Impact of the Electric Vehicle Policies on Environment and Health in the Beijing–Tianjin–Hebei Region
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
2. Methods
2.1. Scenario Setting
2.2. Energy Calculation Method
2.2.1. Vehicle Ownership Forecast
- indicates the ownership of automobiles, (1) is all automobiles, (2) is EVs
- indicates the total national ownership
- represents the year from 2001 to 2030
- represents one of Beijing, Tianjin, Hebei
- represents a certain type of automobiles (five types: PC, LC, MT, HT, HB)
- represents a certain type of automobiles (three types: passenger cars, bus, and trucks)
- represents EV or PHEV
- indicates the proportion from Table 2
- indicates the proportion from Supplement Table S2 (of EVs)
- indicates the city share value
2.2.2. Energy Consumption Forecast
- indicates the energy, the unit is Billion kWh.
- indicates the year from 2001 to 2030
- () are coefficients of the function, as shown in (Table 3).
2.2.3. Energy Calculation
- represent fuel, electricity, coal consumption of automobiles, respectively.
- represent FVs, EV, and PHEV, respectively.
- represent the provinces in the BTH region, province of Shanxi or Inner Mongolia, and which year, respectively.
- represent ownership, annual mileage, electricity, and fuel consumption per 100 km, respectively.
- represent the total number of FVs types, and the total number of EVs types, respectively.
- represents a certain type of automobiles (five types: PC, LC, MT, HT, HB)
- represents a certain type of automobiles (three types: passenger cars, bus, and trucks)
- represents the ratio of PHEV using electricity in 100 km.
- represent electricity generation, electricity consumption, and thermal power generation, respectively.
- , indicate how many grams of standard coal is consumed by 1 kWh of thermal power generation, the loss rate of the transmission line, and transmission ratio, respectively.
2.3. GAINS Model
2.4. IMED|HEL Model
3. Results
3.1. Prediction of Energy Consumption
3.2. Environment Co-Benefit
3.3. Health Assessment
4. Discussion
4.1. Environmental and Health Co-Benefit
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Global Urban Ambient Air Pollution Database. Available online: https://www.who.int/phe/health_topics/outdoorair/databases/cities/en/ (accessed on 31 December 2016).
- The Department of Industrial Economics Research. China Society of Automotive Engineering; Volkswagen Group (China). China Automotive Industry Development Report 2018; Social Sciences Literature Press: Beijing, China, 2018. [Google Scholar]
- Dudley, B. World Energy Outlook 2019; IEA: Paris, France, 2019. [Google Scholar]
- Energy Conservation and New Energy Vehicle Technology Roadmap Strategy Advisory Committee. Energy Technology and New Energy Vehicle Technology Roadmap 2016; Mechanical Industry Press: Beijing, China, 2016. [Google Scholar]
- Zhang, Z.; Wang, W.; Cheng, M.; Liu, S.; Xu, J.; He, Y.; Meng, F. The contribution of residential coal combustion to PM2.5 pollution over China’s Beijing-Tianjin-Hebei region in winter. Atmos. Environ. 2017, 159, 147–161. [Google Scholar] [CrossRef]
- Yuan, M.; Thellufsen, J.Z. The first feasible step towards clean heating transition in urban agglomeration: A case study of Beijing-Tianjin-Hebei region. Energy Convers. Manag. 2020, 223, 113282. [Google Scholar] [CrossRef]
- Kan, H.; Chen, B. Analysis of Exposure-Response Relationships of Air Particulate Matter and Adverse Health Outcomes in China. Environ. Health 2002, 6, 422–424. [Google Scholar]
- Cai, Y.; Zhou, M.; Chow, J. A Study on the Influence of Air Pollution on Labor Supply—Based on the Perspective of Healthy Human Capital. Soc. Secur. Stud. 2018, 6, 59–68. [Google Scholar]
- Siskova, M.; van den Bergh, J. Optimal urban form for global and local emissions under electric vehicle and renewable energy scenarios. Urban Clim. 2019, 29, 100472. [Google Scholar] [CrossRef]
- Lin, B.; Tan, R. Estimation of the environmental values of electric vehicles in Chinese cities. Energy Policy 2017, 104, 221–229. [Google Scholar] [CrossRef]
- Lin, W.; Hsiao, M.; Wu, P. Analysis of air quality and health co-benefits regarding electric vehicle promotion coupled with power plant emissions. J. Clean. Prod. 2020, 247, 119152. [Google Scholar] [CrossRef]
- Shuai, P.; Anirban, R.; Yunsoo, C.; Ebrahim, E.; Stephanie, T.; Xiangyu, J.; Oliver, H.G. Potential impacts of electric vehicles on air quality and health endpoints in the Greater Houston Area in 2040. Atmos. Environ. 2019, 207, 38–51. [Google Scholar]
- Gai, Y.; Minet, L.; Posen, I.D. Health and climate benefits of Electric Vehicle Deployment in the Greater Toronto and Hamilton Area. Environ. Pollut. 2020, 265, 114983. [Google Scholar] [CrossRef]
- Liang, X.S.; Zhang, Y.; Wu, J.; Xing, J. Air Quality and Health Benefits from Fleet Electrification in China. Nat. Sustain. 2019, 2, 962–971. [Google Scholar] [CrossRef]
- Wei, P.; Junnan, Y.; Xi, L.; Denise, L.M. Potential co-benefits of electrification for air quality, health, and CO2 mitigation in 2030 China. Appl. Energy 2018, 218, 511–519. [Google Scholar]
- Xu, T.; Hancheng, D.; Yong, G.; Jeffrey, W.; Rui, W.; Yang, X.; Han, H. Economic impacts from PM2.5 pollution-related health effects in China’s road transport sector: A provincial-level analysis. Environ. Int. 2018, 115, 220–229. [Google Scholar]
- Zhang, X.; Jin, Y.; Dai, H.; Xie, Y.; Zhang, S. Health and economic benefits of cleaner residential heating in the Beijing–Tianjin–Hebei region in China. Energy Policy 2019, 127, 165–178. [Google Scholar] [CrossRef]
- Zhang, S.; Xie, Y.; Sander, R.; Yue, H.; Shu, Y. Potentials of energy efficiency improvement and energy–emission–health nexus in Jing-Jin-Ji’s cement industry. J. Clean. Prod. 2021, 278. [Google Scholar] [CrossRef]
- China Automotive Technology and Research Center; Nissan (China) Investment Co., Ltd. China New Energy Automobile Industry Development Report 2017; Dongfeng Motor Co., Ltd.: Wuhan, China; Social Sciences Academic Press: Beijing, China, 2017. [Google Scholar]
- Hao, W.H.; Minggao, O. Prediction of the number of passenger cars and commercial vehicles in China. J. Tsinghua Univ. (Nat. Sci. Ed.) 2011, 51, 868–872. [Google Scholar]
- China Automotive Technology and Research Center. Energy Conservation and New Energy Vehicle Development Report 2016; People’s Posts and Telecommunications Press: Beijing, China, 2016. [Google Scholar]
- National Bureau of Statisticss of China (NBS). China Statistical Year Book 2017; China Statistics Press: Beijing, China, 2018.
- Tianduo, P.; Zhiyi, Y.; Jiehui, Y.; Xufeng, Z.; Xunmin, O. Analysis on Vehicle Energy Demand and Key Mineral Resource Availability for Vehicle Production in China. Eng. Sci. 2018, 20, 127–132. [Google Scholar]
- Haixi, B. Research on the validity test of energy consumption statistics for passenger vehicles. Automob. Appl. Technol. 2018, 4, 180–183. [Google Scholar]
- Meichun, P.; Jiaru, L.; Hongfei, H. Research on fuel consumption and carbon emission factor of road freight trucks. Automot. Technol. 2015, 4, 37–40. [Google Scholar]
- State Council. Made in China 2025; People’s Publishing House: Beijing, China, 2015.
- Weibing, L. Handbook of Key Energy Data 2017; Economic Management Press: Beijing, China, 2017. [Google Scholar]
- Power Planning and Design Institute. China Energy Development Report 2017; China Electric Power Press: Beijing, China, 2018. [Google Scholar]
- Xiao, H.E.; Yan, X.Z.; Jing, W.U. Using annual inspection data to analyze the distribution law of motor vehicle mileage. Light Ind. Technol. 2017, 9, 87–89. [Google Scholar]
- Tohka, A. The GAINS Model for Greenhouse gases-Version 1.0: HFC, PFC and SF6.IIASA Interim Report IR-05-056; IIASA: Laxenburg, Austria, 2005. [Google Scholar]
- Klimont, Z.; Cofala, J.; Bertok, I.; Amann, M.; Heyes, C.; Gyarfas, F. Modelling Particulate Emissions in Europe. A Framework to Estimate Reduction Potential and Control Costs, IIASA Interim Report IR-02-076; IIASA: Laxenburg, Austria, 2002. [Google Scholar]
- Xie, Y. Quantitative Analysis of Economic Impacts of Health Damages Caused by Air Pollution in China; Tokyo Institute of Technology: Tokyo, Japan, 2017. [Google Scholar]
- Yang, X.; Hancheng, D.; Tatsuya, H.; Toshihiko, M. Health and economic impacts of PM2.5 pollution in Beijing-Tianjin-Hebei Area. China Popul. Resour. Environ. 2016, 26, 19–27. [Google Scholar]
- Amann, M.; Bertok, I.; Borken, J.; Cofala, J.; Heyes, C.; H€oglund, L.; Klimont, Z.; Purohit, P.; Rafaj, P.; Schoepp, W.; et al. GAINS–Potentials and Costs for Greenhouse Gas Mitigation in Annex I Countries; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 2008. [Google Scholar]
- Amann, M.; Bertok, I.; Borken-Kleefeld, J.; Cofala, J.; Heyes, C.; H€oglund-Isaksson, L.; Klimont, Z.; Nguyen, B.; Posch, M.; Rafaj, P.; et al. Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environ. Model. 2011, 26, 1489–1501. [Google Scholar] [CrossRef]
- Amann, M.; Kejun, J.; Hao, J.; Wang, S.; Wei, W.; Xing, J.; Zhang, C.; Bertok, I.; Borken, J.; Cofala, J.; et al. GAINS-asia: Scenarios for Cost-Effective Control of Air Pollution and Greenhouse Gases in China; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 2008. [Google Scholar]
- Wagner, F.; Borken-Kleefeld, J.; Kiesewetter, G.; Klimont, Z.; Nguyen, B.; Rafaj, P.; Sch€opp, W. The GAINS PMEH-Methodology-Version 2.0. Available online: http://pure.iiasa.ac.at/id/eprint/15695/ (accessed on 30 January 2019).
- Meng, X.; Zhongfeng, Q.; Shaohui, Z. Carbon dioxide mitigation co-effect analysis of clean air policies: Lessons and perspectives in China’s Beijing-Tianjin-Hebei region. Environ. Res. 2021. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, Y.; Xie, M.; Li, B.; Zhang, H.; Ma, T.; Zhang, Y. Health and economic benefit of China’s greenhouse gas mitigation by 2050. Environ. Res. Lett. 2020, 15, 104042. [Google Scholar] [CrossRef]
- Pope, C.A., III; Burnett, R.T.; Turner, M.C.; Cohen, A.; Krewski, D.; Jerrett, M.; Thun, M.J. Lung Cancer and Cardiovascular Disease Mortality Associated with Ambient Air Pollution and Cigarette Smoke: Shape of the Exposure–Response Relationships. Environ. Health Perspect. 2011, 119, 1616–1621. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.A., III; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Xie, Y.; Dai, H.; Zhang, Y.; Wu, Y.; Hanaoka, T.; Masui, T. Comparison of health and economic impacts of PM2.5 and ozone pollution in China. Environ. Int. 2019, 130, 104881. [Google Scholar] [CrossRef]
- Jin, Y.; Andersson, H.; Zhang, S. Do preferences to reduce health risks related to air pollution depend on illness type? Evidence from a choice experiment in Beijing, China. J. Environ. Econ. Manag. 2020, 103, 102355. [Google Scholar] [CrossRef]
- Huo, H.; Cai, H.; Zhang, Q.; Liu, F.; He, K. Life-cycle assessment of greenhouse gas and air emissions of electric vehicles: A comparison between China and the U.S. Atmos Environ. 2015, 108, 107–116. [Google Scholar] [CrossRef]
- Hofmann, J.; Guan, D.; Chalvatzis, K.; Huo, H. Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China. Appl. Energy 2016, 184, 995–1003. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, T.R.; Singh, B.; Majeau-Bettez, G.; Stromman, A.H. Comparative environmental life cycle assessment of conventional and electric vehicles. J. Indus. Ecol. 2013, 17, 53–64. [Google Scholar] [CrossRef]
- Zhang, H.H.; Cheng, S.Y.; Yao, S.Y.; Wang, X.Q.; Zhang, J.F. Multiple perspectives for modeling regional PM2.5 transport across cities in the Beijing–Tianjin–Hebei region during haze episodes—ScienceDirect. Atmos. Environ. 2019, 212, 22–35. [Google Scholar] [CrossRef]
- Wenhao, X.; Jing, Z.; Chao, Z.; Xinyao, L.; Jing, W. Spatiotemporal PM2.5 variations and its response to the industrial structure from 2000 to 2018 in the Beijing-Tianjin-Hebei region. J. Clean. Prod. 2021, 279, 123742. [Google Scholar]
- Ofra, A.; Shifang, S. Health inequalities in rural China: Evidence from HeBei Province. Health Place 2004, 10, 75–84. [Google Scholar]
- Jianzhou, W.; Lifang, Z.; Xinsong, N.; Zhenkun, L. Effects of PM2.5 on health and economic loss: Evidence from Beijing-Tianjin-Hebei region of China. J. Clean. Prod. 2020, 257, 120605. [Google Scholar]
Scenario | The Electric Vehicle Policies | Initial Ownership of Civil Automobiles in BTH Region (2010) |
---|---|---|
FOS | Not considered | 11.01 million |
REN | Considered | 11.01 million |
Proportion | Region | ||
---|---|---|---|
Beijing | Tianjin | Hebei | |
2 | |||
Region | Electricity Consumption | Electricity Generation | Thermal Power Generation |
---|---|---|---|
Beijing | |||
Tianjin | |||
Hebei |
Region | GHG and Pollutant | Reduction Ratio (%)—Scenario REN Compared with Scenario FOS | |||
---|---|---|---|---|---|
2015 | 2020 | 2025 | 2030 | ||
Beijing | PM2.5 | 5.41 | 11.74 | 12.38 | 11.38 |
SO2 | 7.01 | 9.50 | 14.77 | 18.93 | |
CO2 | 0.00 | 0.00 | 0.00 | 0.00 | |
Tianjin | PM2.5 | 9.96 | 13.52 | 14.41 | 15.12 |
SO2 | 13.91 | 17.73 | 24.19 | 29.18 | |
CO2 | 4.22 | 3.75 | 3.29 | 2.93 | |
Hebei | PM2.5 | 10.86 | 15.65 | 19.22 | 22.27 |
SO2 | 14.47 | 20.07 | 28.10 | 35.00 | |
CO2 | 0.31 | 0.30 | 0.27 | 0.24 |
Region | Year | Concentration in FOS | Concentration in REN | Reduction comparing with FOS (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Low | Average | High | Low | Average | High | Low | Average | High | ||
Beijing | 2015 | 42.98 | 58.29 | 76.65 | 38.80 | 52.30 | 68.45 | 9.72 | 10.28 | 10.69 |
2020 | 40.71 | 54.92 | 71.82 | 35.23 | 47.03 | 61.01 | 13.47 | 14.36 | 15.04 | |
2025 | 38.00 | 50.94 | 66.24 | 31.91 | 42.15 | 54.14 | 16.03 | 17.26 | 18.27 | |
2030 | 34.70 | 46.25 | 59.84 | 28.72 | 37.54 | 47.72 | 17.23 | 18.84 | 20.25 | |
Tianjin | 2015 | 63.28 | 69.34 | 78.06 | 56.64 | 61.97 | 69.59 | 10.49 | 10.62 | 10.85 |
2020 | 59.38 | 65.05 | 73.01 | 50.76 | 55.48 | 62.03 | 14.51 | 14.71 | 15.05 | |
2025 | 55.05 | 60.27 | 67.46 | 45.29 | 49.44 | 55.02 | 17.73 | 17.98 | 18.45 | |
2030 | 50.08 | 54.83 | 61.29 | 40.19 | 43.84 | 48.60 | 19.75 | 20.04 | 20.72 | |
Hebei | 2015 | 12.85 | 54.95 | 101.18 | 11.54 | 49.04 | 90.22 | 10.16 | 10.75 | 10.84 |
2020 | 12.23 | 51.97 | 95.92 | 10.56 | 44.26 | 81.48 | 13.71 | 14.84 | 15.05 | |
2025 | 11.47 | 48.34 | 89.11 | 9.60 | 39.71 | 73.02 | 16.25 | 17.85 | 18.06 | |
2030 | 10.53 | 44.11 | 81.36 | 8.70 | 35.48 | 65.22 | 17.39 | 19.57 | 19.84 |
Endpoint | Year | Beijing | Tianjin | Hebei | Total | ||||
---|---|---|---|---|---|---|---|---|---|
FOS | REN | FOS | REN | FOS | REN | FOS | REN | ||
Premature deaths (unit:10 k) | 2015 | 0.34 (0.1, 0.7) | 0.29 (0.1, 0.6) | 0.29 (0.1, 0.6) | 0.25 (0.1, 0.5) | 1.82 (0.6, 3.6) | 1.58 (0.5, 3.2) | 2.44 (0.8, 4.9) | 2.13 (0.7, 4.3) |
2020 | 0.31 (0.1, 0.6) | 0.26 (0.1, 0.5) | 0.27 (0.1, 0.5) | 0.22 (0.1, 0.4) | 1.7 (0.6, 3.4) | 1.39 (0.5, 2.8) | 2.28 (0.8, 4.6) | 1.86 (0.6, 3.7) | |
2025 | 0.28 (0.1, 0.6) | 0.22 (0.1, 0.5) | 0.24 (0.1, 0.5) | 0.19 (0.1, 0.4) | 1.55 (0.5, 3.1) | 1.2 (0.4, 2.4) | 2.08 (0.7, 4.2) | 1.62 (0.5, 3.2) | |
2030 | 0.25 (0.1, 0.5) | 0.19 (0.1, 0.4) | 0.22 (0.1, 0.4) | 0.16 (0.1, 0.3) | 1.38 (0.5, 2.8) | 1.03 (0.3, 2.1) | 1.85 (0.6, 3.7) | 1.39 (0.5, 2.8) | |
Morbidity (unit:10 million) | 2015 | 2.39 (2.1, 3.9) | 2.09 (1.8, 3.5) | 1.93 (1.7, 3.2) | 1.69 (1.5, 2.8) | 8.13 (7.0, 13.5) | 7.04 (6.1, 11.7) | 12.45 (10.8, 20.7) | 10.82 (9.4, 18.0) |
2020 | 2.22 (1.9, 3.7) | 1.83 (1.6, 3.0) | 1.79 (1.6, 2.9) | 1.48 (1.3, 2.5) | 7.6 (6.6, 12.6) | 6.18 (5.4, 10.3) | 11.61 (10.0, 19.3) | 9.49 (8.2, 15.8) | |
2025 | 2.02 (1.8, 3.4) | 1.59 (1.4, 2.6) | 1.64 (1.4, 2.7) | 1.29 (1.1, 2.1) | 6.94 (5.9, 11.5) | 5.36 (4.6, 8.9) | 10.60 (9.2, 17.6) | 8.23 (7.1, 13.7) | |
2030 | 1.79 (1.6, 2.9) | 1.36 (1.2, 2.3) | 1.46 (1.3, 2.4) | 1.1 (0.9, 1.8) | 6.17 (5.3, 10.3) | 4.59 (3.9, 7.7) | 9.42 (8.1, 15.7) | 7.06 (6.1, 11.8) |
Region | Beijing | Tianjin | Hebei | Total Saved | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | FOS | REN | Saved | FOS | REN | Saved | FOS | REN | Saved | |
2015 | 14.08 (4.7, 28.2) | 12.33 (4.1, 24.7) | 1.75 (0.6, 3.5) | 11.99 (4.0, 23.9) | 10.5 (3.5, 21.0) | 1.49 (0.5, 2.9) | 47.32 (15.8, 94.6) | 41.1 (13.7, 82.2) | 6.22 (2.1, 12.4) | 9.46 (3.2, 18.9) |
2020 | 15.44 (5.2, 30.9) | 12.73 (4.2, 25.5) | 2.71 (0.9, 5.4) | 12.77 (4.3, 25.5) | 10.55 (3.5, 21.1) | 2.22 (0.7, 4.4) | 52 (17.3, 104) | 42.45 (14.2, 84.9) | 9.55 (3.2, 19.1) | 14.48 (4.8, 28.9) |
2025 | 16.03 (5.3, 32.1) | 12.59 (4.2, 25.2) | 3.44 (1.2, 6.9) | 12.84 (4.3, 25.7) | 10.08 (3.4, 20.2) | 2.77 (0.9, 5.5) | 54.02 (18.0, 108) | 41.86 (13.9, 83.7) | 12.16 (4.1, 24.3) | 18.37 (6.1, 36.7) |
2030 | 15.71 (5.2, 31.4) | 11.94 (3.9, 23.9) | 3.78 (1.3, 7.6) | 12.21 (4.1, 24.4) | 9.22 (3.1, 18.4) | 2.99 (1.0, 5.9) | 52.89 (17.6, 106) | 39.51 (13.2, 79.1) | 13.38 (4.5, 26.8) | 20.15 (6.7, 40.3) |
Year | Beijing | Tianjin | Hebei | Total Saved | |||
---|---|---|---|---|---|---|---|
FOS | REN | FOS | REN | FOS | REN | ||
2015 | 1.62 (1.4, 1.9) | 1.42 (1.2, 1.6) | 1.30 (1.1, 1.5) | 1.14 (1.0, 1.3) | 5.02 (4.3, 5.8) | 4.36 (3.7, 5.0) | 1.02 (0.9, 1.2) |
2020 | 1.51 (1.3, 1.7) | 1.25 (1.1, 1.4) | 1.21 (1.0, 1.4) | 1.00 (0.9, 1.2) | 4.69 (3.9, 5.4) | 3.83 (3.3, 4.4) | 1.34 (1.1, 1.5) |
2025 | 1.38 (1.2, 1.6) | 1.08 (0.9, 1.3) | 1.10 (0.9, 1.3) | 0.87 (0.7, 1.0) | 4.29 (3.6, 4.9) | 3.32 (2.8, 3.8) | 1.49 (1.3, 1.7) |
2030 | 1.22 (1.0, 1.4) | 0.93 (0.8, 1.1) | 0.98 (0.8, 1.1) | 0.74 (0.6, 0.9) | 3.81 (3.2, 4.4) | 2.85 (2.4, 3.3) | 1.49 (1.3, 1.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Madaniyazi, L.; Xie, Y. Impact of the Electric Vehicle Policies on Environment and Health in the Beijing–Tianjin–Hebei Region. Int. J. Environ. Res. Public Health 2021, 18, 623. https://doi.org/10.3390/ijerph18020623
Ma C, Madaniyazi L, Xie Y. Impact of the Electric Vehicle Policies on Environment and Health in the Beijing–Tianjin–Hebei Region. International Journal of Environmental Research and Public Health. 2021; 18(2):623. https://doi.org/10.3390/ijerph18020623
Chicago/Turabian StyleMa, Chenen, Lina Madaniyazi, and Yang Xie. 2021. "Impact of the Electric Vehicle Policies on Environment and Health in the Beijing–Tianjin–Hebei Region" International Journal of Environmental Research and Public Health 18, no. 2: 623. https://doi.org/10.3390/ijerph18020623
APA StyleMa, C., Madaniyazi, L., & Xie, Y. (2021). Impact of the Electric Vehicle Policies on Environment and Health in the Beijing–Tianjin–Hebei Region. International Journal of Environmental Research and Public Health, 18(2), 623. https://doi.org/10.3390/ijerph18020623