Effects of Combined Exercise and Low Carbohydrate Ketogenic Diet Interventions on Waist Circumference and Triglycerides in Overweight and Obese Individuals: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Searching Processes to Identify Eligible Studies
2.2. Statistical Analysis Data Extraction
2.3. Statistical Analysis
3. Results
3.1. Exercise and Ketogenic Diet Interventions
3.2. Body Compositions
3.3. Cardiorespiratory Fitness (VO2peak)
3.4. Fasting Glucose and Lipid Profiles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- WHO. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 5 November 2020).
- CDC, Center for Disease Control and Prevention. Overweight & Obesity. Available online: https://www.cdc.gov/obesity/index.html (accessed on 5 November 2020).
- Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes. Res. Clin. Pract. 2013, 7, e330–e341. [Google Scholar] [CrossRef] [PubMed]
- Katzmarzyk, P.T.; Church, T.S.; Janssen, I.; Ross, R.; Blair, S.N. Metabolic syndrome, obesity, and mortality: Impact of cardiorespiratory fitness. Diabetes Care 2005, 28, 391–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krauss, R.M.; Eckel, R.H.; Howard, B.; Appel, L.J.; Daniels, S.R.; Deckelbaum, R.J.; Erdman, J.W., Jr.; Kris-Etherton, P.; Goldberg, I.J.; Kotchen, T.A.; et al. AHA Dietary Guidelines: Revision 2000: A statement for healthcare professionals from the Nutrition Committee of the American Heart Association. Stroke 2000, 31, 2751–2766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Aranceta, J.; Perez-Rodrigo, C. Recommended dietary reference intakes, nutritional goals and dietary guidelines for fat and fatty acids: A systematic review. Br. J. Nutr. 2012, 107 (Suppl. S2), S8–S22. [Google Scholar] [CrossRef]
- Masood, W.; Annamaraju, P.; Uppaluri, K.R. Ketogenic Diet. In StatPearls; Treasure Island: Florida, FL, USA, 2020. [Google Scholar]
- Cycling, W. National Task Force on the Prevention and Treatment of Obesity. JAMA 1994, 272, 1196–1202. [Google Scholar]
- Gomez-Arbelaez, D.; Bellido, D.; Castro, A.I.; Ordonez-Mayan, L.; Carreira, J.; Galban, C.; Martinez-Olmos, M.A.; Crujeiras, A.B.; Sajoux, I.; Casanueva, F.F. Body Composition Changes After Very-Low-Calorie Ketogenic Diet in Obesity Evaluated by 3 Standardized Methods. J. Clin. Endocrinol. Metab. 2017, 102, 488–498. [Google Scholar] [CrossRef]
- Garrow, J.S.; Summerbell, C.D. Meta-analysis: Effect of exercise, with or without dieting, on the body composition of overweight subjects. Eur. J. Clin. Nutr. 1995, 49, 1–10. [Google Scholar]
- Yancy, W.S., Jr.; Olsen, M.K.; Guyton, J.R.; Bakst, R.P.; Westman, E.C. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia: A randomized, controlled trial. Ann. Intern. Med. 2004, 140, 769–777. [Google Scholar] [CrossRef]
- Noakes, M.; Foster, P.R.; Keogh, J.B.; James, A.P.; Mamo, J.C.; Clifton, P.M. Comparison of isocaloric very low carbohydrate/high saturated fat and high carbohydrate/low saturated fat diets on body composition and cardiovascular risk. Nutr. Metab. 2006, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Ann. Intern. Med. 2009, 151, W65–W94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.; Altman, D.G.; Gotzsche, P.C.; Juni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane Collaboration′s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, R.J.; Gregory, S.M.; Sawyer, J.; Milch, C.M.; Matthews, T.D.; Headley, S.A. Preservation of fat-free mass after two distinct weight loss diets with and without progressive resistance exercise. Metab. Syndr. Relat. Disord. 2012, 10, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Kong, Z.; Shi, Q.; Hu, M.; Zhang, H.; Zhang, D.; Nie, J. Non-Energy-Restricted Low-Carbohydrate Diet Combined with Exercise Intervention Improved Cardiometabolic Health in Overweight Chinese Females. Nutrients 2019, 11, 3051. [Google Scholar] [CrossRef] [Green Version]
- Freedland, S.J.; Howard, L.; Allen, J.; Smith, J.; Stout, J.; Aronson, W.; Inman, B.A.; Armstrong, A.J.; George, D.; Westman, E.; et al. A lifestyle intervention of weight loss via a low-carbohydrate diet plus walking to reduce metabolic disturbances caused by androgen deprivation therapy among prostate cancer patients: Carbohydrate and prostate study 1 (CAPS1) randomized controlled trial. Prostate Cancer Prostatic Dis. 2019, 22, 428–437. [Google Scholar] [CrossRef]
- Perissiou, M.; Borkoles, E.; Kobayashi, K.; Polman, R. The Effect of an 8 Week Prescribed Exercise and Low-Carbohydrate Diet on Cardiorespiratory Fitness, Body Composition and Cardiometabolic Risk Factors in Obese Individuals: A Randomised Controlled Trial. Nutrients 2020, 12, 482. [Google Scholar] [CrossRef] [Green Version]
- Jabekk, P.T.; Moe, I.A.; Meen, H.D.; Tomten, S.E.; Hostmark, A.T. Resistance training in overweight women on a ketogenic diet conserved lean body mass while reducing body fat. Nutr. Metab. 2010, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Gregory, R.M.; Hamdan, H.; Torisky, D.M.; Akers, J.D. A low-carbohydrate Ketogenic diet combined with 6-weeks of Crossfit training improves body composition and performance. Int. J. Sports Exerc. Med. 2017, 3, 54. [Google Scholar] [CrossRef]
- Poirier, P.; Despres, J.P. Waist circumference, visceral obesity, and cardiovascular risk. J. Cardiopulm. Rehabil. 2003, 23, 161–169. [Google Scholar] [CrossRef]
- Perez-Martinez, P.; Alcala-Diaz, J.F.; Delgado-Lista, J.; Garcia-Rios, A.; Gomez-Delgado, F.; Marin-Hinojosa, C.; Rodriguez-Cantalejo, F.; Delgado-Casado, N.; Perez-Caballero, A.I.; Fuentes-Jimenez, F.J.; et al. Metabolic phenotypes of obesity influence triglyceride and inflammation homoeostasis. Eur. J. Clin. Investig. 2014, 44, 1053–1064. [Google Scholar] [CrossRef]
- Despres, J.P.; Arsenault, B.J.; Cote, M.; Cartier, A.; Lemieux, I. Abdominal obesity: The cholesterol of the 21st century? Can. J. Cardiol. 2008, 24 (Suppl. D), 7D–12D. [Google Scholar] [CrossRef] [Green Version]
- Lee, J. Influences of Cardiovascular Fitness and Body Fatness on the Risk of Metabolic Syndrome: A Systematic Review and Meta-Analysis. Am. J. Health Promot. 2020, 34, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Williams, J.M. Palladium-catalyzed cyanation of aryl bromides promoted by low-level organotin compounds. Org. Lett. 2004, 6, 2837–2840. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.A.; Sachinwalla, T.; Walton, D.W.; Smith, K.; Armstrong, A.; Thompson, M.W.; George, J. Aerobic exercise training reduces hepatic and visceral lipids in obese individuals without weight loss. Hepatology 2009, 50, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Chen, K.Y.; Guo, J.; Lam, Y.Y.; Leibel, R.L.; Mayer, L.E.; Reitman, M.L.; Rosenbaum, M.; Smith, S.R.; Walsh, B.T.; et al. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am. J. Clin. Nutr. 2016, 104, 324–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guasch-Ferre, M.; Babio, N.; Martinez-Gonzalez, M.A.; Corella, D.; Ros, E.; Martin-Pelaez, S.; Estruch, R.; Aros, F.; Gomez-Gracia, E.; Fiol, M.; et al. Dietary fat intake and risk of cardiovascular disease and all-cause mortality in a population at high risk of cardiovascular disease. Am. J. Clin. Nutr. 2015, 102, 1563–1573. [Google Scholar] [CrossRef] [Green Version]
- Carbone, S.; Canada, J.M.; Billingsley, H.E.; Siddiqui, M.S.; Elagizi, A.; Lavie, C.J. Obesity paradox in cardiovascular disease: Where do we stand? Vasc. Health Risk Manag. 2019, 15, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Iwayama, K.; Kawabuchi, R.; Nabekura, Y.; Kurihara, R.; Park, I.; Kobayashi, M.; Ogata, H.; Kayaba, M.; Omi, N.; Satoh, M.; et al. Exercise before breakfast increases 24-h fat oxidation in female subjects. PLoS ONE 2017, 12, e0180472. [Google Scholar] [CrossRef] [Green Version]
- Iwayama, K.; Kawabuchi, R.; Park, I.; Kurihara, R.; Kobayashi, M.; Hibi, M.; Oishi, S.; Yasunaga, K.; Ogata, H.; Nabekura, Y.; et al. Transient energy deficit induced by exercise increases 24-h fat oxidation in young trained men. J. Appl. Physiol. 2015, 118, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Wood, R.J.; Volek, J.S.; Davis, S.R.; Dell′Ova, C.; Fernandez, M.L. Effects of a carbohydrate-restricted diet on emerging plasma markers for cardiovascular disease. Nutr. Metab. 2006, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Dashti, H.M.; Al-Zaid, N.S.; Mathew, T.C.; Al-Mousawi, M.; Talib, H.; Asfar, S.K.; Behbahani, A.I. Long term effects of ketogenic diet in obese subjects with high cholesterol level. Mol. Cell Biochem. 2006, 286, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Langfort, J.; Ploug, T.; Ihlemann, J.; Holm, C.; Galbo, H. Stimulation of hormone-sensitive lipase activity by contractions in rat skeletal muscle. Biochem. J. 2000, 351, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Storlien, L.H.; Jenkins, A.B.; Chisholm, D.J.; Pascoe, W.S.; Khouri, S.; Kraegen, E.W. Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid. Diabetes 1991, 40, 280–289. [Google Scholar] [CrossRef] [PubMed]
First Author (Year), Country | Design, Number of Participants Per Group, Age | Exercise Intervention | Ketogenic Diet | Outcomes |
---|---|---|---|---|
Gregory (2017), USA | RCT: exercise + ketogenic diet (n = 12) vs. control (n = 15), 34.58 ± 9.26 years old | 6 weeks, 4 CrossFit workouts/week | 6 weeks, restricting carbohydrate intake to no more than 50 g/week (<10% of energy), given a detailed guide on acceptable low-carbohydrate, fat, protein rich foods, keeping dietary food intake records, urinary ketone: ketosis > 15 mg/dl | Body composition (weight, body mass index (BMI), body fat, fat mass, lean body mass), performance (vertical jump, standing long jump, total performance time) |
Gyorkos (2019), USA | RCT: exercise + carbohydrate-restricted Paleolithic-base diet (n = 12), vs. control (n = 12), 40.9 ± 20.2 years old) | 4 weeks, high intensity interval training 10 × 60 s cycling intervals and 60 s of recovery, 3 days/week | 4 weeks, carbohydrate-restricted Paleolithic based diet, protein (25%), fat (60%), carbohydrate (15%, 50 g/d), no restricted calories, blood ketone ß-hydroxybutyrate ketone level: 0.53 ± 0.29 mmol/L | Dietary intake (energy, protein, carbohydrate, total, fat, saturated fat, monounsaturated fat, polyunsaturated fat, alcohol, cholesterol), brain derived neurotrophic factor (BDNF), cognitive symptoms and function, cognitive speed and flexibility, cognitive flexibility |
Sun (2019), China | RCT: high intensity interval training + low carbohydrate (HIIT, n = 18, 20.8 ± 2.7 years old), moderate intensity continuous training + low carbohydrate (MICT, n = 13, 21.5 ± 3.1 years old), control + low carbohydrate (LC-CON, n = 15, 20.9 ± 3.7 years old), vs. control (n = 15, 21.6 ± 3.9 years old) | 4 weeks, high intensity interval training (10 × 6 s cycling sprints and 9 s recovery, total 2.5 min/session), moderate intensity continuous training (30 min cycling, 5 min for warm-up, 50% of VO2peak for 10 min, 60% of VO2peask for 10 min, 5 min for recovery), 5 days/week, pedometers, logbook | 4 weeks, carbohydrate (10%, ~50 g/d), fat (65%), protein (~25%), urinary ketone was detected: 97.6 ± 4.5% in LC-CON, 96.2 ± 8.3% in HIIT, and 96.9 ± 6.0% in the MICT, 3-day food records | Weight, BMI, waist circumference, waist-to-hip ratio, VO2peak, fasting glucose, total cholesterol, HDL, LDL, triglycerides, |
Perissiou (2020), United Kingdom | RCT: exercise + low carbohydrate (n = 33), vs. control (exercise + standard diet, n = 31), 35.3 ± 9 years old | 8 weeks, a combination of aerobic and resistance exercise, 60%~70% heart rate (HR) peak and 85%~95% HRpeak, supervised (1st~2nd week) and unsupervised (3rd~8th week) | 8 weeks, carbohydrate (>50 g/d), ß-hydroxybutyrate ketone level: >0.3 mmol/L | Cardiorespiratory fitness (VO2peak), Total cholesterol, HDL, LDL, triglycerides, fasting glucose, CRP, adiponectin, blood pressure, body weight, total body fat, visceral adipose tissue, lean muscle, mass, fat mass index, total bone mineral density |
Freedland (2019), USA | RCT: exercise + low carbohydrate diet (n = 11), vs. control (n = 18), average 66 years old | 24 weeks, ≥30 min/da, ≥5 days/week | 6 months, low carbohydrate (≤20 g/day) until urinary ketone bodies detected | Carbohydrates, fat, protein, calories, weight, BMI, HOMA, glucose, insulin, HbA1c, cholesterol, LDL, HDL, non-HDL, triglycerides, prostate-specific antigen, HsCRP |
LaFountain (2019), USA | Prospective intervention study: exercise + ketogenic diet (n = 17), 27.4 ± 6.8 years old vs. exercise + mixed diet (n = 17), 24.6 ± 9.0 years old | 12 weeks, progressive resistance training (2 days/week, ~60 min/session, 3 sets of 12 reps at 60%-1 repetition maximum (RM) to 4 sets of 4 reps at 95%-1RM), and cardiopulmonary fitness (running, body-weight circuit training, 30 min) | Limited carbohydrate (25 g/d) and protein (90 g/d), sodium (4~5 g/d), alcohol (≥2 drinks/day), a ketone monitor: ß-hydroxybutyrate ketone level: 1.2 ± 0.3 mM | Basal metabolic rate (RMR), relative RMR, respiratory exchange ratio, % carbohydrate, % fat, anaerobic performance (1RM strength, counter movement, 10 s sprint intervals), resting metabolic rate |
Jabekk (2010), Norway | RCT: exercise + ketogenic diet (n = 8), vs. exercise + regular diet (n = 8), between 20~40 years | 10 weeks, resistance exercise (12 RM, supine leg press, seated leg extension, seated leg curl, seated chest press, seated rowing, seated shoulder press, seated up down, standing biceps curl) | 10 weeks, restricted carbohydrates intake until urinary ketone bodies detected, urine reagent strips | Body weight, lean body mass, fasting blood lipids, glucose, dietary nutrition |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.S.; Lee, J. Effects of Combined Exercise and Low Carbohydrate Ketogenic Diet Interventions on Waist Circumference and Triglycerides in Overweight and Obese Individuals: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 828. https://doi.org/10.3390/ijerph18020828
Lee HS, Lee J. Effects of Combined Exercise and Low Carbohydrate Ketogenic Diet Interventions on Waist Circumference and Triglycerides in Overweight and Obese Individuals: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2021; 18(2):828. https://doi.org/10.3390/ijerph18020828
Chicago/Turabian StyleLee, Hyun Suk, and Junga Lee. 2021. "Effects of Combined Exercise and Low Carbohydrate Ketogenic Diet Interventions on Waist Circumference and Triglycerides in Overweight and Obese Individuals: A Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 18, no. 2: 828. https://doi.org/10.3390/ijerph18020828