Willingness to Take COVID-19 Vaccines in Ethiopia: An Instrumental Variable Probit Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Data
2.2. Limitations of the Data
2.3. Instrumental Variable Probit Model
3. Results
3.1. Socioeconomic Characteristics of Respondents
3.2. IV Probit Model Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nueangnong, V.; Subih, A.A.S.H.; Al-Hattami, H.M. The 2020’s world deadliest pandemic: Corona Virus (COVID-19) and International Medical Law (IML). Cogent Soc. Sci. 2020, 6, 1818936. [Google Scholar] [CrossRef]
- Plotkin, S.A.; Mortimer, E.A. Vaccines; Saunders: Philadelphia, PA, USA, 1988. [Google Scholar]
- Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2021, 21, 83–100. [Google Scholar] [CrossRef]
- Rodrigues, C.M.C.; Plotkin, S.A. Impact of Vaccines; Health, Economic and Social Perspectives. Front. Microbiol. 2020, 11, 1526. [Google Scholar] [CrossRef] [PubMed]
- Rubin, L.G.; Levin, M.J.; Ljungman, P.; Davies, E.G.; Avery, R.K.; Tomblyn, M.; Bousvaros, A.; Dhanireddy, S.; Sung, L.; Keyserling, H.; et al. Executive Summary: 2013 IDSA Clinical Practice Guideline for Vaccination of the Immunocompromised Host. Clin. Infect. Dis. 2014, 58, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.; Loe, B.S.; Chadwick, A.; Vaccari, C.; Waite, F.; Rosebrock, L.; Jenner, L.; Petit, A.; Lewandowsky, S.; Vanderslott, S.; et al. COVID-19 vaccine hesitancy in the UK: The Oxford coronavirus explanations, attitudes, and narratives survey (Oceans) II. Psychol. Med. 2020, 11, 1–15. [Google Scholar] [CrossRef]
- Aylward, R.B.; Heymann, D.L. Can we capitalize on the virtues of vaccines? Insights from the polio eradication initiative. Am. J. Public Health 2005, 95, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.F.; Boyle, P.; Patel, P.; Sullivan, R. Eradicating polio in Pakistan: An analysis of the challenges and solutions to this security and health issue. Glob. Health 2016, 12, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.; Kamal, A.-H.M.; Kabir, A.; Southern, D.L.; Khan, S.H.; Hasan, S.M.M.; Sarkar, T.; Sharmin, S.; Das, S.; Roy, T.; et al. COVID-19 vaccine rumors and conspiracy theories: The need for cognitive inoculation against misinformation to improve vaccine adherence. PLoS ONE 2021, 16, e0251605. [Google Scholar] [CrossRef]
- Jegede, A.S. What led to the Nigerian boycott of the polio vaccination campaign? PLoS Med. 2007, 4, e73. [Google Scholar] [CrossRef] [Green Version]
- Calitz, T. Constitutional Rights in South Africa Protect Against Mandatory COVID-19 Vaccination. 2012. Available online: https://www.hhrjournal.org/2021/04/constitutional-rights-in-south-africa-protect-against-mandatory-covid-19-vaccination/ (accessed on 25 June 2021).
- Donzelli, G.; Palomba, G.; Federigi, I.; Aquino, F.; Cioni, L.; Verani, M.; Carducci, A.; Lopalco, P.L. Misinformation on vaccination: A quantitative analysis of YouTube videos. Hum. Vaccines Immunother. 2018, 14, 1654–1659. [Google Scholar] [CrossRef] [Green Version]
- Scheufele, D.A.; Krause, N.M. Science audiences, misinformation, and fake news. Proc. Natl. Acad. Sci. USA 2019, 116, 7662–7669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiyeh, A.B.; Cooper, S.; Jaca, A.; Mavundza, E.; Ndwandwe, D.; Wiysonge, C.S. Social media and HPV vaccination: Unsolicited public comments on a Facebook post by the Western Cape Department of Health provide insights into determinants of vaccine hesitancy in South Africa. Vaccine 2019, 37, 6317–6323. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.J.; Southwell, B.G.; McCormack, L.A.; Bann, C.M.; MacDonald, P.D.; Frasier, A.M.; Bevc, C.A.; Brewer, N.T.; Squiers, L.B. Predictors of willingness to get a COVID-19 vaccine in the U.S. BMC Infect. Dis. 2021, 21, 338. [Google Scholar] [CrossRef]
- Ehde, D.M.; Roberts, M.K.; Herring, T.E.; Alschuler, K.N. Willingness to obtain COVID-19 vaccination in adults with multiple sclerosis in the United States. Mult. Scler. Relat. Disord. 2021, 49, 102788. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, Z.; Zhao, Q.; Alias, H.; Danaee, M.; Wong, L.P. Understanding COVID-19 vaccine demand and hesitancy: A nationwide online survey in China. PLoS Negl. Trop. Dis. 2020, 14, e0008961. [Google Scholar] [CrossRef]
- Kuter, B.J.; Browne, S.; Momplaisir, F.M.; Feemster, K.A.; Shen, A.K.; Green-McKenzie, J.; Faig, W.; Offit, P.A. Perspectives on the receipt of a COVID-19 vaccine: A survey of employees in two large hospitals in Philadelphia. Vaccine 2021, 39, 1693–1700. [Google Scholar] [CrossRef]
- Seale, H.; Heywood, A.E.; Leask, J.; Sheel, M.; Durrheim, D.N.; Bolsewicz, K.; Kaur, R. Examining Australian public perceptions and behaviors towards a future COVID-19 vaccine. BMC Infect. Dis. 2021, 21, 1–9. [Google Scholar] [CrossRef]
- Kourlaba, G.; Kourkouni, E.; Maistreli, S.; Tsopela, C.-G.; Molocha, N.-M.; Triantafyllou, C.; Koniordou, M.; Kopsidas, I.; Chorianopoulou, E.; Maroudi-Manta, S.; et al. Willingness of Greek general population to get a COVID-19 vaccine. Glob. Health Res. Policy 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Tobin, E.A.; Okonofua, M.; Adeke, A.; Obi, A. Willingness to Accept a COVID-19 Vaccine in Nigeria: A Population-based Cross-sectional Study. Central Afr. J. Public Health 2021, 7, 53. [Google Scholar] [CrossRef]
- Bell, S.; Clarke, R.; Mounier-Jack, S.; Walker, J.L.; Paterson, P. Parents’ and guardians’ views on the acceptability of a future COVID-19 vaccine: A multi-methods study in England. Vaccine 2020, 38, 7789–7798. [Google Scholar] [CrossRef] [PubMed]
- World Bank. Ethiopia—COVID-19 High Frequency Phone Survey of Households 2020. Available online: https://microdata.worldbank.org/index.php/catalog/3716 (accessed on 1 May 2021).
- Central Statistical Agency of Ethiopia. Ethiopian Data Quality Assessment Framework (EDQAF). 2011. Available online: https://unstats.un.org/unsd/methodology/dataquality/references/Ethiopia_edqaf.pdf (accessed on 11 August 2021).
- Ambel, A.A.; Bundervoet, T.; Haile, A.; Wieser, C. Monitoring COVID-19 Impacts on Households in Ethiopia. 2020. Available online: https://microdata.worldbank.org/index.php/catalog/3716/related-materials (accessed on 11 August 2021).
- Central Statistical Agency and World Bank. Ethiopia Socioeconomic Survey (ESS) ESS Panel II 2018/2019 Refreshed Sample: Baseline Basic Information Document. 2021. Available online: https://microdata.worldbank.org/index.php/catalog/3823/related-materials (accessed on 11 August 2021).
- Li, C.; Poskitt, D.S.; Zhao, X. The Bivariate Probit Model, Maximum Likelihood Estimation, Pseudo True Parameters and Partial Identification. Monash Business School Working Paper 16/16. 2016. Available online: https://www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp16-16.pdf (accessed on 2 February 2021).
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data, 2nd ed.; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Burger, R.; Buttenheim, A.; English, R.; Maughan-Brown, B.; Köhler, T.; Tameris, M. COVID-19 Vaccine Hesitancy in South Africa: Results from NIDS-CRAM Wave 4. Available online: https://www.researchgate.net/publication/351515147_COVID-19_vaccine_hesitancy_in_South_Africa_Results_from_NIDS-CRAM_Wave_4 (accessed on 2 July 2021).
- Ditekemena, J.; Nkamba, D.; Mavoko, A.; Fodjo, J.S.; Luhata, C.; Obimpeh, M.; Van Hees, S.; Nachega, J.; Colebunders, R. COVID-19 Vaccine Acceptance in the Democratic Republic of Congo: A Cross-Sectional Survey. Vaccines 2021, 9, 153. [Google Scholar] [CrossRef] [PubMed]
- Savulescu, J. Good reasons to vaccinate: Mandatory or payment for risk? J. Med. Ethics 2021, 47, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Sarkanen, T.O.; Alakuijala, A.P.; Dauvilliers, Y.; Partinen, M. Incidence of narcolepsy after H1N1 influenza and vaccinations: Systematic review and meta-analysis. Sleep Med. Rev. 2017, 38, 177–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaye, J.A.; del Mar Melero-Montes, M.; Jick, H. Mumps, measles, and rubella vaccine and the incidence of autism recorded by general practitioners: A time trend analysis. BMJ 2001, 322, 460–463, PMCID:PMC26561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Not Willing/Not Sure | Willing | Total | |||
---|---|---|---|---|---|---|
Sector | Freq | % | Freq | % | Freq | % |
Urban | 148 | 6.80 | 1493 | 68.55 | 1641 | 75.34 |
Rural | 19 | 0.87 | 518 | 23.78 | 537 | 24.66 |
Gender | ||||||
Female | 93 | 4.27 | 730 | 33.52 | 823 | 37.79 |
Male | 74 | 3.40 | 1281 | 58.82 | 1355 | 62.21 |
Currently Working | ||||||
No | 51 | 2.34 | 610 | 28.01 | 661 | 30.35 |
Yes | 116 | 5.33 | 1401 | 64.33 | 1517 | 69.65 |
Age of Respondents | ||||||
<20 | 3 | 0.14 | 38 | 1.74 | 41 | 1.88 |
20 < 25 | 21 | 0.96 | 183 | 8.40 | 204 | 9.37 |
25 < 30 | 39 | 1.79 | 366 | 16.80 | 405 | 18.60 |
30 < 35 | 24 | 1.10 | 342 | 15.70 | 366 | 16.80 |
35 < 40 | 33 | 1.52 | 321 | 14.74 | 354 | 16.25 |
40 < 45 | 24 | 1.10 | 371 | 17.03 | 395 | 18.14 |
45 < 50 | 6 | 0.28 | 132 | 6.06 | 138 | 6.34 |
50 < 55 | 9 | 0.41 | 96 | 4.41 | 105 | 4.82 |
55 < 60 | 5 | 0.23 | 64 | 2.94 | 69 | 3.17 |
>=60 | 3 | 0.14 | 98 | 4.50 | 101 | 4.64 |
Total | 167 | 7.67 | 2011 | 92.33 | 2178 | 100.00 |
Coef. | Std. Error | z | p > |z| | |
---|---|---|---|---|
Currently working | 0.9390874 | 0.257606 | 3.65 | 0.000 |
Regional variables | ||||
Afar | −0.6098229 | 0.2523096 | −2.42 | 0.016 |
Amhara | −0.8008101 | 0.246855 | −3.24 | 0.001 |
Oromia | −0.2267666 | 0.2648143 | −0.86 | 0.392 |
Somali | −0.6279075 | 0.3102659 | −2.02 | 0.043 |
Benishangul-Gumuz | −0.4412474 | 0.2782665 | −1.59 | 0.113 |
SNNPR | 0.1603359 | 0.3947655 | 0.41 | 0.685 |
Gambela | −0.5025854 | 0.2848655 | −1.76 | 0.078 |
Harar | −0.7888761 | 0.238634 | −3.31 | 0.001 |
Addis Ababa | −0.8102018 | 0.2170748 | −3.73 | 0.000 |
Dire Dawa | −1.010384 | 0.2244206 | −4.50 | 0.000 |
Urban | 0.1693273 | 0.1227028 | 1.38 | 0.168 |
Age of Respondents | 0.0104907 | 0.0031925 | 3.29 | 0.001 |
Non-farm business | −0.2161269 | 0.1026179 | −2.11 | 0.035 |
Farm business | −0.0126945 | 0.0532269 | −0.24 | 0.811 |
Constant | 0.9374655 | 0.305284 | 3.07 | 0.002 |
/athrho | −0.455089 | 0.1368257 | −3.33 | 0.001 |
/lnsigma | −0.8567397 | 0.0151515 | −56.54 | 0.000 |
rho | −0.4260732 | 0.1119866 | ||
sigma | 0.424544 | 0.0064325 | ||
Number of observations | 2178 | |||
Wald Chi square (15) | 101.75 | 0.000 | ||
Log pseudo likelihood | −1767.9601 | |||
Wald test of exogeneity (Chi Square) | 11.06 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyekale, A.S. Willingness to Take COVID-19 Vaccines in Ethiopia: An Instrumental Variable Probit Approach. Int. J. Environ. Res. Public Health 2021, 18, 8892. https://doi.org/10.3390/ijerph18178892
Oyekale AS. Willingness to Take COVID-19 Vaccines in Ethiopia: An Instrumental Variable Probit Approach. International Journal of Environmental Research and Public Health. 2021; 18(17):8892. https://doi.org/10.3390/ijerph18178892
Chicago/Turabian StyleOyekale, Abayomi Samuel. 2021. "Willingness to Take COVID-19 Vaccines in Ethiopia: An Instrumental Variable Probit Approach" International Journal of Environmental Research and Public Health 18, no. 17: 8892. https://doi.org/10.3390/ijerph18178892
APA StyleOyekale, A. S. (2021). Willingness to Take COVID-19 Vaccines in Ethiopia: An Instrumental Variable Probit Approach. International Journal of Environmental Research and Public Health, 18(17), 8892. https://doi.org/10.3390/ijerph18178892