Usage of eHealth/mHealth Services among Young Czech Adults and the Impact of COVID-19: An Explorative Survey
Abstract
:1. Introduction
2. Methods
2.1. Procedure and Participants
2.2. Survey Development
2.2.1. General Considerations
2.2.2. Concepts Related to Information-Based Activities
2.2.3. Concepts Related to Utility-Based Activities
2.2.4. Translation Procedure
2.2.5. Levels of Measurement and Demographics Questions
2.2.6. Special Treatment Due to the COVID-19 Pandemic
2.3. Data Analysis
3. Results
I stopped wearing the sport tracker, [as] I don’t track my [physical] activity anymore.(R191, woman)
The closure of fitness centers makes exercising impossible, so there is nothing [no data] to track.(R182, man)
[The COVID-19 pandemic] results in decreased intensity of my eHealth technologies (smart-watch) use, as I spend more time at home, not using them.(R82, woman)
[Due to the pandemic,] I search more the description of exercises and [other] inspiration for exercising at home or in the park.(R437, woman)
I search [on-line] for [descriptions of] symptoms [and I watch] how the disease [COVID-19] spreads. I exercise more. I also buy protective equipment [on-line].(R437, woman)
I use telemedicine and ePrescription more, so that I can avoid visiting the doctor office.(R149, woman)
I don’t spend 24/7 in the medical school [anymore], and I dedicate the time to myself. I hold a trainer license, so that I discover and design new things [exercises?] and test them on my own.(R271, woman)
4. Discussion
4.1. Health Tutorial
4.2. Health Information Seeking
4.3. Medical Services
4.4. Recording/Monitoring
4.5. Gender Differences
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- European Union. eHealth: Digital Health and Care. Available online: https://op.europa.eu/s/pa9p (accessed on 2 May 2021).
- World Health Organization. mHealth: New Horizons for Health through Mobile Technologies. Available online: https://apps.who.int/iris/handle/10665/44607 (accessed on 2 May 2021).
- Meskó, B.; Drobni, Z.; Bényei, É.; Gergely, B.; Győrffy, Z. Digital health is a cultural transformation of traditional healthcare. mHealth 2017, 3, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NICE. Evidence Standards Framework for Digital Health Technologies. Available online: https://www.nice.org.uk/corporate/ecd7 (accessed on 2 May 2021).
- Bruthans, J. The past and current state of the Czech outpatient electronic prescription (eRecept). Int. J. Med. Inform. 2019, 123, 49–53. [Google Scholar] [CrossRef]
- Sutton, F.N. Examining UX design principles and older adults’ preference of online appointment scheduling using a mHealth Application. In Proceedings of the SIGDOC 2020—Proceedings of the 38th ACM International Conference on Design of Communication; Association for Computing Machinery (ACM): Denton, TX, USA, 2020. [Google Scholar]
- Tan, S.S.L.; Goonawardene, N. Internet health information seeking and the patient-physician relationship: A systematic review. J. Med. Internet Res. 2017, 19, e9. [Google Scholar] [CrossRef]
- Percheski, C.; Hargittai, E. Health Information-Seeking in the Digital Age. J. Am. Coll. Health 2011, 59, 379–386. [Google Scholar] [CrossRef]
- Alsahafi, A.Y.A.; Gay, B.V. An overview of electronic personal health records. Health Policy Technol. 2018, 7, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Nurgalieva, L.; Cajander, Å.; Moll, J.; Åhlfeldt, R.M.; Huvila, I.; Marchese, M. ‘I do not share it with others. No, it’s for me, it’s my care’: On sharing of patient accessible electronic health records. Health Informatics J. 2020, 26, 2554–2567. [Google Scholar] [CrossRef]
- Kamiński, M.; Borger, M.; Prymas, P.; Muth, A.; Stachowski, A.; Łoniewski, I.; Marlicz, W. Analysis of answers to queries among anonymous users with gastroenterological problems on an internet forum. Int. J. Environ. Res. Public Health 2020, 17, 1042. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; He, D.; Sang, Y. Facebook as a platform for health information and communication: A case study of a diabetes group. J. Med. Syst. 2013, 37, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Frost, J.H.; Massagli, M.P. Social uses of personal health information within PatientsLikeMe, an online patient community: What can happen when patients have access to one another’s data. J. Med. Internet Res. 2008, 10, e15. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.; Biswas, B. Doctor consultation through mobile applications in India: An overview, challenges and the way forward. Healthc. Inform. Res. 2020, 26, 153–158. [Google Scholar] [CrossRef]
- Garge, G.K.; Balakrishna, C.; Datta, S.K. Consumer Health Care: Current Trends in Consumer Health Monitoring. IEEE Consum. Electron. Mag. 2018, 7, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Smuck, M.; Odonkor, C.A.; Wilt, J.K.; Schmidt, N.; Swiernik, M.A. The emerging clinical role of wearables: Factors for successful implementation in healthcare. npj Digit. Med. 2021, 4, 1–8. [Google Scholar] [CrossRef]
- Lai, A.M.; Hsueh, P.Y.S.; Choi, Y.K.; Austin, R.R. Present and Future Trends in Consumer Health Informatics and Patient-Generated Health Data. Yearb. Med. Inform. 2017, 26, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Berryhill, S.; Morton, C.J.; Dean, A.; Berryhill, A.; Provencio-Dean, N.; Patel, S.I.; Estep, L.; Combs, D.; Mashaqi, S.; Gerald, L.B.; et al. Effect of wearables on sleep in healthy individuals: A randomized crossover trial and validation study. J. Clin. Sleep Med. 2020, 16, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Reeder, B.; David, A. Health at hand: A systematic review of smart watch uses for health and wellness. J. Biomed. Inform. 2016, 63, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, D.R.; Bittel, B.; Browsky, D.; Houghtaling, P.; Drummond, C.K.; Desai, M.Y.; Gillinov, A.M. Accuracy of Apple Watch for detection of Atrial Fibrillation. Circulation 2020, 702–703. [Google Scholar] [CrossRef]
- Leung, L.; Chen, C. E-health/m-health adoption and lifestyle improvements: Exploring the roles of technology readiness, the expectation-confirmation model, and health-related information activities. Telecomm. Policy 2019, 43, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Escoffery, C. Gender Similarities and Differences for e-Health Behaviors among U.S. Adults. Telemed. e-Health 2018, 24, 335–343. [Google Scholar] [CrossRef]
- Haluza, D.; Böhm, I. Mobile and online health information: Exploring digital media use among Austrian parents. Int. J. Environ. Res. Public Health 2020, 17, 6053. [Google Scholar] [CrossRef]
- Beck, F.; Richard, J.B.; Nguyen-Thanh, V.; Montagni, I.; Parizot, I.; Renahy, E. Use of the internet as a health information resource among French young adults: Results from a nationally representative survey. J. Med. Internet Res. 2014, 16. [Google Scholar] [CrossRef]
- Haluza, D.; Naszay, M.; Stockinger, A.; Jungwirth, D. Digital Natives Versus Digital Immigrants: Influence of Online Health Information Seeking on the Doctor–Patient Relationship. Health Commun. 2017, 32, 1342–1349. [Google Scholar] [CrossRef]
- Wynn, R.; Oyeyemi, S.O.; Budrionis, A.; Marco-Ruiz, L.; Yigzaw, K.Y.; Bellika, J.G. Electronic health use in a representative sample of 18,497 respondents in Norway (the seventh tromsø study—Part 1): Population-based questionnaire study. JMIR Med. Informatics 2020, 8, e13106. [Google Scholar] [CrossRef]
- Klocek, A.; Šmahelová, M.; Knapová, L.; Elavsky, S. GPs’ perspectives on eHealth use in the Czech Republic: A cross-sectional mixed design survey study. BJGP Open 2019, 3, 101655. [Google Scholar] [CrossRef]
- Smahel, D.; Elavsky, S.; Machackova, H. Functions of mHealth applications: A user’s perspective. Health Inform. J. 2017, 25, 1065–1075. [Google Scholar] [CrossRef] [PubMed]
- Knapova, L.; Klocek, A.; Elavsky, S. The role of psychological factors in older adults’ readiness to use eHealth technology: Cross-sectional questionnaire study. J. Med. Internet Res. 2020, 22. [Google Scholar] [CrossRef]
- Nadal, C.; Sas, C.; Doherty, G. Technology acceptance in mobile health: Scoping review of definitions, models, and measurement. J. Med. Internet Res. 2020, 22, e17256. [Google Scholar] [CrossRef] [PubMed]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–339. [Google Scholar] [CrossRef] [Green Version]
- Ali, E.E.; Chew, L.; Yap, K.Y.L. Evolution and current status of mhealth research: A systematic review. BMJ Innov. 2016, 2, 33–40. [Google Scholar] [CrossRef]
- Lentferink, A.J.; Oldenhuis, H.K.E.; De Groot, M.; Polstra, L.; Velthuijsen, H.; Van Gemert-Pijnen, J.E.W.C. Key components in ehealth interventions combining self-tracking and persuasive eCoaching to promote a healthier lifestyle: A scoping review. J. Med. Internet Res. 2017, 19, e277. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, S.; Deng, Z.; Chen, X. Knowledge sharing motivations in online health communities: A comparative study of health professionals and normal users. Comput. Human Behav. 2017, 75, 797–810. [Google Scholar] [CrossRef]
- Doležel, M. “We must ignore ePrescription”: An empirical analysis of Czech physicians’ attitudes against eHealth. In Proceedings of the 20th International Conference on e-Health Networking, Applications and Services (Healthcom), Ostrava, Czech Republic., 17–20 September 2018; IEEE: Ostrava, Czech Republic, 2018. [Google Scholar]
- Fenerty, S.D.; West, C.; Davis, S.A.; Kaplan, S.G.; Feldman, S.R. The effect of reminder systems on patients’ adherence to treatment. Patient Prefer. Adherence 2012, 6, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Dhruva, S.S.; Ross, J.S.; Akar, J.G.; Caldwell, B.; Childers, K.; Chow, W.; Ciaccio, L.; Coplan, P.; Dong, J.; Dykhoff, H.J.; et al. Aggregating multiple real-world data sources using a patient-centered health-data-sharing platform. NPJ Digit. Med. 2020, 3, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dörr, M.; Nohturfft, V.; Brasier, N.; Bosshard, E.; Djurdjevic, A.; Gross, S.; Raichle, C.J.; Rhinisperger, M.; Stöckli, R.; Eckstein, J. The WATCH AF Trial: SmartWATCHes for Detection of Atrial Fibrillation. JACC Clin. Electrophysiol. 2019, 5, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Shang, T.; Zhang, J.Y.; Thomas, A.; Arnold, M.A.; Vetter, B.N.; Heinemann, L.; Klonoff, D.C. Products for Monitoring Glucose Levels in the Human Body with Noninvasive Optical, Noninvasive Fluid Sampling, or Minimally Invasive Technologies. J. Diabetes Sci. Technol. 2021, 1–47. [Google Scholar] [CrossRef]
- Petruzelkova, L.; Soupal, J.; Plasova, V.; Jiranova, P.; Neuman, V.; Plachy, L.; Pruhova, S.; Sumnik, Z.; Obermannova, B. Excellent Glycemic Control Maintained by Open-Source Hybrid Closed-Loop AndroidAPS during and after Sustained Physical Activity. Diabetes Technol. Ther. 2018, 20, 744–750. [Google Scholar] [CrossRef]
- Maneesriwongul, W.; Dixon, J.K. Instrument translation process: A methods review. J. Adv. Nurs. 2004, 48, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Douglas, S.P.; Craig, C.S. Collaborative and Iterative Translation: An Alternative Approach to Back Translation. J. Int. Mark. 2007, 15, 30–43. [Google Scholar] [CrossRef]
- Schonla, M.; Toepoel, V. Straightlining in Web survey panels over time. Surv. Res. Methods 2015, 9, 125–137. [Google Scholar] [CrossRef]
- Pare, G.; Leaver, C.; Bourget, C. Diffusion of the digital health self-tracking movement in Canada: Results of a national survey. J. Med. Internet Res. 2018, 20, 1–16. [Google Scholar] [CrossRef]
- Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Cho, J.; Lee, H.E.; Quinlan, M. Cross-national comparisons of college students’ attitudes toward diet/fitness apps on smartphones. J. Am. Coll. Health 2017, 65, 437–449. [Google Scholar] [CrossRef]
- Hassan, S.; Masoud, O. Online health information seeking and health literacy among non-medical college students: Gender differences. J. Public Health Theory Pract. 2020, 1–7. [Google Scholar] [CrossRef]
- Sokolova, K.; Perez, C. You follow fitness influencers on YouTube. But do you actually exercise? How parasocial relationships, and watching fitness influencers, relate to intentions to exercise. J. Retail. Consum. Serv. 2021, 58. [Google Scholar] [CrossRef]
- Pilgrim, K.; Bohnet-Joschko, S. Selling health and happiness how influencers communicate on Instagram about dieting and exercise: Mixed methods research. BMC Public Health 2019, 19, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo, P.; Edwards, A.; Barr, P.J.; Scholl, I.; Elwyn, G.; McAllister, M. Conceptualising patient empowerment: A mixed methods study. BMC Health Serv. Res. 2015, 15, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowes, P.; Stevenson, F.; Ahluwalia, S.; Murray, E. “I need her to be a doctor”: Patients’ experiences of presenting health information from the internet in GP consultations. Br. J. Gen. Pract. 2012, 62, e732–e738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kłak, A.; Gawińska, E.; Samoliński, B.; Raciborski, F. Dr Google as the source of health information – the results of pilot qualitative study. Polish Ann. Med. 2017, 24, 188–193. [Google Scholar] [CrossRef]
- Basch, C.H.; Hillyer, G.C.; Jaime, C. COVID-19 on TikTok: Harnessing an emerging social media platform to convey important public health messages. Int. J. Adolesc. Med. Health 2020, in press. [Google Scholar] [CrossRef]
- Zakar, R.; Iqbal, S.; Zakar, M.Z.; Fischer, F. COVID-19 and health information seeking behavior: Digital health literacy survey amongst university students in Pakistan. Int. J. Environ. Res. Public Health 2021, 18, 4009. [Google Scholar] [CrossRef]
- Zarocostas, J. How to fight an infodemic. Lancet 2020, 395, 676. [Google Scholar] [CrossRef]
- Glajchová, A. “It is better to treat a Vietnamese woman than a Czech”: Strange interactions between healthcare professionals and women in the context of perinatal care. Kontakt 2019, 21, 380–387. [Google Scholar] [CrossRef] [Green Version]
- Anon, S. COVID-19 ustál eRecept zatěžkávací zkoušku. Available online: https://www.sukl.cz/denik-zdravi-s-kovidem-ustal-erecept-zatezkavaci-zkousku (accessed on 2 May 2021).
- Válková, H. Dříve se e-receptům a neschopenkám bránili, teď jsou za ně lékaři vděční [Earlier Physicians Resisted ePrescription and eCertificates, but Now Are Grateful]. Available online: https://www.idnes.cz/zpravy/domaci/lekari-jsou-vdecni-za-e-neschopenky-a-e-recepty-koronavirus-covid.A200322_150505_domaci_hv (accessed on 2 May 2021).
- Czech Statistical Office. Informační společnost v číslech—2021 [Information Society in Numbers]. Available online: https://www.czso.cz/csu/czso/informacni-spolecnost-v-cislech-2021 (accessed on 2 May 2021).
- Piras, E.M. Beyond self-tracking: Exploring and unpacking four emerging labels of patient data work. Health Inform. J. 2019, 25, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Martinović, I.; Kim, S.U.; Stanarević Katavić, S. Study of health information needs among adolescents in Croatia shows distinct gender differences in information seeking behaviour. Health Info. Libr. J. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Moerenhout, T.; Devisch, I.; Cornelis, G.C. E-health beyond technology: Analyzing the paradigm shift that lies beneath. Med. Health Care Philos. 2018, 21, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Rozenblum, R.; Miller, P.; Pearson, D.; Marelli, A. Patient-Centered Healthcare, Patient Engagement and Health Information Technology: The Perfect Storm. In Information Technology for Patient Empowerment in Healthcare; Walter de Gruyter GmbH: Berlin, Germany, 2015; pp. 3–22. [Google Scholar]
- Sigmundová, D.; Sigmund, E. Weekday-weekend sedentary behavior and recreational screen time patterns in families with preschoolers, schoolchildren, and adolescents: Cross-sectional three cohort study. Int. J. Environ. Res. Public Health 2021, 18, 4532. [Google Scholar] [CrossRef] [PubMed]
N (%) | |
---|---|
Sex | |
Man | 107 (35.8) |
Woman | 192 (64.2) |
Place of residency | |
Village (up to 2 k inhabitants) | 31 (10.4) |
Small town (up to 10 k inhabitants) | 13 (4.3) |
Town (10 k–100 k inhabitants) | 51 (17.1) |
City (100 k inhabitants–1 mio inhabitants) | 24 (8) |
The capital (more than 1 mio inhabitants) | 180 (60.2) |
Highest education completed | |
Elementary school | 4 (1.3) |
Secondary school | 124 (41.5) |
Higher professional school | 5 (1.7) |
University–bachelor | 128 (42.8) |
University–master | 35 (11.7) |
University–doctoral | 3 (1) |
Health conditions (optional, multiple choice) | |
Alzheimer’s disease | 1 (0.3) |
Arthritis | 2 (0.7) |
Diabetes | 0 |
Epilepsy | 1 (0.3) |
Food intolerances, chronic GI diseases | 30 (10) |
Heart disease | 5 (1.7) |
Mood disorders | 13 (4.3) |
Seasonal allergies and/or asthma | 73 (24.4) |
Other | 19 (6.4) |
Smartphone and health/fitness technology ownership (optional, multiple choice) | |
Smartphone—Android | 160 (53.5) |
Smartphone—Apple | 140 (46.8) |
Smartphone—other | 9 (3) |
Chest belt | 14 (4.7) |
Fitness tracker | 50 (16.7) |
Smart clothing | 1 (0.3) |
Smart scale | 31 (10.4) |
Smart watch | 70 (23.4) |
No Chronic Condition | Chronic Condition(s) | χ2 | p-Value | ||||
---|---|---|---|---|---|---|---|
All (n = 299) | Men (n = 62) | Women (n = 109) | Men (n = 45) | Women (n = 83) | |||
A. Health information seeking | 2.63 (0.89) | 2.45 (0.88) | 2.64 (0.82) | 2.52 (1.06) | 2.82 (0.85) | 9.17 | 0.027 |
1. To do self-education about a specific disease or medical problems. | 2.78 (1.12) | 2.66 (1.14) | 2.70 (1.09 | 2.69 (1.24) | 3.04 (1.06) | 7.43 | 0.059 |
2. To search information about a specific disease or medical problem. | 2.96 (1.10) | 2.73 (1.15) | 2.94 (1.03) | 2.84 (1.26) | 3.22 (1.01) | 10.44 | 0.015 |
3. To search the nearest hospital or clinics. | 2.45 (1.14) | 2.39 (1.08) | 2.55 (1.12) | 2.27 (1.27) | 2.45 (1.15) | 3.31 | 0.346 |
4. To do self-diagnosing. | 2.57 (1.09) | 2.24 (1.08) | 2.53 (0.95) | 2.56 (1.22) | 2.89 (1.12) | 13.88 | 0.003 |
5. To find expert medical opinion. | 2.40 (1.07) | 2.22 (1.13) | 2.49 (0.99) | 2.24 (1.15) | 2.49 (1.06) | 5.94 | 0.115 |
Cronbach’s alpha | 0.86 | 0.85 | 0.85 | 0.91 | 0.85 | ||
B. Medical services | 2.18 (0.97) | 1.77 (0.81) | 2.26 (0.95) | 2 (1.03) | 2.46 (0.96) | 23.42 | <0.001 |
1. To pick-up prescribed medicaments paper-less. | 2.49 (1.39) | 1.78 (0.98) | 2.61 (1.42) | 2.26 (1.38) | 2.98 (1.38) | 28.65 | <0.001 |
2. To buy medicines or health-related products. | 2.14 (1.17) | 1.79 (1.04) | 2.23 (1.14) | 1.96 (1.22) | 2.36 (1.24) | 10.99 | 0.012 |
3. To make an appointment with a doctor. | 1.90 (1.06) | 1.74 (0.94) | 1.94 (1.09) | 1.78 (1.08) | 2.04 (1.09) | 4.59 | 0.205 |
Cronbach’s alpha | 0.71 | 0.76 | 0.67 | 0.78 | 0.68 | ||
C. Sharing experience | 1.39 (0.71) | 1.39 (0.88) | 1.31 (0.57) | 1.36 (0.64) | 1.49 (0.78) | 3.98 | 0.264 |
1. To share opinions on the medical products and services I purchased. | 1.40 (0.77) | 1.41 (0.94) | 1.33 (0.64) | 1.32 (0.63) | 1.53 (0.84) | 4.50 | 0.212 |
2. To post comments or stories about my personal health experiences. | 1.37 (0.72) | 1.37 (0.85) | 1.29 (0.56) | 1.41 (0.81) | 1.46 (0.77) | 3.75 | 0.290 |
Cronbach’s alpha | 0.90 | 0.95 | 0.90 | 0.73 | 0.92 | ||
D. Reminders | 1.63 (0.95) | 1.27 (0.41) | 1.65 (0.89) | 1.93 (1.31) | 1.70 (1.01) | 7.18 | 0.066 |
1. To remind myself when to take medicine. | 1.90 (1.28) | 1.40 (0.61) | 2.02 (1.38) | 2.13 (1.47) | 2.00 (1.33) | 7.13 | 0.068 |
2. To remind myself of medicine refilling. | 1.35 (0.84) | 1.13 (0.32) | 1.28 (0.65) | 1.73 (1.34) | 1.41 (0.92) | 13.84 | 0.003 |
Cronbach’s alpha | 0.70 | 0.57 | 0.89 | 0.85 | 0.71 | ||
E. Recording/monitoring | 1.95 (0.78) | 1.78 (0.79) | 2.01 (0.80) | 2.08 (0.85) | 1.92 (0.69) | 5.89 | 0.117 |
1. To record and monitor my sleep quality. | 1.95 (1.22) | 1.74 (1.10) | 2.01 (1.27) | 2.13 (1.31) | 1.93 (1.19) | 3.46 | 0.326 |
2. To record and monitor the amount of exercise. | 2.92 (1.38) | 2.71 (1.46) | 3.01 (1.39) | 2.96 (1.40) | 2.93 (1.31) | 2.00 | 0.572 |
3. To record and monitor weight and/or related parameters. | 2.08 (1.22) | 1.71 (1.00) | 2.12 (1.20) | 2.31 (1.46) | 2.19 (1.21) | 7.56 | 0.056 |
4. To record and monitor heart activity. | 1.97 (1.33) | 2.03 (1.46) | 2.09 (1.30) | 2.11 (1.47) | 1.68 (1.15) | 6.00 | 0.112 |
5. To record and monitor blood glucose level. | 1.16 (0.51) | 1.10 (0.43) | 1.18 (0.56) | 1.24 (0.65) | 1.13 (0.41) | 1.07 | 0.783 |
6. To monitor my health conditions by other means than those above. | 1.62 (0.95) | 1.41 (0.71) | 1.68 (1.00) | 1.72 (1.09) | 1.65 (0.94) | 2.88 | 0.410 |
Cronbach’s alpha | 0.77 | 0.82 | 0.78 | 0.76 | 0.69 | ||
F. Health tutorial | 2.81 (1.14) | 2.46 (1.05) | 2.87 (1.13) | 2.61 (1.12) | 3.11 (1.15) | 12.14 | 0.007 |
1. To seek information on diet | 2.56 (1.23) | 2.19 (1.05) | 2.58 (1.21) | 2.36 (1.26) | 2.92 (1.27) | 12.86 | 0.005 |
2. To seek information on exercise and fitness | 3.03 (1.26) | 2.66 (1.17) | 3.15 (1.26) | 2.91 (1.35) | 3.20 (1.24) | 7.62 | 0.055 |
3. To seek a description of exercising and/or to develop an exercise plan | 2.86 (1.30) | 2.53 (1.25) | 2.89 (1.26) | 2.57 (1.30) | 3.22 (1.31) | 12.68 | 0.005 |
Cronbach’s alpha | 0.88 | 0.89 | 0.90 | 0.82 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolezel, M.; Smutny, Z. Usage of eHealth/mHealth Services among Young Czech Adults and the Impact of COVID-19: An Explorative Survey. Int. J. Environ. Res. Public Health 2021, 18, 7147. https://doi.org/10.3390/ijerph18137147
Dolezel M, Smutny Z. Usage of eHealth/mHealth Services among Young Czech Adults and the Impact of COVID-19: An Explorative Survey. International Journal of Environmental Research and Public Health. 2021; 18(13):7147. https://doi.org/10.3390/ijerph18137147
Chicago/Turabian StyleDolezel, Michal, and Zdenek Smutny. 2021. "Usage of eHealth/mHealth Services among Young Czech Adults and the Impact of COVID-19: An Explorative Survey" International Journal of Environmental Research and Public Health 18, no. 13: 7147. https://doi.org/10.3390/ijerph18137147