Phosphorus Recovery from Sewage Sludge Using Acidithiobacilli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sewage Sludge
2.2. Chemical Analysis
2.3. Fecal Indicator Bacteria
2.4. Microorganisms and Growth Media
2.5. Cultivation and Enumeration of Acidithiobacilli
2.6. P-Solubilization Experimental Setup
2.7. Statistical Analyses
3. Results and Discussion
3.1. Role of Acidithiobacilli
3.2. The pH in the Experimental Sludge Solution
3.3. Solubilization of Major Nutrients and Trace Elements
3.4. Hygienization of Sludge
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- HELCOM. Overview of Nutrient Recycling in the Baltic Sea Countries, HELCOM—2018. Baltic Marine Environment Protection Commission. Available online: https://helcom.fi/wp-content/uploads/2019/08/Overview-of-nutrient-recycling-in-the-Baltic-Sea-countries.pdf (accessed on 3 January 2021).
- Donatello, S.; Tong, D.; Cheeseman, C.R. Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA). Waste Manag. 2010, 30, 1634–1642. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, T.M.; Yawar, W. Bacterial solubilization of phosphorus from phosphate rock containing sulfur-mud. Hydrometallurgy 2010, 103, 54–59. [Google Scholar] [CrossRef]
- Priha, O.; Sarlin, T.; Blomberg, P.; Wendling, L.; Mäkinen, J.; Arnold, M.; Kinnunen, P. Bioleaching phosphorus from fluorapatites with acidophilic bacteria. Hydrometallurgy 2014, 150, 269–275. [Google Scholar] [CrossRef]
- Calle-Castaneda, S.M.; Marquez-Godoy, M.A.; Hernandez-Ortiz, J.P. Phosphorus recovery from high concentrations of low-grade phosphate rocks using the biogenic acid produced by the acidophilic bacteria Acidithiobacillus thiooxidans. Miner. Eng. 2018, 115, 97–105. [Google Scholar] [CrossRef]
- Tyagi, R.; Couillard, D.; Tran, F. Heavy-Metals Removal from Anaerobically Digested-Sludge by Chemical and Microbiological Methods. Environ. Pollut. 1988, 50, 295–316. [Google Scholar] [CrossRef]
- Kucera, J.; Pakostova, E.; Lochman, J.; Janiczek, O.; Mandl, M. Are there multiple mechanisms of anaerobic sulfur oxidation with ferric iron in Acidithiobacillus ferrooxidans? Res. Microbiol. 2016, 167, 357–366. [Google Scholar] [CrossRef]
- Diercks, M.; Sand, W.; Bock, E. Microbial Corrosion of Concrete. Experientia 1991, 47, 514–516. [Google Scholar] [CrossRef]
- Pronk, J.; Debruyn, J.; Bos, P.; Kuenen, J. Anaerobic Growth of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 1992, 58, 2227–2230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, B.; Herzog, B.; Drewes, J.E.; Koch, K.; Mueller, E. Characterization of sulfur oxidizing bacteria related to biogenic sulfuric acid corrosion in sludge digesters. BMC Microbiol. 2016, 16, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jastrzebska, M.; Saeid, A.; Kostrzewska, M.K.; Basladynska, S. New phosphorus biofertilizers from renewable raw materials in the aspect of cadmium and lead contents in soil and plants. Open Chem. 2018, 16, 35–49. [Google Scholar] [CrossRef]
- Slovenski Inštitut za Standardizacijo. Characterization of Sludges—Determination of Trace Elements and Phosphorus—Aqua Regia Extraction Methods; EN 13346:2000; European Committee for Standardization: Brussels, Belgium, 2000. [Google Scholar]
- Membrane Filter Technique for the Enumeration of Thermotolerant (Fecal) Coliform Bacteria in Water; SFS 4088; Finnish Standard Association: Helsinki, Finland, 2001; p. 4.
- Water Quality—Detection and Enumeration of Intestinal Enterococci—Part 2: Membrane Filtration Method; SFS-EN ISO 7899-2; Finnish Standard Association: Helsinki, Finland, 2000.
- Water Quality—Detection and Enumeration of the Spores of Sulfite-Reducing Anaerobes (Clostridia)—Part 2: Method by Membrane Filtration; SFS-EN 26461-2; Finnish Standard Association: Helsinki, Finland, 1993.
- DSMZ Medium 882. Available online: https://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium882.pdf (accessed on 20 January 2020).
- Visca, P.; Bianchi, E.; Polidoro, M.; Buonfiglio, V.; Valenti, P.; Orsi, N. A New Solid Medium for Isolating and Enumerating Thiobacillus ferrooxidans. J. Gen. Appl. Microbiol. 1989, 35, 71–81. [Google Scholar] [CrossRef]
- DSMZ Medium 71. Available online: https://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium71.pdf (accessed on 20 January 2020).
- Starosvetsky, J.; Zukerman, U.; Armon, R.H. A simple medium modification for isolation, growth and enumeration of Acidithiobacillus thiooxidans (syn. Thiobacillus thiooxidans) from water samples. J. Microbiol. Methods 2013, 92, 178–182. [Google Scholar] [CrossRef]
- Chen, S.; Lin, J. Influence of solid content on bioleaching of heavy metals from contaminated sediment by Thiobacillus spp. J. Chem. Technol. Biotechnol. 2000, 75, 649–656. [Google Scholar] [CrossRef]
- Ishigaki, T.; Nakanishi, A.; Tateda, M.; Ike, M.; Fujita, M. Bioleaching of metal from municipal waste incineration fly ash using a mixed culture of sulfur-oxidizing and iron-oxidizing bacteria. Chemosphere 2005, 60, 1087–1094. [Google Scholar] [CrossRef]
- Pangayao, D.C.; Van Hullebusch, E.D.; Gallardo, S.M.; Bacani, F.T. Bioleaching of Trace Metals from Coal Ash using Mixed Culture of Acidithiobacillus albertensis and Acidithiobacillus thiooxidans. J. Eng. Sci. Technol. 2015, 10, 36–45. [Google Scholar]
- Zhang, P.; Zhu, Y.; Zhang, G.; Zou, S.; Zeng, G.; Wu, Z. Sewage sludge bioleaching by indigenous sulfur-oxidizing bacteria: Effects of ratio of substrate dosage to solid content. Bioresour. Technol. 2009, 100, 1394–1398. [Google Scholar] [CrossRef]
- Chen, P.; Yan, L.; Leng, F.; Nan, W.; Yue, X.; Zheng, Y.; Feng, N.; Li, H. Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources. Bioresour. Technol. 2011, 102, 3260–3267. [Google Scholar] [CrossRef] [PubMed]
- Gan, M.; Song, Z.; Zhu, J.; Liu, X. Efficient bioleaching of heavy metals from contaminated sediment in batch method coupled with the assistance of heterotrophic microorganisms. Environ. Earth Sci. 2016, 75, 457. [Google Scholar] [CrossRef]
- Lee, Y.; Sethurajan, M.; van de Vossenberg, J.; Meers, E.; van Hullebusch, E.D. Recovery of phosphorus from municipal wastewater treatment sludge through bioleaching using Acidithiobacillus thiooxidans. J. Environ. Manag. 2020, 270, 110818. [Google Scholar] [CrossRef]
- Kelly, D.; Wood, A. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov and Thermithiobacillus gen. nov. Int. J. Syst. Evol. Microbiol. 2000, 50, 511–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pakdil, N.B.; Filibeli, A. Effects of organic and inorganic acids on phosphorus release from municipal sludge. Water Sci. Technol. 2007, 56, 87–94. [Google Scholar] [CrossRef]
- Mamais, D.; Pitt, P.; Cheng, Y.; Loiacono, J.; Jenkins, D. Determination of Ferric-Chloride Dose to Control Struvite Precipitation in Anaerobic Sludge Digesters. Water Environ. Res. 1994, 66, 912–918. [Google Scholar] [CrossRef]
- Musvoto, E.; Wentzel, M.; Ekama, G. Integrated chemical-physical processes modelling—II. Simulating aeration treatment of anaerobic digester supernatants. Water Res. 2000, 34, 1868–1880. [Google Scholar] [CrossRef]
- Nareshkumar, R.; Nagendran, R.; Parvathi, K. Bioleaching of heavy metals from contaminated soil using Acidithiobacillus thiooxidans: Effect of sulfur/soil ratio. World J. Microbiol. Biotechnol. 2008, 24, 1539–1546. [Google Scholar] [CrossRef]
- Garcia-Casal, M.; Layrisse, M. The effect of change in pH on the solubility of iron bis-glycinate chelate and other iron compounds. Arch. Latinoam. Nutr. 2001, 51, 35–36. [Google Scholar] [PubMed]
- Krol, A.; Mizerna, K.; Boiym, M. An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. J. Hazard. Mater. 2020, 384, 121502. [Google Scholar] [CrossRef]
- Molina, P.; Parma, A.; Sanz, M. Survival in acidic and alcoholic medium of Shiga toxin-producing Escherichia coli O157:H7 and non-O157:H7 isolated in Argentina. BMC Microbiol. 2003, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Hart, C.A.; Sales, D.; Roberts, N.B. Bacterial killing in gastric juice—Effect of pH and pepsin on Escherichia coli and Helicobacter pylori. J. Med. Microbiol. 2006, 55, 1265–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mubarak, Z.S.C. The acid tolerance response and pH adaptation of Enterococcus faecalis in extract of lime Citrus aurantiifolia from Aceh Indonesia. F1000Research 2018, 7, 1–15. [Google Scholar] [CrossRef]
- Wijnands, L.M.; van der Meij-Florijn, A.; van Asch, E.D. Clostridium perfringens Associated Food Borne Disease; RIVM Report 330371005/2011; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2011.
Chemical Parameters | Before the Experiment |
---|---|
pH | 6.5 ± 0.4 |
Total solids (%) | 5.59 ± 0.02 |
Organic matter (%) | 5.16 ± 0.07 |
Chemical oxygen demand (g/L) | 240 |
Total-P (g/L) FW | 2 |
PO4-P (mg/L) FW | 130 |
Total-N (g/L) FW | 15.5 |
Total-sulfur (S) (mg/L) | 840 |
K (mg/L) | 14 |
Ca (mg/L) | 79.2 |
Total-iron (Fe) (g/L) | 9.1 |
Fe2+ (g/L) | 1.5 |
Indicator bacteria | Log10 CFU/mL |
Fecal coliforms | 5.79 ± 0.57 |
Total coliforms | 6.29 ± 0.25 |
Enterococci | 4.19 ± 0.28 |
Clostridia | 4.65 ± 0.32 |
Method | A. ferrooxidans | A. thiooxidans |
---|---|---|
Microscopic cell count (log10 cells/mL) | 6.76 ± 0.15 | 6.87 ± 0.47 |
Agar plate (log10 CFU/mL) | 7.07 ± 0.11 | 7.92 ± 1.06 |
MPN (log10 MPN/mL) | 7.0 | 7.7 |
Symbol | Treatment | Description |
---|---|---|
Before (S) supplement phases 1 and 2 | ||
0 | 0 Control | Sewage sludge + sterile water |
FC | F Control | Sewage sludge + DSMZ 882 liquid medium aimed for A. ferrooxidans |
TC | T Control | Sewage sludge + DSMZ 71 liquid medium aimed for A. thiooxidans |
FTC | FT Control | Sewage sludge + liquid medium (50% of DSMZ 882 and 50% of sterile DSMZ 71) |
F | F Treatment | Sewage sludge + A. ferrooxidans inoculum |
T | T Treatment | Sewage sludge + A. thiooxidans inoculum |
FT | FT Treatment | Sewage sludge + bacterial inoculum (50% of A. ferrooxidans + 50% of A. thiooxidans) |
After S supplement phase 3 | ||
0 + S | 0 control incubated mixture solution + S | |
FC + S | F Control incubated mixture solution + S | |
TC + S | T Control incubated mixture solution + S | |
FTC + S | FT Control incubated mixture solution + S | |
F + S | F Treatment incubated mixture solution + S | |
T + S | T Treatment incubated mixture solution + S | |
FT + S | FT Treatment incubated mixture solution + S |
Microbes | Phase | O | FC | TC | FTC | Used Acidophilic Bacteria in F, T and FT Treatments | F | T | FT |
---|---|---|---|---|---|---|---|---|---|
S- and Fe-oxidizing microbes | 1 | 5.0 ± 0.3 a | 2.0 ± 0.2 b | 5.1 ± 0.1 a | 5.2 ± 0.1 a | A. ferrooxidans | 4.2 ± 0.2 a | 7.7 ± 0.1 c | 4.0 ± 0.2 a |
S- and Fe-oxidizing microbes | 2 | 2 ± 0.2 a | 5 ± 0.5 b | 5.9 ± 0.5 b | 6 ± 0 b | A. ferrooxidans | 6 ± 0 b | 7 ± 0.7 b | 5 ± 0.9 b |
S- and Fe-oxidizing microbes | 3 | 0.7 ± 0.4 a | 10.0 ± 1.0 b | 6.5 ± 0.3 c | 8.0 ± 0.0 bc | A. ferrooxidans | 9.9 ± 0.7 b | 7.8 ± 0.7 bc | 8.3 ± 0.0 bc |
S- and Fe-oxidizing microbes | 1 | 4.7 ± 0.2 a | 5.4 ± 0.1 b | 6.1 ± 0.2 c | 6.2 ± 0.3 c | A. thiooxidans | 4.2 ± 0.2 a | 9.0 ± 0.3 d | 8.2 ± 0.1 e |
S- and Fe-oxidizing microbes | 2 | 4.7 ± 0.3 a | 7 ± 0.7 b | 6.0 ± 0.7 ab | 5 ± 0.5 ab | A. thiooxidans | 9 ± 1.1 b | 8 ± 0.3 b | 8 ± 0.3 b |
S- and Fe-oxidizing microbes | 3 | 1.0 ± 0.0 a | 7.6 ± 0.5 b | 10.6 ± 0.5 c | 7.5 ± 0.7 b | A. thiooxidans | 8.0 ± 0.0 b | 10.1 ± 1.2 c | 9.0 ± 0.0 bc |
Fecal coliforms | 1 | 6 ± 0.1 | LDL | LDL | LDL | - | LDL | LDL | LDL |
Fecal coliforms | 2–3 | LDL | LDL | LDL | LDL | - | LDL | LDL | LDL |
Total coliforms | 1–3 | LDL | LDL | LDL | LDL | - | LDL | LDL | LDL |
Enterococci | 1 | 2.8 ± 0.2 | 2.1 ± 0.6 | 3.7 ± 0.5 | 3.5 ± 0.4 | - | 1.8 ± 0.2 | 3.9 ± 0.2 | 3.6 ± 0.1 |
Enterococci | 2 | 1.0 ± 1.4 | 1.0 ± 0.0 | 3.5 ± 0.3 | 3.2 ± 0.1 | - | 2.0 ± 0.0 | 3.8 ± 0.3 | 3.3 ± 0.2 |
Enterococci | 3 | 4.5 ± 1.2 | LDL | LDL | LDL | - | LDL | LDL | LDL |
Clostridia | 1 | 3.5 ± 0.0 | 2.4 ± 0.4 | 3.1 ± 0.1 | 2.4 ± 0.1 | - | 2.8 ± 0.8 | 3.9 ± 0.2 | 3.6 ± 0.1 |
Clostridia | 2 | 3.3 ± 0.2 | 1.4 ± 1.6 | 3.0 ± 0.1 | 2.3 ± 0.0 | - | 2.5 ± 0.7 | 3.8 ± 0.2 | 3.5 ± 0.3 |
Clostridia | 3 | LDL | LDL | LDL | LDL | - | LDL | LDL | LDL |
Treatment | ||||||||
---|---|---|---|---|---|---|---|---|
Parameter | Phase | O | FC | TC | FTC | F | T | FT |
Phosphorus | 1 | 1 | 10 | 12 | 8 | 5 | 10 | 12 |
2 | 0 | 15 | 5 | 11 | 10 | 5 | 5 | |
3 | 0 | 21 | 27 | 25 | 10 | 92 | 19 | |
Sulfur | 1 | 18 | 63 | 50 | 49 | 96 | 53 | 52 |
2 | 26 | 62 | 54 | 52 | 65 | 59 | 45 | |
3 | 29 | 100 | 100 | 100 | 94 | 100 | 100 | |
Potassium | 1 | 56 | ND | 67 | 55 | ND | 71 | 63 |
2 | 67 | 9 | 64 | 39 | 44 | 76 | 71 | |
3 | 90 | 1 | 52 | 21 | ND | 62 | 69 | |
Calcium | 1 | 21 | 52 | 45 | 48 | 80 | 55 | 57 |
2 | 34 | 101 | 23 | 71 | 89 | 14 | 10 | |
3 | 25 | 87 | 72 | 75 | 100 | 70 | 100 | |
Iron | 1 | 0 | 59 | 1 | 56 | 74 | 1 | 51 |
2 | 1 | 25 | 0 | 0 | 12 | 0 | 1 | |
3 | 0 | 101 | 71 | 88 | 39 | 100 | 74 | |
pH | 1 | 6.73 | 2.13 | 2.38 | 2.30 | 2.29 | 2.64 | 2.52 |
2 | 7.00 | 2.62 | 7.04 | 3.45 | 2.38 | 7.72 | 6.59 | |
3 | 6.64 | 1.37 | 1.47 | 1.30 | 2.47 | 0.9 | 1.69 |
Trace Element | Concentration in Sludge mg/L | Phase | Reduction % in Treatments | ||||||
---|---|---|---|---|---|---|---|---|---|
O | FC | TC | FTC | F | T | FT | |||
Ti | 1.85 | 1 | 0 | 33 | 2 | 14 | 98 | 12 | 20 |
3.33 | 2 | 1 | 3 | 1 | 0 | 2 | 1 | 1 | |
4.51 | 3 | 0 | 18 | 5 | 9 | 10 | 12 | 15 | |
Cr | 0.60 | 1 | 0 | 6 | 100 | 100 | 4 | 100 | |
1.08 | 2 | 2 | 58 | 1 | 2 | 33 | 1 | 2 | |
1.46 | 3 | 0 | 100 | 67 | 100 | 116 | 101 | 100 | |
Mn | 2.80 | 1 | 1 | 100 | 58 | 100 | 100 | 73 | 100 |
5.04 | 2 | 3 | 100 | 2 | 93 | 100 | 0 | 18 | |
6.84 | 3 | 1 | 100 | 110 | 100 | 100 | 100 | 100 | |
Co | 4.76 | 1 | 0 | 100 | 2 | 100 | 100 | 86 | 100 |
8.57 | 2 | 1 | 77 | 0 | 2 | 39 | 0 | 2 | |
11.61 | 3 | 0 | 100 | 81 | 100 | 100 | 100 | 100 | |
Ni | 0.11 | 1 | 10 | 100 | 49 | 100 | 100 | 75 | 100 |
0.20 | 2 | 25 | 100 | 12 | 100 | 100 | 15 | 9 | |
0.27 | 3 | 7 | 100 | 100 | 100 | 100 | 100 | 100 | |
Cu | 0.75 | 1 | 11 | 100 | 91 | 100 | 100 | 86 | 100 |
1.35 | 2 | 2 | 100 | 9 | 51 | 100 | 4 | 3 | |
1.83 | 3 | 5 | 100 | 100 | 100 | 100 | 102 | 100 | |
Zn | 1.47 | 1 | 3 | 100 | 100 | 100 | 100 | 100 | 100 |
2.64 | 2 | 1 | 100 | 2 | 100 | 100 | 1 | 1 | |
3.58 | 3 | 1 | 100 | 100 | 100 | 100 | 100 | 100 | |
Br | 0.05 | 1 | 60 | 59 | 59 | 59 | 61 | 77 | 68 |
0.08 | 2 | 100 | 56 | 84 | 59 | 65 | 100 | 72 | |
0.11 | 3 | 63 | 83 | 45 | 55 | 59 | 41 | 57 | |
Rb | 0.02 | 1 | 73 | 47 | 100 | 100 | 100 | 100 | 100 |
0.03 | 2 | 100 | 60 | 100 | 100 | 83 | 100 | 101 | |
0.04 | 3 | 51 | 51 | 100 | 55 | 37 | 100 | 37 | |
Sr | 0.23 | 1 | 11 | 100 | 77 | 89 | 100 | 99 | 100 |
0.41 | 2 | 16 | 47 | 10 | 6 | 48 | 10 | 30 | |
0.56 | 3 | 8 | 100 | 100 | 100 | 63 | 100 | 94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pradhan, S.K.; Heinonen-Tanski, H.; Veijalainen, A.-M.; Peräniemi, S.; Torvinen, E. Phosphorus Recovery from Sewage Sludge Using Acidithiobacilli. Int. J. Environ. Res. Public Health 2021, 18, 7135. https://doi.org/10.3390/ijerph18137135
Pradhan SK, Heinonen-Tanski H, Veijalainen A-M, Peräniemi S, Torvinen E. Phosphorus Recovery from Sewage Sludge Using Acidithiobacilli. International Journal of Environmental Research and Public Health. 2021; 18(13):7135. https://doi.org/10.3390/ijerph18137135
Chicago/Turabian StylePradhan, Surendra K., Helvi Heinonen-Tanski, Anna-Maria Veijalainen, Sirpa Peräniemi, and Eila Torvinen. 2021. "Phosphorus Recovery from Sewage Sludge Using Acidithiobacilli" International Journal of Environmental Research and Public Health 18, no. 13: 7135. https://doi.org/10.3390/ijerph18137135