Study of Well Waters from High-Level Natural Radiation Areas in Northern Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Sample Collection and Preparation
2.3. Methods
2.3.1. Measurements of Activity Concentration of 238U, 228Ra and 226Ra in Water
2.3.2. Evaluation of Radiological Hazard Indices
- Annual effective dose (AED)
- Excess lifetime cancer risk (ELCR)
3. Results and Discussion
3.1. Activity Concentration
3.2. Radiological Hazards
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sonkawade, R.G.; Kant, K.; Muralithar, S.; Kumar, R.; Ramola, R.C. Natural radioactivity in common building construction and radiation shielding materials. Atmos. Environ. 2008, 42, 2254–2259. [Google Scholar] [CrossRef]
- Azeez, H.H.; Mansour, H.H.; Ahmad, S.T. Transfer of natural radioactive nuclides from soil to plant crops. Appl. Radiat. Isot. 2019, 147, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Cwanek, A.; Mietelski, J.W.; Lokas, E.; Olech, M.A.; Anczkiewicz, R.; Misiak, R. Sources and variation of isotopic ratio of airborne radionuclides in Western Arctic lichens and mosses. Chemosphere 2020, 239, 124783. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.C.; Le Khanh, P.; Jodlowski, P.; Pieczonka, J.; Piestrzyński, A.; Van, H.D.; Nowak, J. Natural Radioactivity at the Sin Quyen Iron-Oxide-Copper-Gold Deposit in North Vietnam. Acta Geophys. 2016, 64, 2305–2321. [Google Scholar] [CrossRef] [Green Version]
- Van Hao, D.; Dinh, C.N.; Jodlowski, P.; Kovacs, T. High-level natural radionuclides from the Mandena deposit, South Madagascar. J. Radioanal. Nucl. Chem. 2019, 319, 1331–1338. [Google Scholar] [CrossRef]
- Van, H.D.; Nguyen, T.D.; Peka, A.; Hegedus, M.; Csordas, A.; Kovacs, T. Study of soil to plant transfer factors of 226Ra, 232Th, 40K and 137Cs in Vietnamese crops. J. Environ. Radioact. 2020, 223, 106416. [Google Scholar] [CrossRef]
- Van, H.D.; Lantoarindriaka, A.; Piestrzyński, A.; Trinh, P.T. Fort-Dauphin beach sands, south Madagascar: Natural radionuclides and mineralogical studies. Viet. J. Earth Sci. 2020, 42, 118–129. [Google Scholar] [CrossRef]
- Al-Amir, S.M.; Al-Hamarneh, I.F.; Al-Abed, T.; Awadallah, M. Natural radioactivity in tap water and associated age-dependent dose and lifetime risk assessment in Amman, Jordan. Appl. Radiat. Isot. 2012, 70, 692–698. [Google Scholar] [CrossRef]
- Altıkulaç, A.; Turhan, Ş.; Gümüş, H. The natural and artificial radionuclides in drinking water samples and consequent population doses. J. Radiat. Res. Appl. Sci. 2015, 8, 578–582. [Google Scholar] [CrossRef] [Green Version]
- Awudu, A.R.; Darko, E.O.; Schandorf, C.; Hayford, E.K.; Abekoe, M.K.; Ofori-Danson, P.K. Determination of Activity Concentration Levels of 238U, 232Th, and 40K in Drinking Water in a Gold Mine in Ghana. Health Phys. 2010, 99, S149–S153. [Google Scholar] [CrossRef]
- Ezzlddin, S.K.; Aziz, H.H. An Investigation of Activity Concentration of 238U, 232Th, 137Cs and 40K Radionuclides in Drinking Water Resources in Iraqi Kurdistan Region-Erbil. ZANCO J. Pure Appl. Sci. 2017, 28, 32–40. [Google Scholar] [CrossRef]
- Jia, G.; Torri, G.; Magro, L. Concentrations of 238U, 234U, 235U, 232Th, 230Th, 228Th, 226Ra, 228Ra, 224Ra, 210Po, 210Pb and 212Pb in drinking water in Italy: Reconciling safety standards based on measurements of gross α and β. J. Environ. Radioact. 2009, 100, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Landsberger, S.G.; George, G. An evaluation of 226Ra and 228Ra in drinking water in several counties in Texas, USA. J. Environ. Radioact. 2013, 125, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, P.; Taskin, H.; Kam, E.; Taskin, H.; Terzi, M.; Varinlioglu, A.; Bozkurt, A.; Bastug, A.; Tasdelen, B. Investigation of radioactivity level in soil and drinking water samples collected from the city of Erzincan, Turkey. J. Radioanal. Nucl. Chem. 2012, 292, 999–1006. [Google Scholar] [CrossRef]
- Van Hao, D.; Nguyen, C.D.; Nowak, J.; Kovacs, T.; Hoang, Q.A. Uranium and radium isotopes in some selected thermal, surface and bottled waters in Vietnam. J. Radioanal. Nucl. Chem. 2019, 319, 1345–1349. [Google Scholar] [CrossRef]
- Yashodhara, I.; Kumara, S.; Karunakara, N. Activity concentrations of 226Ra and 238U in water samples and estimation of radiation dose around the proposed uranium mining region in Gogi. In Proceedings of the Proceedings NSRP, Mamallapuram, India, 12–14 December 2012; Volume II, pp. 525–528. [Google Scholar]
- Moody, M.D. Mother Lode: The Untapped Rare Earth Mineral Resources of Vietnam. Department of Joint Military Operations, Naval War College, Newport, USA, 2013. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjkj7KtuIvuAhWBbN4KHQvIBMYQFjAAegQIAxAC&url=https%3A%2F%2Fapps.dtic.mil%2Fdtic%2Ftr%2Ffulltext%2Fu2%2Fa594225.pdf&usg=AOvVaw2ILnJx__vGU5DFZKIMd7J- (accessed on 7 December 2020).
- Hung, T.Q.; Thu, T.T.N. Utilization of maize animal feeds in northern upland region of Vietnam. AGRIS 2016, 32, 283–298. [Google Scholar]
- Nguyen, C.D.; Rajchel, L.; Van Duong, H.; Nowak, J. 224Ra and the 224Ra/228Ra activity ratio in selected mineral waters from the Polish Carpathians. Geol. Q. 2017, 61, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.C.; Niewodniczański, J.; Dorda, J.; Ochoński, A.; Chrusciel, E.; Tomza, I. Determination of radium isotopes in mine waters through alpha-and beta-activities measured by liquid scintillation spectrometry. J. Radioanal. Nucl. Chem. 1997, 222, 69–74. [Google Scholar] [CrossRef]
- ICRP. Publication 73. Radiological protection and safety in Medicine. Ann. ICRP 1996, 26. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality; WHO Library Cataloguing-in-Publication Data-NLM classification: WA 675; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- UNSCEAR. Sources and Effects of Lonizing Radiation. Report to the General Assembly with Scientific Annexes; United Nations: New York, NY, USA, 2000. [Google Scholar]
- ICRP. Publication 60. Recommendations of the International Commission on Radiological Protection. Ann. ICRP 1990, 21. Available online: https://www.icrp.org/publication.asp?id=icrp%20publication%2060 (accessed on 7 December 2020).
- Alvarado, J.C.; Balsiger, B.; Röllin, S.; Jakob, A.; Burger, M. Radioactive and chemical contamination of the water resources in the former uranium mining and milling sites of Mailuu Suu (Kyrgyzstan). J. Environ. Radioact. 2014, 138, 1–10. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Drinking-Water Quality; WHO Library Cataloguing in Publication Data; Licence: CC BY-Nc-SA 3.0 IGO.; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Gascoyne, M. High levels of uranium and radium in groundwaters at Canada’s Underground Research Laboratory, Lac du Bonnet, Manitoba, Canada. Appl. Geochem. 1989, 4, 577–591. [Google Scholar] [CrossRef]
- UNSCEAR. Sources and Effects of Lonizing Radiation. Report to the General Assembly Scientific Annexes A and B; United Nations: New York, NY, USA, 2008. [Google Scholar]
- Kumar, A.; Karpe, R.K.; Rout, S.; Gautam, Y.P.; Mishra, M.K.; Ravi, P.M.; Tripathi, R.M. Activity ratios of 234U/238U and 226Ra/228Ra for transport mechanisms of elevated uranium in alluvial aquifers of groundwater in south-western (SW) Punjab, India. J. Environ. Radioact. 2016, 151, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Asikainen, M. State of disequilibrium between 238U, 234U, 226Ra and 222Rn in groundwater from bedrock. Geochim. Cosmochim. Acta 1981, 45, 201–206. [Google Scholar] [CrossRef]
- Yanase, N.; Payne, T.E.; Sekine, K. Groundwater geochemistry in the Koongarra ore deposit, Australia (I): Implications for uranium migration. Geochem. J. 1995, 29, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Almasoud, F.I.; Ababneh, Z.Q.; Alanazi, Y.J.; Khandaker, M.U.; Sayyed, M.I. Assessment of radioactivity contents in bedrock groundwater samples from the northern region of Saudi Arabia. Chemosphere 2020, 242, 125181. [Google Scholar] [CrossRef]
Locations | Type of Mine | Value | Activity Concentration (Bq/L) | 226Ra/238U | ||
---|---|---|---|---|---|---|
226Ra | 228Ra | 238U | ||||
NX-Lai Chau | REE mine | Range (SD) | 0.26–0.65 (0.09) | 0.04–0.10 (0.01) | 0.15–0.72 (0.15) | 0.64–1.73 |
Average | 0.44 | 0.06 | 0.50 | 0.95 | ||
DP-Lai Chau | REE mine | Range (SD) | 0.35–0.59 (0.08) | 0.05–0.15 (0.03) | 0.31–0.71 (0.10) | 0.60–1.19 |
Average | 0.47 | 0.11 | 0.54 | 0.90 | ||
MH-Lao Cai | REE mine | Range (SD) | 0.30–0.78 (0.16) | <0.0026–0.11 (0.02) | 0.31–0.87 (0.18) | 0.69–1.52 |
Average | 0.52 | 0.07 * | 0.56 | 0.96 | ||
YP-Yen Bai | REE mine | Range (SD) | <0.0012–0.54 (0.07) | <0.0026–0.12 (0.02) | <0.038–0.70 (0.12) | ** |
Average | 0.23 * | 0.08 * | 0.31 * | ** | ||
BY-Son La | Uranium mine | Range (SD) | 0.25–0.74 (0.11) | <0.0026–0.09 (0.02) | 0.27–0.63 (0.08) | 0.76–1.44 |
Average | 0.45 | 0.06 * | 0.41 | 1.08 | ||
TS-Phu Tho | Uranium mine | Range (SD) | 0.25–0.97 (0.19) | 0.05–0.10 (0.02) | 0.27–0.69 (0.11) | 0.50–1.76 |
Average | 0.48 | 0.07 | 0.48 | 1.01 | ||
DT-Thai Nguyen | Uranium mine | Range (SD) | 0.36–2.70 (0.69) | 0.05–0.43 (0.11) | 0.33–5.32 (1.46) | 0.50–1.42 |
Average | 1.15 | 0.18 | 2.06 | 0.79 | ||
NB-Cao Bang | Uranium mine | Range (SD) | 0.32–0.97 (0.18) | <0.0026–0.13 (0.02) | 0.34–0.80 (0.12) | 0.53–1.43 |
Average | 0.53 | 0.07 | 0.55 | 0.97 | ||
Overall range | Minimum | <0.0012 | <0.0026 | <0.038 | 0.50 | |
Maximum | 2.7 | 0.43 | 5.32 | 1.76 |
Countries | Samples | Activity concentration (Bq/L) | References | ||
---|---|---|---|---|---|
226Ra | 228Ra | 238U | |||
Northern Vietnam | Well water | <0.0012–2.7 | <0.0026–0.43 | <0.038–5.32 | This study |
Hoa Binh, Vietnam | Groundwater | 0.005–0.029 | ≤0.020 | ≤0.0005–0.009 | [15] |
Italy | Drinking water | 0.0050–0.0608 | 0.00010–0.0257 | 0.000206–0.103 | [12] |
Turkey | Drinking water | <0.027–2.431 | <0.036–0.270 | - | [9] |
Jordan | Tap water | 0.096 | 0.170 | 0.033 | [8] |
Erbil, Iraq | Surface water | 0.274–1.03 | 0.00676–0.244 * | 0.274–1.03 * | [11] |
Gogi, India | Tube well | 0.0195–10.5 | - | 0.0123–33.2 | [16] |
Open well | 0.0366–0.0571 | - | 0.114–0.160 | ||
Ghana | Groundwater | 0.09–0.18 | 0.22–0.99 * | 0.09–0.18 * | [10] |
Surface water | 0.08–0.17 | 0.18–0.74 * | 0.08–0.17 * | ||
World range | Drinking water | 0.0002–45 | 0.0001–7.7 | 0.000028–150 | [28] |
Locations | Type of Mine | AED (μSv/Year) | ELCR | |||
---|---|---|---|---|---|---|
226Ra | 228Ra | 238U | Total | |||
NX-Lai Chau | REE mine | 120 | 40 | 20 | 190 | 1.1 × 10−5 |
DP-Lai Chau | REE mine | 130 | 80 | 20 | 240 | 1.3 × 10−5 |
MH-Lao Cai | REE mine | 150 | 50 | 30 | 220 | 1.3 × 10−5 |
YP-Yen Bai | REE mine | 60 | 50 | 10 | 130 | 7.4 × 10−6 |
BY-Son La | U mine | 130 | 40 | 20 | 180 | 1.0 × 10−5 |
TS-Phu Tho | U mine | 140 | 50 | 20 | 210 | 1.2 × 10−5 |
DT-Thai Nguyen | U mine | 320 | 120 | 90 | 540 | 3.1 × 10−5 |
NB-Cao Bang | U mine | 150 | 50 | 20 | 220 | 1.3 × 10−5 |
Average | 150 | 60 | 30 | 240 | 1.4 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duong, V.-H.; Nguyen, T.-D.; Hegedus, M.; Kocsis, E.; Kovacs, T. Study of Well Waters from High-Level Natural Radiation Areas in Northern Vietnam. Int. J. Environ. Res. Public Health 2021, 18, 469. https://doi.org/10.3390/ijerph18020469
Duong V-H, Nguyen T-D, Hegedus M, Kocsis E, Kovacs T. Study of Well Waters from High-Level Natural Radiation Areas in Northern Vietnam. International Journal of Environmental Research and Public Health. 2021; 18(2):469. https://doi.org/10.3390/ijerph18020469
Chicago/Turabian StyleDuong, Van-Hao, Thanh-Duong Nguyen, Miklos Hegedus, Erika Kocsis, and Tibor Kovacs. 2021. "Study of Well Waters from High-Level Natural Radiation Areas in Northern Vietnam" International Journal of Environmental Research and Public Health 18, no. 2: 469. https://doi.org/10.3390/ijerph18020469