Spatial Analysis of Citizens’ Environmental Complaints in China: Implications in Environmental Monitoring and Governance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Processing
2.2. Methods
2.2.1. Spatial Autocorrelation and Hot Spot Analysis
2.2.2. Spatial Regression Models
3. Results and Analysis
3.1. Results and Analysis
3.2. Geographic Patterns of Environmental Complaints
3.3. Results of Regression Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MEEC (Ministry of Ecology and Environment of the People’s Republic of China). Report on the State of the Ecology and Environment in China; MEEC (Ministry of Ecology and Environment of the People’s Republic of China): Beijing, China, 2017; pp. 8–40.
- Fu, J.; Geng, Y. Public participation, regulatory compliance and green development in China based on provincial panel data. J. Clean. Prod. 2019, 230, 1344–1353. [Google Scholar] [CrossRef]
- Johnson, T. Environmentalism and NIMBYism in China: Promoting a rules-based approach to public participation. Environ. Politics 2010, 19, 430–448. [Google Scholar] [CrossRef]
- Wu, J.; Xu, M.; Zhang, P. The impacts of governmental performance assessment policy and citizen participation on improving environmental performance across Chinese provinces. J. Clean. Prod. 2018, 184, 227–238. [Google Scholar] [CrossRef]
- Wu, L.; Ma, T.; Bian, Y.; Li, S.; Yi, Z. Improvement of regional environmental quality: Government environmental governance and public participation. Sci. Total Environ. 2020, 717, 137265. [Google Scholar] [CrossRef]
- Li, Z. The Impact of Public Participation on Local Government’s Environmental Governance—An Analysis of Provincial Data 2003–2013. Chin. Public Adm. 2017, 08, 102–108. [Google Scholar]
- Zhang, X.; Geng, G.; Sun, P. Determinants and implications of citizens’ environmental complaint in China: Integrating theory of planned behavior and norm activation model. J. Clean. Prod. 2017, 166, 148–156. [Google Scholar] [CrossRef]
- Kostka, G.; Mol, A.P.J. Implementation and participation in China’s local environmental politics: Challenges and innovations. J. Environ. Policy Plan. 2013, 15, 3–16. [Google Scholar] [CrossRef]
- Zeng, J.; Yuan, M.; Feiock, R. What drives people to complain about environmental issues? An analysis based on panel data crossing provinces of China. Sustainability 2019, 11, 1147. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Ishikawa, M.; Liu, X.; Liu, X.; Hamori, S. The determinants of citizen complaints on environmental pollution: An empirical study from China. J. Clean. Prod. 2011, 19, 1306–1314. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Zhao, K. Antecedents of citizens’ environmental complaint intention in China: An empirical study based on norm activation model. Resour. Conserv. Recycl. 2018, 134, 121–128. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, C. The effect of public participation on environmental governance in China–based on the analysis of pollutants emissions employing a provincial quantification. Sustainability 2018, 10, 2302. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Cai, N.; Yang, C. Impact of Environmental Regulation on Green Growth Index of Industry in China. China Popul. Resour. Environ. 2015, 25, 24–31. [Google Scholar]
- Wang, H. Comparison and selection of environmental regulation policy in China: Based on Bayesian model averaging approach. China Popul. Resour. Environ. 2016, 26, 132–138. [Google Scholar]
- Dasgupta, S.; Wheeler, D. Citizen complaints as environmental indicators: Evidence from China. In PRDEI Working Paper; No.1704; World Bank: Washington, DC, USA, 1996; pp. 1–26. [Google Scholar]
- Weersink, A.; Raymond, M. Environmental regulations impact on agricultural spills and citizen complaints. Ecol. Econ. 2007, 60, 654–660. [Google Scholar] [CrossRef]
- Hadrich, J.C.; Wolf, C.A. Citizen complaints and environmental regulation of Michigan livestock operations. J. Anim. Sci. 2011, 89, 277–286. [Google Scholar] [CrossRef]
- Qi, L.; Kong, W.; Zhao, Y. State Capacity, Civic Association, and Environmental Petition in Current China—An Empirical Analysis of Provincial Panel Data (2003–2010). Chin. Public Adm. 2013, 07, 100–106. [Google Scholar]
- Zeng, J.; Hu, J. Factors Contributing to Environmental Public Participation in China: An Empirical Analysis of Provincial Panel Date (2003–2012). China Popul. Resour. Environ. 2015, 25, 62–69. [Google Scholar]
- Wen, T.; Wang, J.; Ma, Z.; Bi, J. Driving forces behind the Chinese public’s demand for improved environmental safety. Sci. Total Environ. 2017, 603, 237–243. [Google Scholar] [CrossRef]
- Huang, H.; Miller, G.Y. Citizen complaints, regulatory violations, and their implications for swine operations in Illinois. Rev. Agric. Econ. 2006, 28, 89–110. [Google Scholar] [CrossRef]
- Data Center of the Ministry of Environmental Protection of China. Available online: http://datacenter.mep.gov.cn (accessed on 1 January 2017).
- Mitchell, A. The ESRI Guide to GIS Analysis, Volume 2: Spatial Measurements and Statistics; ESRI Press: Redlands, CA, USA, 2005; pp. 147–190. [Google Scholar]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Fu, B. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An introduction to spatial data analysis. In Handbook of Applied Spatial Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 73–89. [Google Scholar]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. In Perspectives on Spatial Data Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 127–145. [Google Scholar]
- Wang, F. Quantitative Methods and Applications in GIS; CRC Press: Boca Raton, FL, USA, 2006; pp. 167–188. [Google Scholar]
- Anselin, L.; Rey, S.J. Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL; GeoDa Press LLC.: Chicago, IL, USA, 2014; pp. 157–280. [Google Scholar]
- Wu, K.; Wang, Y.; Liu, Y.; Zhang, Y. On innovation capitalization: Empirical evidence from Guangzhou, China. Habitat. Int. 2021, 109, 102–323. [Google Scholar] [CrossRef]
- Song, J.; Du, S.; Feng, X.; Guo, L. The relationships between landscape compositions and land surface temperature: Quantifying their resolution sensitivity with spatial regression models. Landsc. Urban Plan. 2014, 123, 145–157. [Google Scholar] [CrossRef]
- Yin, C.; Yuan, M.; Lu, Y.; Huang, Y.; Liu, Y. Effects of urban form on the urban heat island effect based on spatial regression model. Sci. Total Environ. 2018, 634, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L. Exploring Spatial Data with GeoDaTM: A Workbook; Center for Spatially Integrated Social Science: Urbana, IL, USA, 2005; pp. 165–223. [Google Scholar]
- China National Environmental Monitoring Centre. Available online: http://www.cnemc.cn/ (accessed on 19 January 2020).
- Yu, Y.; Yang, X.; Zhang, S. Research on the Characteristics of Time and Space Conversion of China’s Economy from High-speed Growth to High-quality Development. J. Quant. Tech. Econ. 2019, 36, 3–21. [Google Scholar]
- Fan, J.; Wang, Y.; Liang, B. The evolution process and regulation of China’s regional development pattern. Acta Geogr. Sin. 2019, 74, 2437–2454. [Google Scholar]
- Hu, Z.; Miao, C. The Spatiotemporal Pattern of China’s Pollution Industry Transfer and Its Relationship with Pollution Transfer. Soft Sci. 2018, 32, 39–43. [Google Scholar]
- He, C.; Hu, Q. Evolution of Chinese industrial geography since reform and opening-up. Acta Geogr. Sin. 2019, 74, 1962–1979. [Google Scholar]
- Dong, X.; Chi, R. Characteristics of the Temporal and Spatial Pattern of the Economic Disparity and Convergence between different Regions in China. Econ. Geogr. 2020, 40, 11–21. [Google Scholar]
- Xu, X.; Lei, Z.; Dou, Y.; Liu, S. Research on Gap of Balanced Development between the North and the South of China—Analysis Based on “China Balanced Development Index”. China Ind. Econ. 2021, 2, 5–22. [Google Scholar]
- Kan, H.; Chen, R.; Tong, S. Ambient air pollution, climate change, and population health in China. Environ. Int. 2012, 42, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Wu, L.; Xie, Y.; He, J.; Cheng, X.; Wang, T.; Lin, Y. Air pollution in China: Status and spatiotemporal variations. Environ. Pollut. 2017, 227, 334–347. [Google Scholar] [CrossRef]
- Li, L.; Xia, X.; Chen, B.; Sun, L. Public participation in achieving sustainable development goals in China: Evidence from the practice of air pollution control. J. Clean. Prod. 2018, 201, 499–506. [Google Scholar] [CrossRef]
- Fan, H.; Zhao, C.; Yang, Y. A comprehensive analysis of the spatial-temporal variation of urban air pollution in China during 2014–2018. Atmos. Environ. 2020, 220, 117066. [Google Scholar] [CrossRef]
- Sohu News. Henan Villagers Anonymously Reported Pollution and Beatings, and the Squadron Leader of the Environmental Protection Bureau Was an “Inner Ghost”. Available online: https://www.sohu.com/a/449252730_161623 (accessed on 7 February 2021).
Total | Verified | Nonverified | Air | Water | Solid | Noise | Illegal | |
---|---|---|---|---|---|---|---|---|
Moran’s Index | 0.39 | 0.34 | 0.37 | 0.36 | 0.40 | 0.19 | 0.16 | 0.40 |
Expected Index | −2.90 × 10−3 | −2.90 × 10−3 | −2.90 × 10−3 | −2.90 × 10−3 | −2.90 × 10−3 | −2.90 × 10−3 | −2.90 × 10−3 | −2.90 × 10−3 |
Mean | −3.10 × 10−3 | −3.20 × 10−3 | −2.80 × 10−3 | −3.10 × 10−3 | −2.30 × 10−3 | −2.30 × 10−3 | −3.30 × 10−3 | −3.30 × 10−3 |
SD | 3.27 × 10−2 | 3.33 × 10−2 | 3.27 × 10−2 | 3.24 × 10−2 | 3.58 × 10−2 | 3.44 × 10−2 | 3.27 × 10−2 | 3.37 × 10−2 |
Z-score | 11.88 *** | 10.44 *** | 11.26 *** | 11.26 *** | 11.35 *** | 5.55 *** | 5.03 *** | 11.82 *** |
Variable | Min. | Max. | Mean | Std. Dev | Description |
---|---|---|---|---|---|
the total | 0.00 | 254.00 | 19.59 | 22.97 | the total number of complaint cases |
the verified | 0.00 | 159.00 | 14.80 | 16.19 | the verified number of complaint cases |
the nonverified | 0.00 | 95.00 | 4.79 | 8.07 | the nonverified number of complaint cases |
air | 0.00 | 172.00 | 13.13 | 15.64 | the total number of complaint cases of air pollution |
water | 0.00 | 59.00 | 4.84 | 6.68 | the total number of complaint cases of water contamination |
solid | 0.00 | 8.00 | 0.77 | 1.22 | the total number of complaint cases of solid waste pollution |
noise | 0.00 | 36.00 | 3.67 | 4.46 | the total number of complaint cases of noise pollution |
illegal | 0.00 | 87.00 | 7.08 | 9.03 | the total number of complaint cases of illegal production |
POPD | 5.77 | 2501.14 | 436.30 | 337.85 | population density (person/sq.km) |
PerGDP | 1.10 | 20.72 | 5.11 | 2.96 | per capita GDP (10,000 yuan) |
SIP | 15.17 | 71.45 | 46.67 | 9.57 | secondary industry as percentage to GRP (%) |
TIP | 24.17 | 79.65 | 40.99 | 8.70 | tertiary industry as percentage to GRP (%) |
Water | 0.01 | 6.05 | 0.66 | 0.72 | volume of industrial waste water discharged (10,000 tons) |
SO2 | 0.02 | 42.68 | 4.93 | 4.25 | volume of sulphur dioxide emission (tons) |
Soot | 0.09 | 185.99 | 4.88 | 13.91 | volume of industrial soot (dust) emission (tons) |
Tel | 43.00 | 4052.00 | 457.28 | 498.36 | number of subscribers of mobile telephones at year-end (10,000 households) |
Internet | 6.00 | 1205.00 | 89.08 | 118.18 | number of subscribers of internet services (10,000 households) |
Student | 4.79 | 1293.69 | 192.87 | 254.39 | students enrollment of regular institutions of higher education per 10,000 persons |
TEST | The Total | The Verified | The Nonverified | |||
---|---|---|---|---|---|---|
MI/DF | VALUE | MI/DF | VALUE | MI/DF | VALUE | |
Moran’s I (error) | 0.36 | 9.54 *** | 0.28 | 7.67 *** | 0.31 | 8.43 *** |
Lagrange Multiplier (lag) | 1.00 | 69.65 *** | 1.00 | 39.52 *** | 1.00 | 72.00 *** |
Robust LM (lag) | 1.00 | 8.63 *** | 1.00 | 4.07 ** | 1.00 | 11.62 *** |
Lagrange Multiplier (error) | 1.00 | 81.69 *** | 1.00 | 52.03 *** | 1.00 | 63.26 *** |
Robust LM (error) | 1.00 | 20.67 *** | 1.00 | 16.58 *** | 1.00 | 2.88 * |
Lagrange Multiplier (SARMA) | 2.00 | 90.32 *** | 2.00 | 56.10 *** | 2.00 | 74.88 *** |
Variable | The Total | The Verified | The Nonverified | Air | Water | Solid | Noise | Illegal | ||
---|---|---|---|---|---|---|---|---|---|---|
OLS | SLM | SEM | SEM | SLM | SEM | SEM | SEM | OLS | SEM | |
CONSTANT | 3.93 | 7.76 | 16.34 | 7.23 | 3.17 | 11.15 | 8.70 * | 0.44 | 4.54 * | 2.71 |
POPD | 6.22 × 10−3 * | 8.00 × 10−4 | −3.06 × 10−5 | 1.73 × 10−4 | 2.48 × 10−4 | 4.28 × 10−4 | −1.08 × 10−4 | 3.22 × 10−4 | 9.49 × 10−4 | 2.12 × 10−3 |
PerGDP | −0.63 | −0.74 ** | −0.91 ** | −0.73 *** | −0.13 | −0.44 | −0.26 * | −0.02 | −0.29 *** | −0.53 *** |
SIP | 0.07 | −0.03 | 0.04 | 0.03 | 4.54 × 10−2 | 0.01 | −0.02 | 0.01 | −0.01 | 0.05 |
TIP | −0.10 | −0.20 | −0.27 | −0.10 | −0.09 | −0.20 | −0.12 | −0.01 | −0.09 ** | −0.05 |
Water | 4.54 *** | 4.21 *** | 5.42 *** | 4.77 *** | 0.34 | 3.04 *** | 1.19 * | 0.51 *** | 0.60 | 1.96 *** |
SO2 | 0.72 *** | 0.66 *** | 0.45 ** | 0.50 *** | 0.06 | 0.38 ** | 0.07 | −0.02 | 0.22 *** | 0.23 ** |
Soot | 3.64 × 10−2 | −4.38 × 10−4 | −1.72 × 10−2 | 8.05 × 10−3 | −1.23 × 10−2 | −2.26 × 10−2 | 4.08 × 10−3 | 4.50 × 10−3 | −6.07 × 10−3 | 4.97 × 10−3 |
Tel | −6.10 × 10−3 * | −8.53 × 10−3 *** | −5.71 × 10−3 ** | −1.01 × 10−3 | −5.96 × 10−3 *** | −2.63 × 10−3 | −1.59 × 10−3 | −2.04 × 10−4 | 2.32 × 10−3 *** | −1.44 × 10−3 |
Internet | 0.15 *** | 0.15 *** | 0.14 *** | 0.09 *** | 0.06 *** | 0.10 *** | 0.03 *** | 2.24 × 10−3 ** | 0.01 *** | 0.04 *** |
Student | 2.59 × 10−4 | 6.05 × 10−3 | 4.79 × 10−3 | 1.70 × 10−3 | 2.42 × 10−3 | 1.68 × 10−3 | −1.44 × 10−3 | −3.45 × 10−4 | 4.27 × 10−3 *** | 4.25 × 10−4 |
ρ | — | 0.40 *** | — | — | 0.45 *** | — | — | — | — | — |
λ | — | — | 0.58 *** | 0.51 *** | — | 0.55 *** | 0.54 *** | 0.28 *** | — | 0.50 *** |
R2 | 0.64 | 0.72 | 0.74 | 0.74 | 0.57 | 0.74 | 0.50 | 0.22 | 0.53 | 0.61 |
Log-L | −1156.37 | −1125.59 | −1120.54 | −1021.35 | −890.14 | −1011.02 | −860.51 | −430.61 | −724.71 | −909.08 |
AIC | 2334.75 | 2275.18 | 2263.07 | 2064.70 | 1804.28 | 2044.04 | 1743.02 | 883.22 | 1471.42 | 1840.16 |
SC | 2374.96 | 2319.05 | 2303.29 | 2104.92 | 1848.15 | 2084.26 | 1783.23 | 923.43 | 1511.64 | 1880.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, X.; Tong, D.; Cheng, L.; Chuai, X.; Mao, X.; Liu, B.; Huang, X. Spatial Analysis of Citizens’ Environmental Complaints in China: Implications in Environmental Monitoring and Governance. Int. J. Environ. Res. Public Health 2021, 18, 9674. https://doi.org/10.3390/ijerph18189674
Ji X, Tong D, Cheng L, Chuai X, Mao X, Liu B, Huang X. Spatial Analysis of Citizens’ Environmental Complaints in China: Implications in Environmental Monitoring and Governance. International Journal of Environmental Research and Public Health. 2021; 18(18):9674. https://doi.org/10.3390/ijerph18189674
Chicago/Turabian StyleJi, Xuepeng, Daoqin Tong, Lisha Cheng, Xiaowei Chuai, Xiyan Mao, Binglin Liu, and Xianjin Huang. 2021. "Spatial Analysis of Citizens’ Environmental Complaints in China: Implications in Environmental Monitoring and Governance" International Journal of Environmental Research and Public Health 18, no. 18: 9674. https://doi.org/10.3390/ijerph18189674