-intervention | Baseline | Post-induction | post-intervention | Baseline | Post-induction | post-intervention | |
PANAS | PA | 2.35 (0.64) | 2.05 (0.63) | 1.92 (0.65) | 2.36 (0.65) | 1.87 (0.62) | 2.09 (0.75) | 2.32 (0.71) | 1.91 (0.56) | 1.71 (0.69) |
NA | 1.60 (0.51) | 2.09 (0.73) | 1.28 (0.40) | 1.36 (0.38) | 1.72 (0.51) | 1.19 (0.28) | 1.34 (0.30) | 1.82 (0.57) | 1.45 (0.41) | |
TMS | 31.00 (5.29) | 34.93 (4.46) | 32.73 (6.05) | 35.20 (5.29) | 32.15 (3.63) | 34.67 (4.04) |
Variable | CMG (M ± SD) | HMG (M ± SD) | SMG (M ± SD) | ||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | Post-Indunction | Post-Intervention | Baseline | Post-Indunction | Post-Intervention | Baseline | Post-Indunction | Post-Intervention | |
ACC | 0.92 (0.02) | 0.89 (0.02) | 0.93 (0.01) | 0.92 (0.01) | 0.90 (0.02) | 0.94 (0.01) | 0.93 (0.02) | 0.90 (0.02) | 0.94 (0.01) |
RTS | 633.16 (18.66) | 648.72 (18.26) | 615.21 (17.32 | 669.28 (18.03) | 675.73 (17.64) | 637.06 (16.73) | 668.35 (19.00) | 678.14 (18.59) | 624.80 (17.64) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Liu, Y.; Shi, H.; Li, L.; Zheng, M. Regulation of Mindfulness-Based Music Listening on Negative Emotions Related to COVID-19: An ERP Study. Int. J. Environ. Res. Public Health 2021, 18, 7063. https://doi.org/10.3390/ijerph18137063
Liu X, Liu Y, Shi H, Li L, Zheng M. Regulation of Mindfulness-Based Music Listening on Negative Emotions Related to COVID-19: An ERP Study. International Journal of Environmental Research and Public Health. 2021; 18(13):7063. https://doi.org/10.3390/ijerph18137063
Chicago/Turabian StyleLiu, Xiaolin, Yong Liu, Huijuan Shi, Ling Li, and Maoping Zheng. 2021. "Regulation of Mindfulness-Based Music Listening on Negative Emotions Related to COVID-19: An ERP Study" International Journal of Environmental Research and Public Health 18, no. 13: 7063. https://doi.org/10.3390/ijerph18137063
APA StyleLiu, X., Liu, Y., Shi, H., Li, L., & Zheng, M. (2021). Regulation of Mindfulness-Based Music Listening on Negative Emotions Related to COVID-19: An ERP Study. International Journal of Environmental Research and Public Health, 18(13), 7063. https://doi.org/10.3390/ijerph18137063