Assessment of the Emission of Pollutants from Public Transport Based on the Example of Diesel Buses and Trolleybuses in Gdynia and Sopot
Abstract
:1. Introduction
1.1. Scientific Framework
1.2. Defining Research Goals
- Is trolleybus transport powered by electricity from lignite and hard coal still environmentally friendly?
- Are trolleybuses a better alternative than diesel buses in Polish conditions?
- What is the environmental impact balance of diesel buses and trolleybuses in the same regime of operating on the same lines?
2. Materials and Methods
- PVC—cost of air pollution [€/kg],
- PCij—cost of pollution [€/kg],
- Qij—amount of pollution [t],
- i—pollution type,
- j—line type.
3. Description of the Case Study
3.1. Gdynia’s Experience in the Development of Public Transport Based on Low-Emission and Zero-Emission Vehicles
3.2. Transforming a Bus Line into a Trolleybus Line in Gdynia and Sopot
4. Results and Discussion
4.1. Characteristic of the Functioning of the Analysed Lines
4.2. Comparison of the Emissions of Pollutants and Damage Costs of the Emission of Air Pollutants from Trolleybuses and Diesel Buses on the Analysed Lines
4.3. Simulations of the Emission of Pollutants and Damage Costs of the Emission of Air Pollutants on the Tested Lines in Various Variants and Their Comparison with Real Conditions
5. Discussion
6. Conclusions and Recommendations
- The unfavourable energy mix related to the excessive use of fossil fuels in the production of electricity does not detract from the benefits of using electric public transport.
- Despite the increasingly higher exhaust emission standards for city buses, the benefits of operating trolleybuses with on-board batteries on the same line, in the same operating regime, are significant.
- In the case of a city with an extensive trolleybus traction network infrastructure, it is beneficial to increase the share of trolleybus transport using on-board batteries (without the need to expand the trolleybus traction infrastructure).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, G. Road transport and CO2 emissions: What are the challenges? Transp. Policy 2017, 59, 71–74. [Google Scholar] [CrossRef]
- Zhang, R.; Fujimori, S. The role of transport electrification in global climate change mitigation scenarios. Environ. Res. Lett. 2020, 15, 034019. [Google Scholar] [CrossRef]
- Zahoor, A.; Ali, S.; Saud, S.; Shahzad, S.J.H. Transport CO2 emissions, drivers, and mitigation: An empirical investigation in India. Air Qual. Atmos. Health 2020, 13, 1367–1374. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Balances: Overview. 2019. Available online: https://webstore.iea.org/world-energy-balances-2019 (accessed on 18 April 2021).
- National Centre for Emission Management (KOBiZE). Poland’s National Inventory Report 2021. Greenhouse Gas Inventory for 1988–2019. In Submission under the UN Framework Convention on Climate Change and Its Kyoto Protocol; KOBiZE: Warsaw, Poland, 2021. [Google Scholar]
- National Centre for Emission Management (KOBiZE). Poland’s Informative Inventory Report 2021. In Submission under the UN ECE Convention on Long-range Transboundary Air Pollution and Directive (EU) 2016/2284. Air Pollutant Emissions in Poland 1990–2019; KOBiZE: Warsaw, Poland, 2021. [Google Scholar]
- New Transport Decarbonisation Alliance for Faster Climate Action. Available online: https://unfccc.int/news/new-transport-decarbonisation-alliance-for-faster-climate-action (accessed on 11 April 2021).
- Decarbonising Transport Initiative. Available online: https://www.itf-oecd.org/decarbonising-transport (accessed on 18 April 2021).
- Biresselioglu, M.E.; Kaplan, M.D.; Yilmaz, B.K. Electric mobility in Europe: A comprehensive review of motivators and barriers in decision making processes. Transp. Res. Part A 2018, 109, 1–13. [Google Scholar] [CrossRef]
- Cansino, J.M.; Sánchez-Braza, A.; Sanz-Díaz, T. Policy Instruments to Promote Electro-Mobility in the EU28: A Comprehensive Review. Sustainability 2018, 10, 2507. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions, The European Green Deal, COM (2019) 640 Final; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Sustainable and Smart Mobility Strategy—Putting European Transport on Track for the Future, COM (2020) 789 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Wimbadi, R.W.; Djalante, R.; Mori, A. Urban experiments with public transport for low carbon mobility transitions in cities: A systematic literature review (1990–2020). Sustain. Cities Soc. 2021, 72, 103023. [Google Scholar] [CrossRef]
- Zawieska, J. E-mobility in transport and climate policies of European Union and Poland. In E-Mobility: Visions and Development Scenarios; Gajewski, J., Paprocki, W., Pieriegud, J., Eds.; Coalition for Strategic Mindset: Sopot, Poland, 2017; pp. 23–39. [Google Scholar]
- Lejda, K.; Mądziel, M.; Siedlecka, S.; Zielińska, E. The future of public transport in light of solutions for sustainable transport development. Sci. J. Sil. Univ. Technol. Ser. Transp. 2017, 95, 97–108. [Google Scholar] [CrossRef]
- Tomaszewski, K. The Polish road to the new European Green Deal—challenges and threats to the national energy policy. Energy Policy J. 2020, 23, 5–18. [Google Scholar] [CrossRef]
- Tucki, K.; Orynycz, O.; Świć, A.; Mitoraj-Wojtanek, M. The Development of Electromobility in Poland and EU States as a Tool for Management of CO2 Emissions. Energies 2019, 12, 2942. [Google Scholar] [CrossRef] [Green Version]
- Wierzbowski, M.; Filipiak, I.; Łyżwa, W. Polish energy policy 2050—An instrument to develop a diversified and sustainable electricity generation mix in coal-based energy system. Renew. Sustain. Energy Rev. 2017, 74, 51–70. [Google Scholar] [CrossRef] [Green Version]
- Act on Electromobility and Alternative Fuels from 11 January 2018. Journal of Laws of 2018, Poland, 2018, Item 317. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20180000317/U/D20180317Lj.pdf (accessed on 20 March 2021).
- National Framework for the Policy of Development of Alternative Fuel Infrastructure. Resolution of the Council of Ministers from 29 March 2017. Available online: https://www.gov.pl/attachment/c3db2c7c-adc7-4b56-9bae-be4ec1e48683 (accessed on 20 May 2021).
- Połom, M.; Wiśniewski, P. Implementing electromobility in public transport in Poland in 1990–2010. A review of experiences and evaluation of the current development directions. Sustainability 2021, 13, 4009. [Google Scholar] [CrossRef]
- Sobczyk, W.; Sobczyk, E.J. Varying the Energy Mix in the EU-28 and in Poland as a Step towards Sustainable Development. Energies 2021, 14, 1502. [Google Scholar] [CrossRef]
- Darido, G.; Torres-Montoya, M.; Mehndiratta, S. Urban transport and CO2 emissions: Some evidence from Chinese cities. WIREs Energy Environ. 2014, 3, 122–155. [Google Scholar] [CrossRef] [Green Version]
- Pietrzak, K.; Pietrzak, O. Environmental Effects of Electromobility in a Sustainable Urban Public Transport. Sustainability 2020, 12, 1052. [Google Scholar] [CrossRef] [Green Version]
- Klucininkas, L.; Matulevicius, J. Comparative Analysis of Bus and Trolleybus Related GHGs Emissions and Costs in Lithuania. In Proceedings of the EURO-Mini Conference; Vilnius Gediminas Technical University, Department of Construction Economics & Property: Vilnius, Lithuania, 2009; pp. 187–191. [Google Scholar]
- Klucininkas, L.; Matulevicius, J.; Martuzevicius, D. The life cycle assessment of alternative fuel chains for urban buses and trolleybuses. J. Environ. Manag. 2012, 99, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Ally, J.; Pryor, T. Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems. J. Power Sources 2007, 170, 401–411. [Google Scholar] [CrossRef] [Green Version]
- Lajunen, A. Lifecycle costs and charging requirements of electric buses with different charging methods. J. Clean. Prod. 2018, 172, 56–67. [Google Scholar] [CrossRef]
- Potkány, M.; Hlatká, M.; Debnár, M.; Hanzl, J. Comparison of the lifecycle cost structure of electric and diesel buses. Nase More 2018, 65, 270–275. [Google Scholar] [CrossRef]
- Sheth, A.; Sarkar, D. Life Cycle Cost Analysis for Electric vs Diesel Bus Transit in an Indian Scenario. Life 2019, 10, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Szumska, E.M.; Jurecki, R.S.; Pawelczyk, M. Life Cycle Cost (LCC) Level of an Urban Transport Fleet with Differentiated Share of Buses with Alternative Drive Systems. Commun. Sci. Lett. Univ. Zilina 2020, 22, 68–77. [Google Scholar] [CrossRef]
- Kühne, R. Electric buses—An energy efficient urban transportation means. Energy 2010, 35, 4510–4513. [Google Scholar] [CrossRef]
- Yusof, N.K.; Abas, P.E.; Mahlia, T.M.I.; Hannan, M.A. Techno-Economic Analysis and Environmental Impact of Electric Buses. World Electr. Veh. J. 2021, 12, 31. [Google Scholar] [CrossRef]
- Göhlich, D.; Fay, T.-A.; Jefferies, D.; Lauth, E.; Kunith, A.; Zhang, X. Design of urban electric bus systems. Des. Sci. 2018, 4, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Bedell, R. A Practical, 70–90% Electric Bus without Overhead Wires. In Proceedings of the EVS24 Conference, Stavanger, Norway, 13–16 May 2009; pp. 1–7. [Google Scholar]
- Topić, J.; Soldo, J.; Maletić, F.; Škugor, B.; Deur, J. Virtual Simulation of Electric Bus Fleets for City Bus Transport Electrification Planning. Energies 2020, 13, 3410. [Google Scholar] [CrossRef]
- Krawiec, S.; Łazarz, B.; Markusik, S.; Karoń, G.; Sierpiński, G.; Krawiec, K. Urban public transport with the use of electric buses—development tendencies. Transp. Probl. 2016, 11, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Lenz, E. Electric bus with IMC from Kiepe Electric: Reliable, simple and more cost effective. Fachmag. Verk. Tech. 2017, 8–9. [Google Scholar]
- Mathieu, L. Electric Buses Arrive on Time—Marketplace, Economic, Technology, Environmental and Policy Perspectives for Fully Electric Buses in the EU; European Federation for Transport and Environment: Brussels, Belgium, 2018. [Google Scholar]
- Taczanowski, J.; Kołoś, A.; Gwosdz, K.; Domański, B.; Guzik, R. The development of low-emission public urban transport in Poland. Bull. Geogr. Socio Econ. Ser. 2018, 41, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Grzelec, K.; Birr, K. Development of trolleybus public transport in Gdynia as part of a sustainable mobility strategy. Sci. J. Sil. Univ. Technol. Ser. Transp. 2016, 92, 53–63. [Google Scholar] [CrossRef]
- Hutyria, S.; Chanchin, A.; Yaglinskyi, V.; Khomiak, Y.; Popov, V. Evolution of trolley-bus: Directions, indicators, trends. Diagnostyka 2020, 21, 11–26. [Google Scholar] [CrossRef]
- Khorovitch, B. The trolleybus in a modern city: State-of-the-art and future perspectives. Public Transp. Int. 2004, 53, 53–57. [Google Scholar]
- Tica, S.; Filipović, S.; Živanović, P.; Bajčetić, S. Development of trolleybus passenger transport subsystems in terms of sustainable and quality of life in cities. Int. J. Traffic Transp. Eng. 2011, 4, 196–205. [Google Scholar]
- Zavada, J.; Blašković Zavada, J.; Miloš, K. Conditions for implementing trolleybuses in public transport. Promet Traffic Transp. 2010, 22, 467–474. [Google Scholar] [CrossRef]
- Berckmans, G.; Messagie, M.; Smekens, J.; Omar, N.; Vanhaverbeke, L.; Van Mierlo, J. Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030. Energies 2017, 10, 1314. [Google Scholar] [CrossRef] [Green Version]
- Rogge, M.; Wollny, S.; Sauer, D.U. Fast Charging Battery Buses for the Electrification of Urban Public Transport—A Feasibility Study Focusing on Charging Infrastructure and Energy Storage Requirements. Energies 2015, 8, 4587–4606. [Google Scholar] [CrossRef] [Green Version]
- Todoruț, A.; Cordoș, N.; Iclodean, C. Replacing Diesel Buses with Electric Buses for Sustainable Public Transportation and Reduction of CO2 Emissions. Pol. J. Environ. Stud. 2020, 29, 1–13. [Google Scholar] [CrossRef]
- Wang, S.; Lu, C.; Liu, C.; Zhou, Y.; Bi, J.; Zhao, X. Understanding the Energy Consumption of Battery Electric Buses in Urban Public Transport Systems. Sustainability 2020, 12, 10007. [Google Scholar] [CrossRef]
- Bergk, F.; Biemann, K.; Lambrecht, U.; Pütz, R.; Landinger, H. Potential of In-Motion Charging Buses for the Electrification of Urban Bus Lines. J. Earth Sci. Geotech. Eng. 2016, 6, 347–362. [Google Scholar]
- Wołek, M.; Szmelter-Jarosz, A.; Koniak, M.; Golejewska, A. Transformation of Trolleybus Transport in Poland. Does In-Motion Charging (Technology) Matter? Sustainability 2020, 12, 9744. [Google Scholar] [CrossRef]
- Jeong, S.; Jang, Y.J.; Kum, D. Economic Analysis of the Dynamic Charging Electric Vehicle. IEEE Trans. Power Electron. 2015, 30, 6368–6377. [Google Scholar] [CrossRef]
- Bartłomiejczyk, M.; Połom, M. Dynamic Charging of Electric Buses as a Way to Reduce Investment Risks of Urban Transport System Electrification. In TRANSBALTICA XI: Transportation Science and Technology: Proceedings of the International Conference TRANSBALTICA; Gopalakrishnan, K., Ed.; Springer Nature: Basel, Switzerland; Warszawa, Poland, 2020; pp. 297–308. [Google Scholar] [CrossRef]
- Bartłomiejczyk, M.; Połom, M. Sustainable use of the catenary by trolleybuses with auxiliary power sources on the example of Gdynia. Infrastructures 2021, 6, 61. [Google Scholar] [CrossRef]
- Pejšova, M. Environmentally Friendly Public Transport. Trans. Transp. Sci. 2014, 7, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Perujo, A.; Van Grootveld, G.; Scholz, H. Present and Future Role of Battery Electrical Vehicles in Private and Public Urban transport. In New Generation of Electric Vehicles; Stevic, Z., Ed.; InTech: Rijeka, Croatia, 2012; pp. 3–25. [Google Scholar]
- Costa, Á.; Fernandes, R. Urban public transport in Europe: Technology diffusion and market organization. Transp. Res. Part A 2012, 46, 269–284. [Google Scholar] [CrossRef]
- Trolley: Motion. Urban E-Mobility. Available online: https://www.trolleymotion.eu/ (accessed on 11 April 2021).
- Centre for EU Transport Projects (CEUTP). Available online: https://www.cupt.gov.pl (accessed on 15 May 2021).
- Pietrzak, O.; Pietrzak, K. The Economic Effects of Electromobility in Sustainable Urban Public Transport. Energies 2021, 14, 878. [Google Scholar] [CrossRef]
- National Centre for Emission Management (KOBiZE). Wskaźniki Emisyjności CO2, SO2, NOx, CO i pyłu Całkowitego dla Energii Elektrycznej na Podstawie Informacji Zawartych w Krajowej Bazie o Emisjach Gazów Cieplarnianych i Innych Substancji za 2019 rok; KOBiZE: Warsaw, Poland, 2020. [Google Scholar]
- Korzhenevych, A.; Dehnen, N.; Bröcker, J.; Holtkamp, M.; Meier, H.; Gibson, G.; Varma, A.; Cox, V. Ricardo-AEA. In Update of the Handbook on External Costs of Transport; Report for the European Commission: London, UK, 2014. [Google Scholar]
- Research and Statistical Education Centre. Development of the Methodology and Estimation of the External Costs of Air Pollution Emitted from Road Transport at National Level; Research and Statistical Education Centre: Szczecin, Poland, 2018. [Google Scholar]
- European Commission. Handbook on the External Costs of Transport; Version 2019-1.1; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Hebel, K.; Wolek, M. Perception of modes of public transport compared to travel behaviour of urban inhabitants in light of market research. Sci. J. Sil. Univ. Technol. Ser. Transp. 2016, 92, 65–75. [Google Scholar] [CrossRef]
- Hebel, K.; Wyszomirski, O. Transportation preferences and travel behaviour of senior citizens in Gdynia in the light of marketing research. Transp. Econ. Logist. 2019, 76, 167–177. [Google Scholar] [CrossRef]
- Wołek, M. Projekt TROLLEY jako platforma współpracy środowisk transportowych w Europie Środkowo-Wschodniej. Autobusy Tech. Eksploat. Syst. Transp. 2012, 13, 16–18. [Google Scholar]
- Wołek, M. Transport trolejbusowy w kształtowaniu zrównoważonej mobilności miejskiej na przykładzie Gdyni. Autobusy Tech. Eksploat. Syst. Transp. 2013, 7–8, 42–46. [Google Scholar]
- Bartłomiejczyk, M.; Dombrowski, J.; Połom, M.; Wyszomirski, O. Conversion of a Diesel Engine Bus into a Trolleybus; Zakład Poligrafii Fundacji Rozwoju Uniwersytetu Gdańskiego: Gdańsk, Poland, 2012; pp. 1–82. [Google Scholar]
- Wołek, M.; Wolański, M.; Bartłomiejczyk, M.; Wyszomirski, O.; Grzelec, K.; Hebel, K. Ensuring sustainable development of urban public transport: A case study of the trolleybus system in Gdynia and Sopot (Poland). J. Clean. Prod. 2021, 279, 123807. [Google Scholar] [CrossRef]
- Połom, M. Trends in the development of trolleybus transport in Poland at the end of the second decade of the 21st century. Pr. Kom. Geogr. Komun. PTG 2018, 21, 44–59. [Google Scholar] [CrossRef]
- Jagiełło, A.; Gałka, P. Impact of changes in organization of trolleybus line no. 29 in Gdynia on passangers’ travel behavior. Transp. Econ. Logist. 2017, 70, 109–117. [Google Scholar] [CrossRef]
- Bartłomiejczyk, M.; Połom, M. Possibilities for developing electromobility by using autonomously powered trolleybuses based on the example of Gdynia. Energies 2021, 14, 2971. [Google Scholar] [CrossRef]
- Połom, M. Przemiany Funkcjonowania Komunikacji Trolejbusowej w Polsce w Latach 1989–2013; Wydawnictwo Bernardinum: Pelplin, Poland, 2019; pp. 1–284. [Google Scholar]
- Goliszek, S. Udział transportu zbiorowego w poprawie dostępności do usług w Gdyni. Pr. Kom. Geogr. Komun. PTG 2017, 20, 36–49. [Google Scholar] [CrossRef]
- Połom, M.; Palmowski, T. Przemiany Rozwój i Funkcjonowania Komunikacji Trolejbusowej w Gdyni; Wydawnictwo Bernardinum: Pelplin, Poland, 2009; pp. 1–152. [Google Scholar]
- Połom, M.; Bartłomiejczyk, M. Alternatywne źródła zasilania w trolejbusach—przegląd rozwiązań stosowanych w miastach europejskich. Transp. Miej. I Reg. 2011, 8, 16–20. [Google Scholar]
- Bartłomiejczyk, M. Book Series: International Scientific Conference on Electric Power Engineering. In Practical Application of In Motion Charging: Trolleybuses Service on Bus Lines, Proceedings of the 2017 18th International Scientific Conference on Electric Power Engineering (EPE), Loučná nad Desnou, Czech Republic, 17–19 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 676–681. [Google Scholar] [CrossRef]
- Gepard—Bezemisyjny Transport Publiczny. Available online: http://nfosigw.gov.pl/oferta-finansowania/system-zielonych-inwestycji---gis/konkursy/czesc-2-gepard---bezemisyjny-transport-publiczny (accessed on 16 April 2021).
- Pawełczyk, M. Trolleybuses as a beneficial alternative for a public transport. Autobusy Tech. Eksploat. Syst. Transp. 2011, 12, 252–263. [Google Scholar]
- Mikołajuk, H.; Zatorska, M.; Stępniak, E.; Wrońska, I. Informacja statystyczna o energii elektrycznej. In Biuletyn miesięczny; Agencja Rynku Energii: Warsaw, Poland, 2021. [Google Scholar]
- Ma, H.; Balthasar, F.; Tait, N.; Riera-Palou, X.; Harrison, A. A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles. Energy Policy 2012, 44, 160–173. [Google Scholar] [CrossRef]
- Chłopek, Z.; Lasocki, J. Application of the life cycle assessment method to the study on the ecological properties of the car. Proc. Inst. Veh. 2013, 1, 57–66. [Google Scholar]
- Pawłowska, B. External costs of transport in Poland. Sci. Rev. Eng. Environ. Sci. 2018, 27, 28–41. [Google Scholar] [CrossRef] [Green Version]
EURO Standard | Benchmark Value [g/kWh] | ||
---|---|---|---|
NHMC/NMVOC | NOx | PM | |
EURO 1 | 1.10 | 8.00 | 0.36 |
EURO 2 | 1.10 | 7.00 | 0.15 |
EURO 3 | 0.66 | 5.00 | 0.10 |
EURO 4 | 0.46 | 3.50 | 0.02 |
EURO 5 | 0.46 | 2.00 | 0.02 |
EURO 6 | 0.13 | 0.40 | 0.01 |
Line | Variant | Annual Emission of Pollutants [Kg] | Emission of Pollutants in the Life Cycle of a Vehicle [Mg] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CO2 | SO2 | NHMC/ NMVOC | NOx | PM | CO2 | SO2 | NHMC/ NMVOC | NOx | PM | ||
32 | V1 | 479,157.93 +70,230.73 | 0.00 −290.49 | 822.43 +818.66 | 6258.74 +5930.52 | 33.95 +18.86 | 5749.90 −2428.64 | 0.00 −5.81 | 9.87 +9.79 | 75.10 +68.54 | 0.41 +0.11 |
170 | V2 | 294,562.87 −50,562.17 | 209.25 +209.25 | 2.72 −589.70 | 236.42 −4271.95 | 10.87 −13.59 | 5891.26 +1749.76 | 4.19 +4.19 | 0.05 −7.06 | 4.73 −49.37 | 0.22 −0.07 |
181 | V3 | 747,671.79 +30,624.57 | 0.00 −274.69 | 1284.25 +713.69 | 5578.88 +3111.49 | 55.24 +30.81 | 8972.06 −2730.49 | 0.00 −5.49 | 15.41 −8.54 | 111.58 +75.76 | 1.10 +0.50 |
V4 | 694,331.76 −22,715.46 | 492.53 +217.84 | 4.60 −565.96 | 556.97 −2221.06 | 27.62 −613.64 | 13,886.64 +2184.09 | 9.85 +4.36 | 0.09 −6.78 | 11.14 −24.68 | 0.55 −0.05 |
Line | Variant | Annual Damage Costs Due to the Emission of Air Pollutants [€] | Damage Costs Due to the Emission of Air Pollutants in the Life Cycle of Vehicles [Thous. €] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SO2 | NHMC/ NMVOC | NOx | PM | ∑ | SO2 | NHMC/ NMVOC | NOx | PM | ∑ | ||
32 | V1 | 0.00 −2382.02 | 575.70 +573.06 | 92,003.48 +87,178.65 | 546.60 +303.65 | 93,125.78 +85,673.34 | 0.00 −47.64 | 6.91 +6.86 | 1104.04 +1007.54 | 6.56 +1.70 | 1117.51 +968.46 |
170 | V2 | 1715.85 +1715.85 | 1.90 −412.79 | 3475.37 −62,797.67 | 175.01 −218.80 | 5368.13 −61,713.41 | 34.32 +34.32 | 0.04 −4.94 | 69.51 −725.77 | 3.50 −1.23 | 107.37 −697.62 |
181 | V3 | 0.00 −2252.46 | 898.98 +499.59 | 82,009.54 +41,172.50 | 889.36 +248.10 | 83,797.88 +39,667.73 | 0.00 −45.05 | 10.79 +5.98 | 984.11 +457.53 | 10.67 +0.99 | 1005.57 +419.45 |
V4 | 4038.75 +1786.29 | 3.22 −396.17 | 8187.46 −32,649.58 | 444.68 −246.58 | 12,674.11 −31,456.04 | 48.47 +3.42 | 0.06 −4.75 | 163.75 −362.83 | 8.89 −0.76 | 221.17 −364.95 |
Line | Length of the Route in One Direction [Km] | Max. of the Length of the Route Under the Overhead Line in One Direction [Km] | The Number of Trips in Both Directions during One Week | The Total Number of Vehicle Kilometres during One Week [Km] | Max. Number of Vehicles Used on the Line | Vehicle Curb Weight (Total Weight) [Kg] | Engine Power | Energy Consumption Per 100 Km [Kwh or Liter of Diesel Fuel] | Total Number of Seats | |
---|---|---|---|---|---|---|---|---|---|---|
32 | trolleybus | 9.9–10.4 1 | 4.3 | 782 2 | 7255 | 7 | 13,550 (18,745) | 170 kW | 143 kWh | 76 |
170 | bus | 7.6–8.4 3 | - | 773 2 | 5226 | 6 | 10,800 (18,000) | 180 kW | 47.39 l l | 105 4 |
181 | bus | 12.8 | - | 425 5 | 3915 | 3 | 16,795 (28,000) | 220 kW | 60.6 l l | 138 6 |
trolleybus | 6.1 + 2.2 7 | 230 5 138 8 | 4937 | 6 | 13,185 (18,745) 19,125 (28,000) | 175 kW (12 m) 9 250 kW (18 m) 9 | 199 kWh | 78 121 |
Line | Vehicle Type | Unit Emission of Pollutants [g/km] | ||||
---|---|---|---|---|---|---|
CO2 | SO2 | NHMC/NMVOC | NOx | PM | ||
32 | trolley bus | 1083.94 | 0.77 | 0.01 | 0.87 | 0.04 |
170 | bus | 1270.10 | - | 2.18 | 16.59 | 0.09 |
181 | trolley bus | 1508.42 | 1.07 | 0.01 | 1.21 | 0.06 |
bus | 1624.30 | - | 2.79 | 12.12 | 0.12 |
Line | Vehicle Type | Annual Emission of Pollutants [Kg] | Emission of Pollutants in the Life Cycle of a Vehicle [Mg] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CO2 | SO2 | NHMC/ NMVOC | NOx | PM | CO2 | SO2 | NHMC/ NMVOC | NOx | PM | ||
32 | trolleybus | 408,927.20 | 290.49 | 3.77 | 328.22 | 15.09 | 8178.54 | 5.81 | 0.08 | 6.56 | 0.30 |
170 | bus | 345,125.04 | 0.00 | 592.42 | 4508.37 | 24.46 | 4141.50 | 0.00 | 7.11 | 54.10 | 0.29 |
181 | trolleybus | 387,247.62 | 274.69 | 2.57 | 310.64 | 15.40 | 7744.95 | 5.49 | 0.05 | 6.21 | 0.31 |
bus | 329,799.60 | 0.00 | 567.99 | 2467.39 | 24.43 | 3957.60 | 0.00 | 6.82 | 29.61 | 0.29 |
Line | Vehicle Type | Annual Damage Costs of the Emission of Air Pollutants [€] | Damage Costs of the Emission of Air Pollutants in the Life Cycle of Vehicles [Thous. €] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SO2 | NHMC/ NMVOC | NOx | PM | ∑ | SO2 | NHMC/ NMVOC | NOx | PM | ∑ | ||
32 | trolleybus | 2382.02 | 2.64 | 4824.83 | 242.95 | 7452.44 | 47.64 | 0.05 | 96.50 | 4.86 | 149.05 |
170 | bus | 0.00 | 414.69 | 66,273.04 | 393.81 | 67,081.54 | 0.00 | 4.98 | 795.28 | 4.73 | 804.99 |
181 | trolleybus | 2252.46 | 1.80 | 4566.41 | 247.94 | 7068.61 | 45.05 | 0.04 | 91.33 | 4.96 | 141.38 |
bus | 0.00 | 397.59 | 36,270.63 | 393.32 | 37,061.54 | 0.00 | 4.77 | 435.25 | 4.72 | 444.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Połom, M.; Wiśniewski, P. Assessment of the Emission of Pollutants from Public Transport Based on the Example of Diesel Buses and Trolleybuses in Gdynia and Sopot. Int. J. Environ. Res. Public Health 2021, 18, 8379. https://doi.org/10.3390/ijerph18168379
Połom M, Wiśniewski P. Assessment of the Emission of Pollutants from Public Transport Based on the Example of Diesel Buses and Trolleybuses in Gdynia and Sopot. International Journal of Environmental Research and Public Health. 2021; 18(16):8379. https://doi.org/10.3390/ijerph18168379
Chicago/Turabian StylePołom, Marcin, and Paweł Wiśniewski. 2021. "Assessment of the Emission of Pollutants from Public Transport Based on the Example of Diesel Buses and Trolleybuses in Gdynia and Sopot" International Journal of Environmental Research and Public Health 18, no. 16: 8379. https://doi.org/10.3390/ijerph18168379
APA StylePołom, M., & Wiśniewski, P. (2021). Assessment of the Emission of Pollutants from Public Transport Based on the Example of Diesel Buses and Trolleybuses in Gdynia and Sopot. International Journal of Environmental Research and Public Health, 18(16), 8379. https://doi.org/10.3390/ijerph18168379