Dietary Supplements—For Whom? The Current State of Knowledge about the Health Effects of Selected Supplement Use
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Dietary Supplements and Cardiovascular Diseases
3.1.1. Polyunsaturated Omega-3 Fatty Acids
3.1.2. Vitamins and Minerals
3.1.3. Antioxidants
3.2. Dietary Supplements and Malignancy
3.2.1. Cancer Prevention
3.2.2. Cancer Therapy
3.3. Dietary Supplements and Weight Loss
3.4. Safety of Supplement Use
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the approximation of the laws of the Member States relating to food supplements. Off. J. Eur. Communities 2002, L 183, 51–57.
- Dietary Supplement Health and Education Act of 1994. Public Law 103–417. Available online: http://www.fda.gov/opacom/laws/dshea.html (accessed on 15 December 2020).
- Chen, F.; Du, M.; Blumberg, J.B.; Chui, K.K.H.; Ruan, M.; Rogers, G.; Shan, Z.; Zeng, L.; Zhang, F.F. Association among dietary supplement use, nutrient intake, and mortality among U.S. adults: A cohort study. Ann. Intern. Med. 2019, 170, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.G.; Vidovic, B.; Saraiva, N.; Costa, M.D.C.; Del Favero, G.; Marko, D.; Oliveira, N.G.; Fernandes, A.S. Contaminants: A dark side of food supplements? Free. Radic. Res. 2019, 53, 1113–1135. [Google Scholar] [CrossRef] [PubMed]
- Wawryk-Gawda, B.; Budzyńska, M.; Lis-Sochocka, P.; Chylińska-Wrzos, M.; Zarobkiewicz, B.; Jodłowska-Jędrych, B. Dietary supplements—Consumer assessment based on questionnaire survey. Przegl. Epidemiol. 2018, 72, 93–103. [Google Scholar]
- Waśkiewicz, A.; Sygnowska, E.; Broda, G.; Chwojnowska, Z. The use of vitamin supplements among adults in Warsaw: Is there any nutritional benefit? Rocz. Panstw. Zakl. Hig. 2014, 65, 119–126. [Google Scholar] [PubMed]
- Suliga, K.; Grzelak, T.; Grupińska, J.; Pelczyńska, M.; Sperling, M.; Czyżewska, K. Evaluation of using dietary supplements among polish adult people below and over 60 years of age. J. Med. Sci. 2017, 86, 213–219. [Google Scholar]
- Sicińska, E.; Pietruszka, B.; Januszko, O.; Kałuża, J. Different Socio-Demographic and Lifestyle Factors Can Determine the Dietary Supplement Use in Children and Adolescents in Central-Eastern Poland. Nutrients 2019, 11, 658. [Google Scholar] [CrossRef] [Green Version]
- Ronis, M.J.J.; Pedersen, K.B.; Watt, J. Adverse Effects of Nutraceuticals and Dietary Supplements. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 583–601. [Google Scholar] [CrossRef]
- Dickinson, A.; Blatman, J.; El-Dash, N.; Franco, J.C. Consumer Usage and Reasons for Using Dietary Supplements: Report of a Series of Surveys. J. Am. Coll. Nutr. 2014, 33, 176–182. [Google Scholar] [CrossRef]
- Karbownik, M.S.; Horne, R.; Paul, E.; Kowalczyk, E.; Szemraj, J. Determinants of knowledge about dietary supplements among Polish Internet users with no medical education: A nationwide cross-sectional study. J. Med. Internet Res. 2021, 23, e25228. [Google Scholar] [CrossRef]
- Wierzejska, R.; Jarosz, M.; Siuba, M.; Rambuszek, M. Assessing patients’ attitudes towards dietary supplements. Rocz. Panstw. Zakl. Hig. 2014, 65, 317–323. [Google Scholar] [PubMed]
- Schwingshackl, L.; Boeing, H.; Stelmach-Mardas, M.; Gottschald, M.; Dietrich, S.; Hoffmann, G.; Chaimani, A. Dietary Supplements and Risk of Cause-Specific Death, Cardiovascular Disease, and Cancer: A Systematic Review and Meta-Analysis of Primary Prevention Trials. Adv. Nutr. 2017, 8, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Hilleman, D.E.; Teply, R.; Packard, K.A. Knowledge, Perceptions, and Patterns of Fish Oil Use in Cardiac Patients. J. Pharm. Pract. 2020, 33, 580–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadowska, J.; Szuber, M. The estimation of weight-loss programmes and using of slimming preparations among young women. Rocz. Panstw. Zakl. Hig. 2011, 62, 343–350. [Google Scholar] [PubMed]
- Saper, R.B.; Eisenberg, D.M.; Phillips, R.S. Common dietary supplements for weight loss. Am. Fam. Physician 2004, 70, 1731–1738. [Google Scholar]
- Innes, J.K.; Calder, P.C. Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update for 2020. Int. J. Mol. Sci. 2020, 21, 1362. [Google Scholar] [CrossRef] [Green Version]
- Zock, P.L.; Blom, W.A.; Nettleton, J.A.; Hornstra, G. Progressing Insights into the Role of Dietary Fats in the Prevention of Cardiovascular Disease. Curr. Cardiol. Rep. 2016, 18, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zhan, J.; Liu, Y.J.; Cai, L.B.; Xu, F.R.; Xie, T.; He, Q.Q. Fruit and vegetable consumption and risk of cardiovascular disease: A meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 1650–1663. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Abreu, A.; Albus, C.; Ambrosetti, M.; Brotons, C.; Catapano, A.L.; Corra, U.; Cosyns, B.; Deaton, C.; Graham, I.; et al. Update on cardiovascular prevention in clinical practice: A position paper of the European Association of Preventive Cardiology of the European Society of Cardiology. Eur. J. Prev. Cardiol. 2020, 27, 181–205. [Google Scholar] [CrossRef] [Green Version]
- Kłosiewicz-Latoszek, L.; Cybulska, B.; Tyszko, P. Current state-of-the-art knowledge on the role of omega-3 fatty acids in the prevention of cardiovascular disease. Ann. Agric. Environ. Med. 2020, 27, 519–525. [Google Scholar] [CrossRef]
- The ASCEND Study Collaborative Group. Effects of n−3 fatty acid supplements in diabetes mellitus. N. Engl. J. Med. 2018, 379, 1540–1550. [Google Scholar] [CrossRef]
- Manson, J.E.; Cook, N.R.; Lee, I.M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Albert, C.M.; Gordon, D.; Copeland, T.; et al. VITAL Research Group. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N. Engl. J. Med. 2019, 380, 23–32. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T., Jr.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.J.; Chowdhury, S. Improving lipids with prescription icosapent ethyl after previous use of fish oil dietary supplements. Future Cardiol. 2016, 12, 261–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banach, M.; Patti, A.M.; Giglio, R.V.; Cicero, A.F.G.; Atanasov, A.G.; Bajraktari, G.; Bruckert, E.; Descamps, O.; Djuric, D.M.; Ezhov, M.; et al. The role of nutraceuticals in statin intolerant patients. J. Am. Coll. Cardiol. 2018, 72, 96–118. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Lincoff, A.M.; Garcia, M.; Bash, D.; Ballantyne, C.M.; Barter, P.J.; Davidson, M.H.; Kastelein, J.J.P.; Koenig, W.; McGuire, D.K.; et al. Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: The STRENGTH Randomized Clinical Trial. JAMA 2020, 324, 2268–2280. [Google Scholar] [CrossRef] [PubMed]
- Perez-Martinez, P.; Katsiki, N.; Mikhailidis, D.P. The Role of n-3 Fatty Acids in Cardiovascular Disease: Back to the Future. Angiology 2019, 71, 10–16. [Google Scholar] [CrossRef]
- Rizos, E.C.; Ntzani, E.E.; Bika, E.; Kostapanos, M.S.; Elisaf, M.S. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: A systematic review and meta-analysis. JAMA 2012, 308, 1024–1033. [Google Scholar] [CrossRef]
- Kotwal, S.; Jun, M.; Sullivan, D.; Perkovic, V.; Neal, B. Omega 3 fatty acids and cardiovascular outcomes: Systematic review and meta-analysis. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 808–818. [Google Scholar] [CrossRef] [Green Version]
- Kwak, S.M.; Myung, S.K.; Lee, Y.J.; Seo, H.G. Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: A meta-analysis of randomized, double-blind, placebo-controlled trials. Arch. Intern. Med. 2012, 172, 686–694. [Google Scholar]
- Casula, M.; Soranna, D.; Catapano, A.L.; Corrao, G. Long-term effect of high dose omega-3 fatty acid supplementation for secondary prevention of cardiovascular outcomes: A meta-analysis of randomized, double blind, placebo controlled trials. Atheroscler. Suppl. 2013, 14, 243–251. [Google Scholar] [CrossRef]
- Wen, Y.; Dai, J.; Gao, Q. Effects of Omega-3 fatty acid on major cardiovascular events and mortality in patients with coronary heart disease: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Aung, T.; Halsey, J.; Kromhout, D.; Gerstein, H.C.; Marchioli, R.; Tavazzi, L.; Geleijnse, J.M.; Rauch, B.; Ness, A.; Galan, P.; et al. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: Meta-analysis of 10 trials involving 77 917 individuals. JAMA Cardiol. 2018, 3, 225–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelhamid, A.S.; Brown, T.J.; Brainard, J.S.; Biswas, P.; Thorpe, G.C.; Moore, H.J.; Deane, K.H.; AlAbdulghafoor, F.K.; Summerbell, C.D.; Worthington, H.V.; et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018, 7, CD003177. [Google Scholar] [CrossRef]
- Mazidi, M.; Mikhailidis, D.P.; Banach, M. Omega-3 fatty acids and risk of cardiovascular disease: Systematic review and meta-analysis of randomized controlled trials with 127,447 individuals and a Mendelian randomization study. Circulation 2019, 140, e964–e1011. [Google Scholar]
- Hu, Y.; Hu, F.B.; Manson, J.E. Marine Omega-3 Supplementation and Cardiovascular Disease: An Updated Meta-Analysis of 13 Randomized Controlled Trials Involving 127,477 Participants. J. Am. Heart Assoc. 2019, 8, e013543. [Google Scholar] [CrossRef]
- Casula, M.; Olmastroni, E.; Gazzotti, M.; Galimberti, F.; Zambon, A.; Catapano, A.L. Omega-3 polyunsaturated fatty acids supplementation and cardiovascular outcomes: Do formulation, dosage, and baseline cardiovascular risk matter? An updated meta-analysis of randomized controlled trials. Pharmacol. Res. 2020, 160, 105060. [Google Scholar] [CrossRef]
- Lombardi, M.; Chiabrando, J.G.; Vescovo, G.M.; Bressi, E.; Del Buono, M.G.; Carbone, S.; Koenig, R.A.; Van Tassell, B.W.; Abbate, A.; Biondi-Zoccai, G.; et al. Impact of Different Doses of Omega-3 Fatty Acids on Cardiovascular Outcomes: A Pairwise and Network Meta-analysis. Curr. Atheroscler. Rep. 2020, 22, 1–10. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Colletti, A.; Bajraktari, G.; Descamps, O.; Djuric, D.M.; Ezhov, M.; Fras, Z.; Katsiki, N.; Langlois, M.; Latkovskis, G.; et al. Lipid lowering nutraceuticals in clinical practice: Position paper from an International Lipid Expert Panel. Arch. Med. Sci. 2017, 13, 965–1005. [Google Scholar] [CrossRef]
- Penson, P.E.; Banach, M. Natural compounds as anti-atherogenic agents: Clinical evidence for improved cardiovascular outcomes. Atherosclerosis 2021, 316, 58–65. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Colletti, A.; von Haehling, S.; Vinereanu, D.; Bielecka-Dabrowa, A.; Sahebkar, A.; Toth, P.P.; Reiner, Ž.; Wong, N.D.; Mikhailidis, D.P.; et al. Nutraceutical support in heart failure: A position paper of the International Lipid Expert Panel (ILEP). Nutr. Res. Rev. 2020, 33, 155–179. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; de Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the primary prevention of cardiovascular disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef] [PubMed]
- Siscovick, D.S.; Barringer, T.A.; Fretts, A.M.; Wu, J.H.Y.; Lichtenstein, A.H.; Costello Rebecca, B.; Kris-Etherton, P.M.; Jacobson, T.A.; Engler, M.B.; Alger, H.M.; et al. Omega-3 polyunsaturated fatty acids (fish oil) supplementation and the prevention of clinical cardiovascular disease. A science advisory from the American Heart Association. Circulation 2017, 135, e867–e884. [Google Scholar] [CrossRef]
- Sherratt, S.C.R.; Lero, M.; Mason, R.P. Are dietary fish oil supplements appropriate for dyslipidemia management? A review of the evidence. Curr. Opin. Lipidol. 2020, 31, 94–100. [Google Scholar] [CrossRef]
- Hilleman, D.E.; Wiggins, B.S.; Bottorff, M.B. Critical Differences between Dietary Supplement and Prescription Omega-3 Fatty Acids: A Narrative Review. Adv. Ther. 2020, 37, 656–670. [Google Scholar] [CrossRef] [Green Version]
- Albert, B.B.; Derraik, J.; Cameron-Smith, D.; Hofman, P.L.; Tumanov, S.; Villas-Boas, S.; Garg, M.L.; Cutfield, W.S. Fish oil supplements in New Zealand are highly oxidised and do not meet label content of n-3 PUFA. Sci. Rep. 2015, 5, srep07928. [Google Scholar] [CrossRef] [Green Version]
- Hilleman, D.; Smer, A. Prescription Omega-3 Fatty Acid Products and Dietary Supplements Are Not Interchangeable. Manag. Care 2016, 25, 46–52. [Google Scholar]
- Rautiainen, S.; Wang, L.; Lee, I.-M.; Manson, J.E.; Gaziano, J.M.; Buring, J.E.; Sesso, H.D. Multivitamin use and the risk of hypertension in a prospective cohort study of women. J. Hypertens. 2016, 34, 1513–1519. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Li, Y.; Zhu, K.; Dong, Y.-M.; Sun, C.-H. Effects of supplementation with multivitamin and mineral on blood pressure and C-reactive protein in obese Chinese women with increased cardiovascular disease risk. Asia Pac. J. Clin. Nutr. 2009, 18, 121–130. [Google Scholar]
- Li, K.; Liu, C.; Kuang, X.; Deng, Q.; Zhao, F.; Li, D. Effects of Multivitamin and Multimineral Supplementation on Blood Pressure: A Meta-Analysis of 12 Randomized Controlled Trials. Nutrients 2018, 10, 1018. [Google Scholar] [CrossRef] [Green Version]
- Poorolajal, J.; Zeraati, F.; Soltanian, A.R.; Sheikh, V.; Hooshmand, E.; Maleki, A. Oral potassium supplementation for management of essential hypertension: A meta-analysis of randomized controlled trials. PLoS ONE 2017, 12, e0174967. [Google Scholar] [CrossRef]
- Filippini, T.; Naska, A.; Kasdagli, M.; Torres, D.; Lopes, C.; Carvalho, C.; Moreira, P.; Malavolti, M.; Orsini, N.; Whelton, P.K.; et al. Potassium Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2020, 9, e015719. [Google Scholar] [CrossRef]
- Park, S.-Y.; Murphy, S.P.; Wilkens, L.R.; Henderson, B.E.; Kolonel, L.N. Multivitamin Use and the Risk of Mortality and Cancer Incidence: The Multiethnic Cohort Study. Am. J. Epidemiol. 2011, 173, 906–914. [Google Scholar] [CrossRef] [Green Version]
- Sesso, H.D.; Christen, W.G.; Bubes, V.; Smith, J.P.; MacFadyen, J.; Schvartz, M.; Manson, J.E.; Glynn, R.J.; Buring, J.E.; Gaziano, J.M. Multivitamins in the prevention of cardiovascular disease in men: The Physicians’ Health Study II randomized controlled trial. JAMA 2012, 308, 1751–1760. [Google Scholar] [CrossRef]
- Albert, C.M.; Cook, N.R.; Gaziano, J.M.; Zaharris, E.; MacFadyen, J.; Danielson, E.; Buring, J.E.; Manson, J.E. Effect of folic acid and B-vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: A randomized trial. JAMA 2008, 17, 2027–2036. [Google Scholar] [CrossRef] [Green Version]
- Galan, P.; Kesse-Guyot, E.; Czernichow, S.; Briancon, S.; Blacher, J.; Hercberg, S. Effects of B vitamins and omega 3 fatty acids on cardiovascular diseases: A randomised placebo controlled trial. BMJ 2010, 341, c6273. [Google Scholar] [CrossRef] [Green Version]
- Huo, Y.; Li, J.; Qin, X.; Huang, Y.; Wang, X.; Gottesman, R.F.; Tang, G.; Wang, B.; Chen, D.; He, M.; et al. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: The CSPPT randomized clinical trial. JAMA 2015, 13, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Choi, J.; Kwon, S.Y.; McEvoy, J.W.; Blaha, M.J.; Blumenthal, R.S.; Guallar, E.; Zhao, D.; Michos, E.D. Association of multivitamin and mineral supplementation and risk of cardiovascular disease. A systematic review and meta-analysis. Circ. Cardiovasc. Qual. Outcomes 2018, 11, e004224. [Google Scholar] [CrossRef]
- Khan, S.U.; Khan, M.U.; Riaz, H.; Valavoor, S.; Zhao, D.; Vaughan, L.; Okunrintemi, V.; Riaz, I.B.; Khan, M.S.; Kaluski, E.; et al. Effects of nutritional supplements and dietary interventions on cardiovascular outcomes: An umbrella review and evidence map. Ann. Intern. Med. 2019, 171, 190–198. [Google Scholar] [CrossRef]
- Fortmann, S.P.; Burda, B.U.; Senger, C.A.; Lin, J.S.; Whitlock, E.P. Vitamin, mineral, and multivitamin supplements for the primary prevention of cardiovascular disease and cancer: A systematic evidence review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2013, 159, 824–834. [Google Scholar] [CrossRef]
- Sunkara, A.; Raizner, A. Supplemental Vitamins and Minerals for Cardiovascular Disease Prevention and Treatment. Methodist Debakey Cardiovasc. J. 2019, 15, 179–184. [Google Scholar] [PubMed]
- Franco, R.; Casanovas, B.; Camps, J.; Navarro, G.; Martínez-Pinilla, E. Antioxidant supplements versus health benefits of brief/intermittent exposure to potentially toxic physical or chemical agents. Curr. Issues Mol. Biol. 2021, 43, 650–664. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Anil Kumar, N.A.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Mandecka, A.; Czekajło, A.; Madalińska, M.; Różańska, D.; Kłaniewski, T.; Szuba, A.; Regulska-Ilow, B. The use of antioxidant vitamin supplements among oncological patients. Adv. Clin. Exp. Med. 2018, 27, 1365–1369. [Google Scholar] [CrossRef] [PubMed]
- Patti, A.M.; Al-Rasadi, K.; Giglio, R.V.; Nikolic, D.; Mannina, C.; Castellino, G.; Chianetta, R.; Banach, M.; Cicero, A.F.; Lippi, G.; et al. Natural approaches in metabolic syndrome management. Arch. Med. Sci. 2018, 14, 422–441. [Google Scholar] [CrossRef] [PubMed]
- Momtazi-Borojeni, A.; Katsiki, N.; Pirro, M.; Banach, M.; Rasadi, K.A.; Sahebkar, A. Dietary natural products as emerging lipoprotein(a)-lowering agents. J. Cell. Physiol. 2019, 234, 12581–12594. [Google Scholar] [CrossRef]
- Lee, I.-M.; Cook, N.; Gaziano, J. Vitamin E in the Primary Prevention of Cardiovascular Disease and Cancer. The Women’s Health Study: A Randomized Controlled Trial. ACC Curr. J. Rev. 2005, 14, 10–11. [Google Scholar] [CrossRef]
- Lonn, E.; Bosch, J.; Yusuf, S.; Sheridan, P.; Pogue, J.; Arnold, J.M.O.; Ross, C.; Arnold, A.; Sleight, P.; Probstfield, J.; et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: A randomized controlled trial. JAMA 2005, 293, 1338–1347. [Google Scholar]
- Wang, T.; Xu, L. Circulating Vitamin E Levels and Risk of Coronary Artery Disease and Myocardial Infarction: A Mendelian Randomization Study. Nutrients 2019, 11, 2153. [Google Scholar] [CrossRef] [Green Version]
- Vivekananthan, D.P.; Penn, M.S.; Sapp, S.K.; Hsu, A.; Topol, E.J. Use of antioxidant vitamins for the prevention of cardiovascular disease: Meta-analysis of randomised trials. Lancet 2003, 361, 2017–2023. [Google Scholar] [CrossRef]
- Loffredo, L.; Perri, L.; Di Castelnuovo, A.; Iacoviello, L.; De Gaetano, G.; Violi, F. Supplementation with vitamin E alone is associated with reduced myocardial infarction: A meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 354–363. [Google Scholar] [CrossRef]
- Moyer, V.A.; U.S. Preventive Services Task Force. Vitamin, mineral, and multivitamin supplements for the primary prevention of cardiovascular disease and cancer: U.S. Preventive services Task Force recommendation statement. Ann. Intern. Med. 2014, 160, 558–564. [Google Scholar] [CrossRef] [Green Version]
- Guallar, E.; Stranges, S.; Mulrow, C.; Appel, L.J.; Miller, E.R. Enough Is Enough: Stop Wasting Money on Vitamin and Mineral Supplements. Ann. Intern. Med. 2013, 159, 850–851. [Google Scholar] [CrossRef]
- Vernieri, C.; Nichetti, F.; Raimondi, A.; Pusceddu, S.; Platania, M.; Berrino, F.; de Braud, F. Diet and supplements in cancer prevention and treatment: Clinical evidences and future perspectives. Crit. Rev. Oncol. Hematol. 2018, 123, 57–73. [Google Scholar] [CrossRef]
- Gaziano, J.M.; Glynn, R.J.; Christen, W.G.; Kurth, T.; Belanger, C.; MacFadyen, J.; Bubes, V.; Manson, J.E.; Sesso, H.D.; Buring, J.E. Vitamins E and C in the prevention of prostate and total cancer in men: The Physicians’ Health Study II randomized controlled trial. JAMA 2009, 301, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Klein, E.A.; Thompson, I.; Tangen, C.M.; Lucia, M.S.; Goodman, P.; Minasian, L.M.; Ford, L.G.; Parnes, H.L.; Gaziano, J.M.; Karp, D.D.; et al. Vitamin E and the risk of prostate cancer: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). J. Clin. Oncol. 2012, 30, 7. [Google Scholar] [CrossRef]
- Park, S.J.; Myung, S.K.; Lee, Y.; Lee, Y.J. Effects of vitamin and antioxidant supplements in prevention of bladder cancer: A meta-analysis of randomized controlled trials. J. Korean Med. Sci. 2017, 32, 628–635. [Google Scholar] [CrossRef]
- Omenn, G.S.; Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Glass, A.; Keogh, J.P.; Meyskens, F.L.; Valanis, B.; Williams, J.H.; et al. Effects of a Combination of Beta Carotene and Vitamin A on Lung Cancer and Cardiovascular Disease. N. Engl. J. Med. 1996, 334, 1150–1155. [Google Scholar] [CrossRef] [Green Version]
- Albanes, D.; Heinonen, O.P.; Taylor, P.R.; Virtamo, J.; Edwards, B.K.; Rautalahti, M.; Hartman, A.M.; Palmgren, J.; Freedman, L.S.; Haapakoski, J.; et al. Alpha-tocopherol and beta-carotene supplements and lung cancer incidence in the alpha-tocopherol, beta-carotene cancer prevention study: Effects of base-line characteristics and study compliance. J. Natl. Cancer Ins. 1996, 88, 1560–1570. [Google Scholar] [CrossRef]
- Middha, P.; Weinstein, S.J.; Männistö, S.; Albanes, D.; Mondul, A.M. β-carotene supplementation and lung cancer incidence in the alpha-tocopherol, beta-carotene cancer prevention study: The role of tar and nicotine. Nicotine Tob. Res. 2019, 21, 1045–1050. [Google Scholar] [CrossRef] [Green Version]
- Narita, S.; Saito, E.; Sawada, N.; Shimazu, T.; Yamaji, T.; Iwasaki, M.; Ishihara, J.; Takachi, R.; Shibuya, K.; Inoue, M.; et al. Dietary consumption of antioxidant vitamins and subsequent lung cancer risk: The Japan Public Health Center-based prospective study. Int. J. Cancer 2018, 142, 2441–2460. [Google Scholar] [CrossRef] [Green Version]
- Cortés-Jofré, M.; Rueda, J.-R.; Asenjo-Lobos, C.; Madrid, E.; Cosp, X.B. Drugs for preventing lung cancer in healthy people. Cochrane Database Syst. Rev. 2020, 2020, CD002141. [Google Scholar] [CrossRef]
- Pais, R.; Dumitraşcu, D.L. Do antioxidants prevent colorectal cancer? A meta-analysis. Rom. J. Intern. Med. 2013, 51, 152–163. [Google Scholar]
- Hercberg, S.; Czernichow, S.; Galan, P. Antioxidant vitamins and minerals in prevention of cancers: Lessons from the SU.VI.MAX study. Br. J. Nutr. 2006, 96, S28–S30. [Google Scholar] [CrossRef] [Green Version]
- Harvie, M. Nutritional Supplements and Cancer: Potential Benefits and Proven Harms. Am. Soc. Clin. Oncol. Educ. Book 2014, e478–e486. [Google Scholar] [CrossRef] [Green Version]
- Gröber, U.; Holzhauer, P.; Kisters, K.; Holick, M.F.; Adamietz, I.A. Micronutrients in Oncological Intervention. Nutrients 2016, 8, 163. [Google Scholar] [CrossRef] [Green Version]
- Goulão, B.; Stewart, F.; Ford, J.; MacLennan, G.; Avenell, A. Cancer and vitamin D supplementation: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018, 107, 652–663. [Google Scholar] [CrossRef]
- Keum, N.; Lee, D.H.; Greenwood, D.C.; Manson, E.; Giovannucci, E. Vitamin D supplementation and total cancer incidence and mortality: A meta-analysis of randomized controlled trials. Ann. Oncol. 2019, 30, 733–743. [Google Scholar] [CrossRef]
- Bjelakovic, G.; Gluud, L.L.; Nikolova, D.; Whitfield, K.; Krstic, G.; Wetterslev, J.; Gluud, C. Vitamin D supplementation for prevention of cancer in adults. Cochrane Database Syst. Rev. 2014, 23, CD007469. [Google Scholar] [CrossRef]
- Shams-White, M.M.; Brockton, P.; Mitrou, D.; Romaguera, D.; Brown, S.; Bender, A.; Kahle, L.L.; Reedy, J. Operationalizing the 2018 world Cancer research Fund/American institute for Cancer research (WCRF/AICR) Cancer prevention recommendations: A standardized scoring system. Nutrients 2019, 11, 1572. [Google Scholar] [CrossRef] [Green Version]
- Poljsak, B.; Milisav, I. The Role of Antioxidants in Cancer, Friends or Foes? Curr. Pharm. Des. 2019, 24, 5234–5244. [Google Scholar] [CrossRef]
- Velicer, C.M.; Ulrich, C.M. Vitamin and mineral supplement use among US adults after cancer diagnosis: A systematic review. J. Clin. Oncol. 2008, 26, 665–673. [Google Scholar] [CrossRef]
- Ostrander, G.K.; Cheng, K.; Wolf, J.C.; Wolfe, M.J. Shark Cartilage, Cancer and the Growing Threat of Pseudoscience. Cancer Res. 2004, 64, 8485–8491. [Google Scholar] [CrossRef] [Green Version]
- Van Gorkom, G.N.; Lookermans, E.L.; Van Elssen, C.H.; Bos, G.M. The Effect of Vitamin C (Ascorbic Acid) in the Treatment of Patients with Cancer: A Systematic Review. Nutrients 2019, 11, 977. [Google Scholar] [CrossRef] [Green Version]
- Kamian, S.; Mafi, A.R.Z. Use of Dietary Supplements in Cancer: A Single-Institution Study. Rep. Radiother. Oncol. 2019, 5, e79566. [Google Scholar] [CrossRef]
- Smith, R.E. The Effects of Dietary Supplements that Overactivate the Nrf2/ARE System. Curr. Med. Chem. 2020, 27, 2077–2094. [Google Scholar] [CrossRef]
- Ambrosone, C.B.; Zirpoli, G.R.; Hutson, A.D.; McCann, W.E.; McCann, S.E.; Barlow, W.E.; Kelly, K.M.; Cannioto, R.; Sucheston-Campbell, L.E.; Hershman, D.L.; et al. Dietary supplement use during chemotherapy and survival outcomes of patients with breast cancer enrolled in a Cooperative Group Clinical Trial (SWOG S0221). J. Clin. Oncol. 2020, 38, 804–814. [Google Scholar] [CrossRef]
- Norman, H.A.; Butrum, R.R.; Feldman, E.; Heber, D.; Nixon, D.; Picciano, M.F.; Rivlin, R.; Simopoulos, A.; Wargovich, M.J.; Weisburger, E.K.; et al. The role of dietary supplements during cancer therapy. J. Nutr. 2003, 133, 3794–3799. [Google Scholar] [CrossRef] [Green Version]
- Zirpoli, G.R.; Brennan, P.; Hong, C.-C.; McCann, S.E.; Ciupak, G.; Davis, W.; Unger, J.M.; Budd, G.T.; Hershman, D.L.; Moore, H.C.; et al. Supplement use during an intergroup clinical trial for breast cancer (S0221). Breast Cancer Res. Treat. 2013, 137, 903–913. [Google Scholar] [CrossRef] [Green Version]
- Xing, S.; Sharp, L.; Touchette, D. Weight loss drugs and lifestyle modification: Perceptions among a diverse adult sample. Patient Educ. Couns. 2017, 100, 592–597. [Google Scholar] [CrossRef]
- Cheng, Q.; Shou, L.; Chen, C.; Shi, S.; Zhou, M. Application of ultra-high-performance liquid chromatography coupled with LTQ-Orbitrap mass spectrometry for identification, confirmation and quantitation of illegal adulterated weight-loss drugs in plant dietary supplements. J. Chromatogr. B 2017, 1064, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Semwal, R.B.; Semwal, D.; Vermaak, I.; Viljoen, A. A comprehensive scientific overview of Garcinia cambogia. Fitoterapia 2015, 102, 134–148. [Google Scholar] [CrossRef]
- White, C.M. Dietary Supplements Pose Real Dangers to Patients. Ann. Pharmacother. 2020, 54, 815–819. [Google Scholar] [CrossRef] [Green Version]
- Končić, M.Z. Getting More Than You Paid For: Unauthorized “Natural” Substances in Herbal Food Supplements on EU Market. Planta Med. 2018, 84, 394–406. [Google Scholar] [CrossRef] [Green Version]
- Wróbel-Harmas, M.; Krysińska, M.; Postupolski, J.; Wysocki, M.J. Food supplement-related risks in the light of internet and RASFF data. Prz. Epidemiol. 2014, 68, 613–619. [Google Scholar]
- Manore, M.M. Dietary Supplements for Improving Body Composition and Reducing Body Weight: Where Is the Evidence? Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 139–154. [Google Scholar] [CrossRef]
- Sharpe, P.A.; Granner, M.L.; Conway, J.M.; Ainsworth, B.E.; Dobre, M. Availability of Weight-Loss Supplements: Results of an Audit of Retail Outlets in a Southeastern City. J. Am. Diet. Assoc. 2006, 106, 2045–2051. [Google Scholar] [CrossRef] [PubMed]
- Onakpoya, I.; Posadzki, P.; Ernst, E. Chromium supplementation in overweight and obesity: A systematic review and meta-analysis of randomized clinical trials. Obes. Rev. 2013, 14, 496–507. [Google Scholar] [CrossRef]
- Tsang, C.; Taghizadeh, M.; Aghabagheri, E.; Asemi, Z.; Jafarnejad, S. A meta-analysis of the effect of chromium supplementation on anthropometric indices of subjects with overweight or obesity. Clin. Obes. 2019, 9, e12313. [Google Scholar] [CrossRef]
- Wharton, S.; Bonder, R.; Jeffery, A.; Christensen, R.A.G. The safety and effectiveness of commonly-marketed natural supplements for weight loss in populations with obesity: A critical review of the literature from 2006 to 2016. Crit. Rev. Food Sci. Nutr. 2019, 60, 1614–1630. [Google Scholar] [CrossRef] [PubMed]
- Moraru, C.; Mincea, M.M.; Frandes, M.; Timar, B.; Ostafe, V. A Meta-Analysis on Randomised Controlled Clinical Trials Evaluating the Effect of the Dietary Supplement Chitosan on Weight Loss, Lipid Parameters and Blood Pressure. Medicina 2018, 54, 109. [Google Scholar] [CrossRef] [Green Version]
- Esteghamati, A.; Mazaheri, T.; Rad, M.V.; Noshad, S. Complementary and Alternative Medicine for the Treatment of Obesity: A Critical Review. Int. J. Endocrinol. Metab. 2015, 13, e19678. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Liao, D.; Zou, Y.; Chi, H. The effects of chitosan supplementation on body weight and body composition: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2019, 60, 1815–1825. [Google Scholar] [CrossRef]
- Baladia, E.; Basulto, J.; Manera, M.; Martínez, R.; Calbet, D. Effect of green tea or green tea extract consumption on body weight and body composition; systematic review and meta-analysis. Nutr. Hosp. 2014, 29, 479–490. [Google Scholar] [PubMed]
- Lin, Y.; Shi, D.; Su, B.; Wei, J.; Găman, M.-A.; Macit, M.S.; Nascimento, I.J.B.D.; Guimaraes, N.S. The effect of green tea supplementation on obesity: A systematic review and dose–response meta-analysis of randomized controlled trials. Phytother. Res. 2020, 34, 2459–2470. [Google Scholar] [CrossRef] [PubMed]
- Lunsford, K.E.; Bodzin, A.S.; Reino, D.C.; Wang, H.L.; Busuttil, R.W. Dangerous dietary supplements: Garcinia cambogia-associated hepatic failure requiring transplantation. World J. Gastroenter. 2016, 22, 10071–10076. [Google Scholar] [CrossRef]
- Willoughby, D.; Hewlings, S.; Kalman, D. Body Composition Changes in Weight Loss: Strategies and Supplementation for Maintaining Lean Body Mass, a Brief Review. Nutrients 2018, 10, 1876. [Google Scholar] [CrossRef] [Green Version]
- Onakpoya, I.; Hung, S.K.; Perry, R.; Wider, B.; Ernst, E. The Use of Garcinia Extract (Hydroxycitric Acid) as a Weight loss Supplement: A Systematic Review and Meta-Analysis of Randomised Clinical Trials. J. Obes. 2010, 2011, 509038. [Google Scholar] [CrossRef] [Green Version]
- Golzarand, M.; Omidian, M.; Toolabi, K. Effect of Garcinia cambogia supplement on obesity indices: A systematic review and dose-response meta-analysis. Complement. Ther. Med. 2020, 52, 102451. [Google Scholar] [CrossRef]
- Ríos-Hoyo, A.; Gutiérrez-Salmeán, G. New Dietary Supplements for Obesity: What We Currently Know. Curr. Obes. Rep. 2016, 5, 262–270. [Google Scholar] [CrossRef]
- Stohs, S.J. Safety, efficacy, and mechanistic studies regarding Citrus aurantium (bitter orange) extract and p-Synephrine. Phytother. Res. 2017, 3, 1463–1474. [Google Scholar] [CrossRef] [Green Version]
- Crescioli, G.; Lombardi, N.; Bettiol, A.; Marconi, E.; Risaliti, F.; Bertoni, M.; Ippolito, F.M.; Maggini, V.; Gallo, E.; Firenzuoli, F.; et al. Acute liver injury following Garcinia cambogia weight-loss supplementation: Case series and literature review. Intern. Emerg. Med. 2018, 13, 857–872. [Google Scholar] [CrossRef]
- Petróczi, A.; Ocampo, J.A.V.; Shah, I.; Jenkinson, C.M.C.; New, R.; James, R.A.; Taylor, G.; Naughton, D.P. Russian roulette with unlicensed fat-burner drug 2,4-dinitrophenol (DNP): Evidence from a multidisciplinary study of the internet, bodybuilding supplements and DNP users. Subst. Abus. Treat. Prev. Policy 2015, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the debate for a regulatory framework. Br. J. Clin. Pharmacol. 2018, 84, 659–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makowska, M.; Jasiński, Ł. A discussion of the unresolved 2016/17 plans for regulating the Polish dietary supplements market. Health Policy 2019, 123, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Kennett, G. Time for change: Stepping up the FDA’s regulation of dietary supplements to promote consumer safety and awareness. J. Law Health 2019, 33, 47–78. [Google Scholar]
- Liver Tox. Clinical and Research Information on Drug-Induced Injury. Green Tea. National Institute of Diabetes and Digestive and Kidney Diseases; 2018. Available online: https://www.ncbi.nlm.nih.gov/books/ (accessed on 7 December 2020).
- Pillitteri, J.L.; Shiffman, S.; Rohay, J.M.; Harkins, A.M.; Burton, S.L.; Wadden, T.A. Use of Dietary Supplements for Weight Loss in the United States: Results of a National Survey. Obesity 2008, 16, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Geller, A.I.; Shehab, N.; Weidle, N.J.; Lovegrove, M.C.; Wolpert, B.J.; Timbo, B.B.; Mozersky, R.P.; Budnitz, D.S. Emergency department visits for adverse events related to dietary supplements. N. Engl. J. Med. 2015, 337, 1531–1540. [Google Scholar] [CrossRef] [PubMed]
- Inayat, F.; Majeed, C.N.; Ali, N.S.; Hayat, M.; Vasim, I. The risky side of weight-loss dietary supplements: Disrupting arrhythmias causing sudden cardiac arrest. BMJ Case Rep. 2018, 11, e227531. [Google Scholar] [CrossRef]
- Flis, P.; Mehrholz, D.; Nowicki, R.; Barańska-Rybak, W. Slim figure for high price. Urticaria due to weight loss products and performance enhancers—A review of three cases. Med. Ogólna Nauk. Zdrowiu 2015, 21, 369–371. [Google Scholar] [CrossRef]
- Regulation (EC) No 1925/2006 of the European Parliament and of the Council of 20 December 2006 on the addition of vitamins and minerals and of certain other substances to foods. Off. J. Eur. Union 2006, L 404, 26–38.
- Gaudiano, M.C.; Manna, L.; Bartolomei, M.; Rodomonte, A.L.; Bertocchi, P.; Antoniella, E.; Romanini, L.; Alimonti, S.; Rufini, L.; Valvo, L. Health risks related to illegal and on-line sale of drugs and food supplements: Results of a survey on marketed products in Italy from 2011 to 2013. Ann. Ist. Super Sanita 2016, 52, 128–132. [Google Scholar]
- Wiergowski, M.; Galer-Tatarowicz, K.; Nowak-Banasik, L.; Rutkowska, J.; Kucułyma, G.; Waldman, W.; Chodorowski, Z.; Jankowski, Z.; Anand, J.S. Hazard for human health and life by unintentional use of synthetic sibutramine, which was sold as Chinese herbal product “meizitanc”. Prz. Lek. 2007, 64, 268–272. [Google Scholar]
- Łukasik-Grębocka, M.; Sommerfeld, K.; Teżyk, A.; Zielńska-Psuja, B. Acute poisoning with weight-loss dietary supplement falsely suggesting the use of amphetamine. Prz. Lek. 2013, 70, 1–4. [Google Scholar]
- Cohen, P.A.; Bloszies, C.; Yee, C.; Gerona, R. An amphetamine isomer whose efficacy and safety in humans has never been studied, β-methylphenylethylamine (BMPEA), is found in multiple dietary supplements. Drug Test. Anal. 2015, 8, 328–333. [Google Scholar] [CrossRef]
- Yun, J.; Kwon, K.; Choi, J.; Jo, C.-H. Monitoring of the amphetamine-like substances in dietary supplements by LC-PDA and LC–MS/MS. Food Sci. Biotechnol. 2017, 26, 1185–1190. [Google Scholar] [CrossRef]
- Helle, C.; Sommer, A.K.; Syversen, P.V.; Lauritzen, F. Doping substances in dietary supplements. Tidsskr. Nor. Legeforening 2019, 139. [Google Scholar] [CrossRef] [Green Version]
- Crawford, C.; Saldanha, L.; Costello, R.; Deuster, P.A. Dietary Supplements for Musculoskeletal Pain: Science Versus Claims. J. Spéc. Oper. Med. 2018, 18, 110–114. [Google Scholar]
- Escamilla-Ocañas, C.E.; Cantú-Martinez, L.; Martínez, H.R.; Cámara-Lemarroy, C.R. Acute toxic leukoencephalopathy associated with a non-prescription weight loss supplement: A report of two cases. Neurol. Sci. 2017, 38, 2199–2201. [Google Scholar] [CrossRef]
- Crawford, C. A public health issue: Dietary supplements promoted for brain health and cognitive performance. J. Altern. Complement. Med. 2020, 26, 265–272. [Google Scholar] [CrossRef]
- Cohen, P.A.; Bass, S. Injecting Safety into Supplements—Modernizing the Dietary Supplement Law. N. Engl. J. Med. 2019, 381, 2387–2389. [Google Scholar] [CrossRef] [PubMed]
- Czepielewska, E.; Makarewicz-Wujec, M.; Różewski, F.; Wojtasik, E.; Kozłowska-Wojciechowska, M. Drug adulteration of food supplements: A threat to public health in the European Union? Regul. Toxicol. Pharmacol. 2018, 97, 98–102. [Google Scholar] [CrossRef]
- Act of 25 August 2006 on food and nutrition safety. Pol. J. Laws 2006, 171, 14365–14378, as amended.
- Act of 6 September 2001 Pharmaceutical Law. Pol. J. Laws 2001, 126, 9811–9844, as amended.
- Chief Sanitary Inspectorate. Available online: https://www.gis.gov.pl (accessed on 12 January 2021).
- Regulation (EU) no 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers. Off. J. Eur. Union 2011, L 304, 18–63.
- Koo, K.; Aro, T.; Matlaga, B.R. Buyer Beware: Evidence-Based Evaluation of Dietary Supplements for Nephrolithiasis. J. Endourol. 2020, 34, 702–707. [Google Scholar] [CrossRef]
- Lee, A.; Vásquez, L.J.; Wong, W.C.; Shin, J. Evaluation of dietary supplement advertisements in popular Spanish, Chinese, and Korean media outlets: A cross sectional study. BMC Nutr. 2015, 1, 43. [Google Scholar] [CrossRef] [Green Version]
- Wierzejska, R. Whether the advertisement of dietary supplements is objective source of data about their impact on health? Analysis of broadcasting advertisements in the terms of the food law. Wiad. Lek. 2016, 69, 14–18. [Google Scholar]
- Sirico, F.; Miressi, S.; Castaldo, C.; Spera, R.; Montagnani, S.; Di Meglio, F.; Nurzynska, D. Habits and beliefs related to food supplements: Results of a survey among Italian students of different education fields and levels. PLoS ONE 2018, 13, e0191424. [Google Scholar] [CrossRef]
- Blendon, R.J.; Benson, J.M.; Botta, M.D.; Weldon, K.J. Users’ Views of Dietary Supplements. JAMA Intern. Med. 2013, 173, 74–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waddington, F.; Naunton, M.; Kyle, G.; Thomas, J.; Cooper, G.; Waddington, A. A systematic review of community pharmacist therapeutic knowledge of dietary supplements. Int. J. Clin. Pharm. 2015, 37, 439–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cellini, M.; Attipoe, S.; Seales, P.; Gray, R.; Ward, A.; Stephens, M.; Deuster, P.A. Dietary supplements: Physician knowledge and adverse event reporting. Med. Sci. Sports Exerc. 2013, 45, 23–28. [Google Scholar] [CrossRef] [PubMed]
- National Broadcasting Council (Krajowa Rada Radiofonii i Telewizji). Available online: http://www.krrit.gov.pl/Data/Files/_public/Portals/0/samoregulacja-nadawcow/porozumienie-nadawcow---skan.pdf (accessed on 6 September 2020).
Authors | Study Design | Participants | Type of Dietary Supplements | Duration of the Study | Results |
---|---|---|---|---|---|
The ASCEND Study Collaborative Group 2018 [22] | RCT | 15,480 patients with diabetes aged ≥ 40 years | Omega-3 fatty acids | Mean: 7.4 years | No effect on serious vascular events |
Manson et al., 2019 [23] | RCT | 25,871 patients aged ≥ 50 years | Omega-3 fatty acids | Median: 5.3 years | No effect on cardiovascular events |
Bhatt et al., 2019 [24] | RCT | 8179 patients with cardiovascular diseases or diabetes, median age: 64 years | Purified EPA ethyl ester (icosapent ethyl) | Median: 4.9 years | 25% reduction in primary endpoints: cardiovascular death, non-fatal MI, non-fatal stroke, coronary revascularization, unstable angina; 26% reduction in secondary endpoints: cardiovascular death, non-fatal MI, non-fatal stroke |
Nicholls et al., 2020 [27] | RCT | 13,078 patients with high cardiovascular risk, mean age: 62.5 years | Omega-3 fatty acids | Over 3 years | No effect on major cardiovascular events |
Rizos et al., 2012 [29] | Systematic review and meta-analysis, 20 RCTs | 68,680 patients aged 49–70 years | Omega-3 fatty acids | Median: 2.0 years | No effect on cardiac death, MI, and stroke |
Kotwal et al., 2012 [30] | Meta-analysis, 20 RCTs | 62,851 patients in primary and secondary prevention settings | Omega-3 fatty acids | 6 months–6 years | 14% reduction in vascular death; no effect on cardiovascular events, coronary events, cerebrovascular events, arrhythmia |
Kwak et al., 2012 [31] | Meta-analysis, 14 RCTs | 20,485 patients with cardiovascular diseases aged 40–80 years | Omega-3 fatty acids | 1.0–4.7 years | No effect on cardiovascular events, MI, congestive heart failure, and stroke |
Casula et al., 2013 [32] | Meta-analysis, 11 RCTs | 15,348 patients with cardiovascular diseases | Omega-3 fatty acids | 1.0–3.5 years | 32% reduction in cardiac death, 25% reduction in MI; no effect on stroke |
Wen et al., 2014 [33] | Meta-analysis, 14 RCTs | 32,656 patients with CHD | Omega-3 fatty acids | <3 months–4.6 years | 12% reduction in death from cardiac causes, 14% reduction in sudden cardiac death |
Abdelhamid et al., 2018 [35] | Meta-analysis, 79 RCTs | 112,059 adults in primary and secondary prevention settings | Omega-3 fatty acids | 12–72 months | Little or no effect on cardiovascular mortality, CHD mortality, cardiovascular events, stroke, arrhythmia |
Aung et al., 2018 [34] | Meta-analysis, 10 RCTs | 77,917 high-risk patients | Omega-3 fatty acids | 1.0–6.2 years | No effect on CHD mortality, non-fatal MI, CHD events, major vascular events |
Mazidi et al., 2019 [36] | Meta-analysis, 13 RCTs | 127,447 patients | Omega-3 fatty acids | No data | 9% reduction in CHD death, 5% reduction in major vascular event, 11% reduction in non-fatal MI, 5% reduction in all-cause mortality |
Hu et al., 2019 [37] | Meta-analysis, 13 RCTs | 127,447 patients, mean age: 64.3 years | Omega-3 fatty acids | 5 years | 8% reduction in MI, 8% reduction in CHD death, 5% reduction in total CHD, 7% reduction in CVD death, 3% reduction in total CVD |
Casula et al., 2020 [38] | Meta-analysis, 16 RCTs | 81,073 participants | Omega-3 fatty acids | ≥1 year | 9% reduction in cardiac mortality, 10% reduction in major adverse cardiovascular events, 17% reduction in MI; more benefits were seen in secondary prevention |
Lombardi et al., 2020 [39] | Meta-analysis, 14 studies | 125,763 patients | Omega-3 fatty acids | Median: 4.6 years | 21% reduction in cardiac death, 29% reduction in MI, 26% reduction in coronary revascularization, 27% reduction in unstable angina, and 22% reduction in major vascular events—for high-dose omega-3 fatty acids (> 1 g per day); 49% increase in bleeding events and 35% increase in atrial fibrillation events—for high-dose omega-3 fatty acids (> 1 g per day) |
Wang et al., 2009 [51] | RCT | 128 obese women aged 18–50 years with hypertension or/and hyperglycemia, and/or hyperlipemia | Multivitamins and minerals | 26 weeks | Significant reduction of systolic and diastolic BP |
Park et al., 2011 [55] | Cohort study | 182,099 patients aged 45–75 years | Multivitamins | Mean: 11 years | No effect on mortality from cardiovascular diseases |
Sesso et al., 2012 [56] | RCT | 14,641 males aged ≥ 50 years | Multivitamins | 10.7–13.3 years | No effect on cardiovascular events, MI, stroke, cardiovascular disease mortality |
Rautiainen et al., 2016 [50] | Prospective cohort study | 28,157 women aged ≥ 45 years free of hypertension at baseline | Multivitamins | Mean: 11.5 years | No association with the risk of hypertension |
Albert et al., 2008 [57] | RCT | 5442 women with a history of cardiovascular diseases or three or more coronary risk factors aged ≥ 40 years | Folic acid, vitamin B6, vitamin B12 | 7.3 years | No significant effect on risk of major cardiovascular events |
Galan et al., 2010 [58] | RCT | 2501 patients with a history of ischemic heart disease or stroke, mean age: 60.9 years | Folic acid, vitamin B6, vitamin B12 | Median: 4.7 years | No significant effect on risk of major cardiovascular events |
Huo et al., 2015 [59] | RCT | 20,702 patients with hypertension, without a history of stroke or myocardial infarction aged 45–75 years | Enalapril, folic acid | Median: 4.5 years | 21% reduction in first stroke and 20% reduction in composite cardiovascular events |
Lee et al., 2005 [69] | RCT | 39,876 healthy women aged ≥ 45 years | Vitamin E | Mean: 10.1 years | No effect on MI, stroke; 24% reduction in cardiovascular death |
Lonn et al., 2005 [70] | RCT | 9541 patients with vascular disease or diabetes | Vitamin E | Median: 7.0 years | 13% increase in heart failure |
Wang et al., 2019 [71] | Mendelian randomization study | 7781 participants | Vitamin E | No data | Genetically determined higher blood levels of vitamin E increases the risk of CAD and MI, increases the concentration of LDL cholesterol and triglycerides, decreases HDL cholesterol concentration |
Schwingshackl et al., 2017 [13] | Meta-analysis, 49 RCTs | 287,304 participants | Vitamins and minerals | 1.0–11.2 years | 12% reduction in cardiovascular mortality with vitamin E supplementation; no beneficial effect from other vitamin/mineral supplementation |
Kim et al., 2018 [60] | Meta-analysis, 18 clinical trials and prospective cohort studies | 2,019,862 participants | Multivitamins and minerals | 5.0–19.1 years | No effect on cardiovascular mortality, CHD mortality, stroke mortality, stroke incidence |
Li et al., 2018 [52] | Meta-analysis, 12 RCTs | 23,207 patients aged 21.9–64.7 years | Multivitamins and minerals | 1.0–86.4 months | No effect on risk of hypertension; significant reduction of systolic BP in subjects with hypertension |
Khan et al., 2019 [61] | An umbrella review: 9 systematic review, 4 RCTs, 105 meta-analyses | 992,129 participants | Multivitamins and antioxidants | No data | No effect on cardiovascular diseases outcomes |
Loffredo et al., 2015 [73] | Meta-analysis, 16 RCTs | Up to 39,876 patients aged > 50 years | Antioxidants | 0.5–9.4 years | 18% reduction in MI with vitamin E supplementation |
Vivekananthan et al., 2003 [72] | Meta-analysis, 32 RCTs | 81,788 patients | Vitamin E, beta- carotene | 1.4–12.0 years | No effect from supplementation of vitamin E on cardiovascular mortality, cerebrovascular events; significant increase in cardiovascular death with beta-carotene supplementation |
Poorolajal et al., 2017 [53] | Meta-analysis, 23 RCTs | 1213 patients with hypertension, mean age: 19–75 years | Potassium | 4–52 weeks | Significant reduction of systolic and diastolic BP |
Filippini et al., 2020 [54] | Meta-analysis, 32 RCTs | 1764 patients mainly with hypertension aged 18–79 years | Potassium | 4–15 weeks | Significant reduction of systolic and diastolic BP |
Authors | Study Design | Participants | Type of Dietary Supplements | Duration of the Study | Results |
---|---|---|---|---|---|
Omenn et al., 1996 [80] | RCT | 18,314 smokers | Beta-carotene and vitamin A | Mean: 4 years | 28% increase in lung cancer incidence |
Albanes et al., 1996 [81] | RCT | 29,133 smokers aged 50–69 years | Beta-carotene, vitamin E | Median: 6.1 years | 16% increase in lung cancer incidence with beta-carotene supplementation; no effect on lung cancer incidence with vitamin E supplementation. |
Lee et al., 2005 [69] | RCT | 39,876 healthy women aged ≥ 45 years | Vitamin E | Mean: 10.1 years | No effect on cancer incidence |
Gaziano et al., 2009 [77] | RCT | 14,641 men aged ≥ 50 years | Vitamin E, vitamin C | Mean: 8.0 years | No effect on cancer incidence |
Klein et al., 2011 [78] | RCT | 34,887 men aged ≥50 years | Vitamin E, selenium | 7.0–12.0 years | 17% increase in prostate cancer incidence with vitamin E supplementation; no effect on prostate cancer incidence with selenium supplementation |
Park et al., 2011 [55] | Cohort study | 182,099 patients aged 45–75 years | Multivitamins | Mean: 11 years | No effect on cancer incidence |
Ambrosone et al., 2019 [99] | Prospective study | 1134 patients with breast cancer | Antioxidants, multivitamins vitamin B12, iron, | 6 months | 41% increased risk of recurrence with antioxidant supplementation both before and during chemotherapy; no effect of multivitamins on survival outcomes; 2-fold decrease in the probability of disease-free survival for vitamin B12 supplementation both before and during chemotherapy; 79% higher risk of recurrence with iron supplementation both before and during chemotherapy |
Narita et al., 2018 [83] | Prospective study | 79,705 participants | Retinol, vitamin C, vitamin E, alfa- carotene, and beta-carotene | Mean: 5 years | 26% increase in lung cancer incidence in men with higher dietary retinol intake; no associations with lung cancer incidence for vitamin C, vitamin E, alfa-carotene and beta-carotene intake |
Van Gorkom et al., 2019 [96] | A systematic review, 19 trials | No data | Vitamin C | 1 week–12 months | No positive effect of vitamin C supplementation on cancer patients |
Pais et al., 2013 [85] | Meta-analysis, 20 RCTs | 268,590 participants | Antioxidants | No data | No effect on colorectal cancer incidence with antioxidant supplementation |
Park et al., 2017 [79] | Meta-analysis, 14 RCTs | 147,383 participants | Antioxidants | 1.0–13.0 years | No effect on bladder cancer incidence with antioxidant supplementation |
Cortés-Jofré et al., 2020 [84] | Meta-analysis, 12 RCTs | 733–212,314 participants 35–84 years | Antioxidants | 2.0–12.0 years | No beneficial effect on lung cancer incidence for combination of vitamins A, C, E + selenium + zinc supplementation; 84% increase in lung cancer incidence in women with vitamin C supplementation; 10% increase in lung cancer incidence in smokers and people with history of asbestos exposure with vitamin A supplementation |
Bjelakovic et al., 2014 [91] | Meta-analysis, 18 RCTs | 50,623 participants | Vitamin D | Mean: 6 years | No effect on cancer incidence; 12% reduction in cancer death. |
Goulao et al., 2018 [89] | Meta-analysis, 30 RCTs | 18,808 participants | Vitamin D | Median: 1,0–6.2 years | No effect on cancer incidence and mortality |
Keum et al., 2019 [90] | Meta-analysis, 5–10 RCTs | 6537 cases | Vitamin D | 3–10 years | No effect on cancer incidence; 13% reduction in cancer death |
Authors | Study Design | Participants(n) | Type of Dietary Supplements | Duration of the Study | Results |
---|---|---|---|---|---|
Onakpoya et al., 2013 [110] | Meta-analysis, 20 RCTs | 1038 | Chromium | 8–26 weeks | 0.5 kg more weight loss as compared with placebo |
Tsang et al., 2019 [111] | Meta-analysis, 21 trials | 1316 | Chromium | ≤12 weeks | 0.75 kg more weight loss as compared with placebo |
Moraru et al., 2018 [113] | Meta-analysis, 14 RCTs | 1101 | Chitosan | 4–52 weeks | 1.01 kg more weight loss as compared with placebo |
Huang et al., 2020 [115] | Meta-analysis, 15 RCTs | 1130 | Chitosan | ≥12 weeks | 0.89 kg more weight loss, 0.39 kg/m2 more BMI loss, and 0.69% more body fat loss as compared with placebo |
Baladia et al., 2014 [116] | Meta-analysis, 5 RCTs | 260 | Green tea, green tea extract | 12 weeks | No effect on body weight |
Lin et al., 2020 [117] | Meta-analysis, 22 RCTs | 2357 | Green tea extract | 4–14 weeks | 1.78 kg more weight loss and 0.65 kg/m2 more BMI loss as compared with placebo |
Onakpoya et al., 2011 [120] | Meta-analysis, 12 RCTs | 706 | hydroxycitric acid from Garcinia cambogia | 2–12 weeks | 0.88 kg more weight loss as compared with placebo |
Golzarand et al., 2020 [121] | Meta-analysis, 8 RCTs | 530 | Garcinia cambogia | 8–12 weeks | 1.34 kg more weight loss, 0.99 kg/m2 more BMI loss, and 0.42% more body fat loss, 4.16 cm more loss of waist circumference as compared with placebo |
Stohs 2017 [123] | Review 30 trials | 600 | Citrus aurantium extract | No data | No proven effect on body weight |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wierzejska, R.E. Dietary Supplements—For Whom? The Current State of Knowledge about the Health Effects of Selected Supplement Use. Int. J. Environ. Res. Public Health 2021, 18, 8897. https://doi.org/10.3390/ijerph18178897
Wierzejska RE. Dietary Supplements—For Whom? The Current State of Knowledge about the Health Effects of Selected Supplement Use. International Journal of Environmental Research and Public Health. 2021; 18(17):8897. https://doi.org/10.3390/ijerph18178897
Chicago/Turabian StyleWierzejska, Regina Ewa. 2021. "Dietary Supplements—For Whom? The Current State of Knowledge about the Health Effects of Selected Supplement Use" International Journal of Environmental Research and Public Health 18, no. 17: 8897. https://doi.org/10.3390/ijerph18178897