Sunlight Exposure and Phototherapy: Perspectives for Healthy Aging in an Era of COVID-19
Abstract
:1. Introduction: Impact of Sunlight on Active and Healthy Aging
2. Phototherapy for Active and Healthy Aging: History and Current Applications
3. Risk Factors and Potential Mechanisms of Severity and Mortality of COVID-19
4. Hypothesis: Potential Impact of Phototherapy with Full-Spectrum Light on the COVID-19 Pandemic
5. Summary and Future Directions for Active and Healthy Aging
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rojstaczer, S.; Sterling, S.M.; Moore, N.J. Human appropriation of photosynthesis products. Science 2001, 294, 2549–2552. [Google Scholar] [CrossRef]
- Yapijakis, C. Hippocrates of Kos, the father of clinical medicine, and Asclepiades of Bithynia, the father of molecular medicine. Review. In Vivo 2009, 23, 507–514. [Google Scholar]
- Hippocrates on Airs, Waters, and Paces. Available online: http://classics.mit.edu//Hippocrates/airwatpl.html (accessed on 3 August 2021).
- Nightingale, F. Notes of Nursing: What It Is and What It Is Not; Harrison: London, UK, 1859.
- Grant, W.B.; Holick, M.F. Benefits and requirements of vitamin D for optimal health: A review. Altern. Med. Rev. J. Clin. Ther. 2005, 10, 94–111. [Google Scholar]
- Holick, M.F. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am. J. Clin. Nutr. 2004, 80, 1678S–1688S. [Google Scholar] [CrossRef] [Green Version]
- Gordon, J.R.; Brieva, J.C. Images in clinical medicine. Unilateral dermatoheliosis. N. Engl. J. Med. 2012, 366, e25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wacker, M.; Holick, M.F. Sunlight and Vitamin D: A global perspective for health. Dermatoendocrinology 2013, 5, 51–108. [Google Scholar] [CrossRef] [Green Version]
- Hoel, D.G.; de Gruijl, F.R. Sun Exposure Public Health Directives. Int. J. Environ. Res. Public Health 2018, 15, 2794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfredsson, L.; Armstrong, B.K.; Butterfield, D.A.; Chowdhury, R.; de Gruijl, F.R.; Feelisch, M.; Garland, C.F.; Hart, P.H.; Hoel, D.G.; Jacobsen, R.; et al. Insufficient Sun Exposure Has Become a Real Public Health Problem. Int. J. Environ. Res. Public Health 2020, 17, 5014. [Google Scholar] [CrossRef]
- Gallagher, J.C. Vitamin D and aging. Endocrinol. Metab. Clin. N. Am. 2013, 42, 319–332. [Google Scholar] [CrossRef] [Green Version]
- Reichrath, J. Skin cancer prevention and UV-protection: How to avoid vitamin D-deficiency? Br. J. Dermatol. 2009, 161 (Suppl. S3), 54–60. [Google Scholar] [CrossRef] [PubMed]
- Lucas, R.M. An epidemiological perspective of ultraviolet exposure—Public health concerns. Eye Contact Lens 2011, 37, 168–175. [Google Scholar] [CrossRef]
- Reichrath, J.; Reichrath, S. Hope and challenge: The importance of ultraviolet (UV) radiation for cutaneous vitamin D synthesis and skin cancer. Scand. J. Clin. Lab. Investig. Suppl. 2012, 243, 112–119. [Google Scholar] [CrossRef]
- Reichrath, J. Lessons Learned from Paleolithic Models and Evolution for Human Health: A Snap Shot on Beneficial Effects and Risks of Solar Radiation. Adv. Exp. Med. Biol. 2020, 1268, 3–15. [Google Scholar] [CrossRef]
- Whittemore, P.B. COVID-19 fatalities, latitude, sunlight, and vitamin D. Am. J. Infect. Control 2020, 48, 1042–1044. [Google Scholar] [CrossRef] [PubMed]
- Walrand, S. Autumn COVID-19 surge dates in Europe correlated to latitudes, not to temperature-humidity, pointing to vitamin D as contributing factor. Sci. Rep. 2021, 11, 1981. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Prettner, K.; Kuhn, M.; Geldsetzer, P.; Wang, C.; Barnighausen, T.; Bloom, D.E. Climate and the spread of COVID-19. Sci. Rep. 2021, 11, 9042. [Google Scholar] [CrossRef]
- Sharun, K.; Tiwari, R.; Dhama, K. COVID-19 and sunlight: Impact on SARS-CoV-2 transmissibility, morbidity, and mortality. Ann. Med. Surg. 2021, 66, 102419. [Google Scholar] [CrossRef]
- Nicastro, F.; Sironi, G.; Antonello, E.; Bianco, A.; Biasin, M.; Brucato, J.R.; Ermolli, I.; Pareschi, G.; Salvati, M.; Tozzi, P.; et al. Solar UV-B/A radiation is highly effective in inactivating SARS-CoV-2. Sci. Rep. 2021, 11, 14805. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.W.; Matsuura, R.; Iimura, K.; Wada, S.; Shinjo, A.; Benno, Y.; Nakagawa, M.; Takei, M.; Aida, Y. UVC disinfects SARS-CoV-2 by induction of viral genome damage without apparent effects on viral morphology and proteins. Sci. Rep. 2021, 11, 13804. [Google Scholar] [CrossRef]
- Grzybowski, A.; Pietrzak, K. From patient to discoverer—Niels Ryberg Finsen (1860-1904)—The founder of phototherapy in dermatology. Clin. Dermatol. 2012, 30, 451–455. [Google Scholar] [CrossRef]
- Enwemeka, C.S.; Bumah, V.V.; Masson-Meyers, D.S. Light as a potential treatment for pandemic coronavirus infections: A perspective. J. Photochem. Photobiol. B Biol. 2020, 207, 111891. [Google Scholar] [CrossRef]
- Stumpf, W.E.; Privette, T.H. Light, vitamin D and psychiatry. Role of 1,25 dihydroxyvitamin D3 (soltriol) in etiology and therapy of seasonal affective disorder and other mental processes. Psychopharmacology 1989, 97, 285–294. [Google Scholar] [CrossRef]
- Tseng, P.T.; Chen, Y.W.; Tu, K.Y.; Chung, W.; Wang, H.Y.; Wu, C.K.; Lin, P.Y. Light therapy in the treatment of patients with bipolar depression: A meta-analytic study. Eur. Neuropsychopharmacol. 2016, 26, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Jurvelin, H.; Jokelainen, J.; Takala, T. Transcranial bright light and symptoms of jet lag: A randomized, placebo-controlled trial. Aerosp. Med. Hum. Perform. 2015, 86, 344–350. [Google Scholar] [CrossRef] [PubMed]
- van Maanen, A.; Meijer, A.M.; van der Heijden, K.B.; Oort, F.J. The effects of light therapy on sleep problems: A systematic review and meta-analysis. Sleep Med. Rev. 2016, 29, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Aarts, M.P.; Aries, M.B.; Diakoumis, A.; van Hoof, J. Shedding a Light on Phototherapy Studies with People having Dementia: A Critical Review of the Methodology from a Light Perspective. Am. J. Alzheimers Dis. Other Dement. 2016, 31, 551–563. [Google Scholar] [CrossRef]
- Figueiro, M.G. Light, sleep and circadian rhythms in older adults with Alzheimer’s disease and related dementias. Neurodegener. Dis. Manag. 2017, 7, 119–145. [Google Scholar] [CrossRef] [Green Version]
- Rizza, S.; Pietroiusti, A.; Farcomeni, A.; Mina, G.G.; Caruso, M.; Virgilio, M.; Magrini, A.; Federici, M.; Coppeta, L. Monthly fluctuations in 25-hydroxy-vitamin D levels in day and rotating night shift hospital workers. J. Endocrinol. Investig. 2020, 43, 1655–1660. [Google Scholar] [CrossRef]
- Stewart, K.T.; Hayes, B.C.; Eastman, C.I. Light treatment for NASA shiftworkers. Chronobiol. Int. 1995, 12, 141–151. [Google Scholar] [CrossRef]
- Eastman, C.I.; Boulos, Z.; Terman, M.; Campbell, S.S.; Dijk, D.J.; Lewy, A.J. Light treatment for sleep disorders: Consensus report. VI. Shift work. J. Biol. Rhythm. 1995, 10, 157–164. [Google Scholar] [CrossRef]
- Samel, A.; Gander, P. Bright light as a chronobiological countermeasure for shiftwork in space. Acta Astronaut. 1995, 36, 669–683. [Google Scholar] [CrossRef]
- Nakano, T.; Cheng, Y.F.; Lai, C.Y.; Hsu, L.W.; Chang, Y.C.; Deng, J.Y.; Huang, Y.Z.; Honda, H.; Chen, K.D.; Wang, C.C.; et al. Impact of artificial sunlight therapy on the progress of non-alcoholic fatty liver disease in rats. J. Hepatol. 2011, 55, 415–425. [Google Scholar] [CrossRef]
- Goto, S.; Nakano, T.; Chen, C.L.; Chiu, K.W.; Hsu, L.W.; Chen, I.H.; Huang, K.T.; Chen, D.W.; Goto, T.; Omori, N.; et al. Application of Artificial Sunlight for the Elderly as a Possible Environmental Nursing Practice. POJ Nurs. Pract. Res. 2018, 2, 1–5. [Google Scholar] [CrossRef]
- MacLaughlin, J.A.; Anderson, R.R.; Holick, M.F. Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin. Science 1982, 216, 1001–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seifert, M.; Tilgen, W.; Reichrath, J. Expression of 25-hydroxyvitamin D-1alpha-hydroxylase (1alphaOHase, CYP27B1) splice variants in HaCaT keratinocytes and other skin cells: Modulation by culture conditions and UV-B treatment in vitro. Anticancer Res. 2009, 29, 3659–3667. [Google Scholar] [PubMed]
- Heiskanen, V.; Pfiffner, M.; Partonen, T. Sunlight and health: Shifting the focus from vitamin D3 to photobiomodulation by red and near-infrared light. Ageing Res. Rev. 2020, 61, 101089. [Google Scholar] [CrossRef] [PubMed]
- Hiratsuka, T.; Inomata, M.; Goto, S.; Oyama, Y.; Nakano, T.; Chen, C.L.; Shiraishi, N.; Noguchi, T.; Kitano, S. Phototherapy with artificial light suppresses dextran sulfate sodium-induced colitis in a mouse model. J. Gastroenterol. Hepatol. 2014, 29, 749–756. [Google Scholar] [CrossRef]
- Hara, T.; Hiratsuka, T.; Etoh, T.; Itai, Y.; Kono, Y.; Shiroshita, H.; Shiraishi, N.; Inomata, M. Intraperitoneal Phototherapy Suppresses Inflammatory Reactions in a Surgical Model of Peritonitis. J. Surg. Res. 2020, 252, 231–239. [Google Scholar] [CrossRef]
- Chen, P.J.; Nakano, T.; Lai, C.Y.; Chang, K.C.; Chen, C.L.; Goto, S. Daily full spectrum light exposure prevents food allergy-like allergic diarrhea by modulating vitamin D3 and microbiota composition. NPJ Biofilms Microbiomes 2021, 7, 41. [Google Scholar] [CrossRef]
- Pearson, J.A.; Wong, F.S.; Wen, L. Crosstalk between circadian rhythms and the microbiota. Immunology 2020, 161, 278–290. [Google Scholar] [CrossRef]
- Cueto-Manzano, A.M.; Espinel-Bermudez, M.C.; Hernandez-Gonzalez, S.O.; Rojas-Campos, E.; Nava-Zavala, A.H.; Fuentes-Orozco, C.; Balderas-Pena, L.M.A.; Gonzalez-Ojeda, A.; Cortes-Sanabria, L.; Mireles-Ramirez, M.A.; et al. Risk factors for mortality of adult patients with COVID-19 hospitalised in an emerging country: A cohort study. BMJ Open 2021, 11, e050321. [Google Scholar] [CrossRef]
- Mohan, M.; Cherian, J.J.; Sharma, A. Exploring links between vitamin D deficiency and COVID-19. PLoS Pathog. 2020, 16, e1008874. [Google Scholar] [CrossRef] [PubMed]
- Zemb, P.; Bergman, P.; Camargo, C.A., Jr.; Cavalier, E.; Cormier, C.; Courbebaisse, M.; Hollis, B.; Joulia, F.; Minisola, S.; Pilz, S.; et al. Vitamin D deficiency and the COVID-19 pandemic. J. Glob. Antimicrob. Resist. 2020, 22, 133–134. [Google Scholar] [CrossRef]
- Radujkovic, A.; Hippchen, T.; Tiwari-Heckler, S.; Dreher, S.; Boxberger, M.; Merle, U. Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients 2020, 12, 2757. [Google Scholar] [CrossRef] [PubMed]
- Weir, E.K.; Thenappan, T.; Bhargava, M.; Chen, Y. Does vitamin D deficiency increase the severity of COVID-19? Clin. Med. 2020, 20, e107–e108. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Dantas Damascena, A.; Galvao Azevedo, L.M.; de Almeida Oliveira, T.; da Mota Santana, J. Vitamin D deficiency aggravates COVID-19: Systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2020, 1–9, epub ahead of print. [Google Scholar] [CrossRef]
- Drucker, D.J. Coronavirus Infections and Type 2 Diabetes-Shared Pathways with Therapeutic Implications. Endocr. Rev. 2020, 41, 457–470. [Google Scholar] [CrossRef]
- Radzikowska, U.; Ding, M.; Tan, G.; Zhakparov, D.; Peng, Y.; Wawrzyniak, P.; Wang, M.; Li, S.; Morita, H.; Altunbulakli, C.; et al. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy 2020, 75, 2829–2845. [Google Scholar] [CrossRef]
- Zamorano Cuervo, N.; Grandvaux, N. ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. eLife 2020, 9, e61390. [Google Scholar] [CrossRef]
- Bassendine, M.F.; Bridge, S.H.; McCaughan, G.W.; Gorrell, M.D. COVID-19 and comorbidities: A role for dipeptidyl peptidase 4 (DPP4) in disease severity? J. Diabetes 2020, 12, 649–658. [Google Scholar] [CrossRef]
- Cameron, K.; Rozano, L.; Falasca, M.; Mancera, R.L. Does the SARS-CoV-2 Spike Protein Receptor Binding Domain Interact Effectively with the DPP4 (CD26) Receptor? A Molecular Docking Study. Int. J. Mol. Sci. 2021, 22, 7001. [Google Scholar] [CrossRef] [PubMed]
- Irani, A.H.; Steyn-Ross, D.A.; Steyn-Ross, M.L.; Voss, L.; Sleigh, J. The molecular dynamics of possible inhibitors for SARS-CoV-2. J. Biomol. Struct. Dyn. 2021, 1–10, epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.Y.; Lee, J.; Nam, H.; Kyoung, D.S.; Shin, D.W.; Kim, D.J. Effects of a DPP-4 Inhibitor and RAS Blockade on Clinical Outcomes of Patients with Diabetes and COVID-19. Diabetes Metab. J. 2021, 45, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, S.; Niu, S. ACE2 and COVID-19 and the resulting ARDS. Postgrad. Med. J. 2020, 96, 403–407. [Google Scholar] [CrossRef]
- Malek Mahdavi, A. A brief review of interplay between vitamin D and angiotensin-converting enzyme 2: Implications for a potential treatment for COVID-19. Rev. Med. Virol. 2020, 30, e2119. [Google Scholar] [CrossRef]
- Unamuno, X.; Gomez-Ambrosi, J.; Rodriguez, A.; Becerril, S.; Fruhbeck, G.; Catalan, V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur. J. Clin. Investig. 2018, 48, e12997. [Google Scholar] [CrossRef] [Green Version]
- Landecho, M.F.; Marin-Oto, M.; Recalde-Zamacona, B.; Bilbao, I.; Fruhbeck, G. Obesity as an adipose tissue dysfunction disease and a risk factor for infections—Covid-19 as a case study. Eur. J. Intern. Med. 2021. [Google Scholar] [CrossRef]
- Rajpal, A.; Rahimi, L.; Ismail-Beigi, F. Factors leading to high morbidity and mortality of COVID-19 in patients with type 2 diabetes. J. Diabetes 2020, 12, 895–908. [Google Scholar] [CrossRef]
- Ferreira, C.; Viana, S.D.; Reis, F. Is Gut Microbiota Dysbiosis a Predictor of Increased Susceptibility to Poor Outcome of COVID-19 Patients? An Update. Microorganisms 2020, 9, 53. [Google Scholar] [CrossRef]
- Machado, A.S.; Oliveira, J.R.; Lelis, D.d.F.; Guimarães, V.H.D.; de Paula, A.M.B.; Guimaraes, A.L.S.; Brandi, I.V.; de Carvalho, B.M.A.; da Costa, D.V.; Vieira, C.R.; et al. Oral angiotensin-(1-7) peptide modulates intestinal microbiota improving metabolic profile in obese mice. Protein Pept. Lett. 2021. epub ahead of print. [Google Scholar] [CrossRef]
- Di Salvo, E.; Di Gioacchino, M.; Tonacci, A.; Casciaro, M.; Gangemi, S. Alarmins, COVID-19 and comorbidities. Ann. Med. 2021, 53, 777–785. [Google Scholar] [CrossRef]
- Chen, L.; Long, X.; Xu, Q.; Tan, J.; Wang, G.; Cao, Y.; Wei, J.; Luo, H.; Zhu, H.; Huang, L.; et al. Elevated serum levels of S100A8/A9 and HMGB1 at hospital admission are correlated with inferior clinical outcomes in COVID-19 patients. Cell. Mol. Immunol. 2020, 17, 992–994. [Google Scholar] [CrossRef]
- Sivakorn, C.; Dechsanga, J.; Jamjumrus, L.; Boonnak, K.; Schultz, M.J.; Dorndorp, A.M.; Phumratanaprapin, W.; Ratanarat, R.; Naorungroj, T.; Wattanawinitchai, P.; et al. High Mobility Group Box 1 and Interleukin 6 at Intensive Care Unit Admission as Biomarkers in Critically Ill COVID-19 Patients. Am. J. Trop. Med. Hyg. 2021, 105, 73–80. [Google Scholar] [CrossRef]
- Shaw, R.J.; Abrams, S.T.; Austin, J.; Taylor, J.M.; Lane, S.; Dutt, T.; Downey, C.; Du, M.; Turtle, L.; Baillie, J.K.; et al. Circulating histones play a central role in COVID-19-associated coagulopathy and mortality. Haematologica 2021, 106, 2493–2498. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Zhang, C.; A, X.; Wang, Y.; Cui, W.; Li, H.; Du, J. S100a8/a9 released by CD11b+Gr1+ neutrophils activates cardiac fibroblasts to initiate angiotensin II-Induced cardiac inflammation and injury. Hypertension 2014, 63, 1241–1250. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, B.; Yu, Y.; Wang, J.; Wu, J.; Su, Y.; Jiang, H.; Zou, Y.; Ge, J. Angiotensin II Increases HMGB1 Expression in the Myocardium Through AT1 and AT2 Receptors When Under Pressure Overload. Int. Heart J. 2021, 62, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Rabie, M.A.; Abd El Fattah, M.A.; Nassar, N.N.; Abdallah, D.M.; El-Abhar, H.S. Correlation between angiotensin 1-7-mediated Mas receptor expression with motor improvement, activated STAT3/SOCS3 cascade, and suppressed HMGB-1/RAGE/NF-kappaB signaling in 6-hydroxydopamine hemiparkinsonian rats. Biochem. Pharmacol. 2020, 171, 113681. [Google Scholar] [CrossRef] [PubMed]
- Araki, K.; Kinoshita, R.; Tomonobu, N.; Gohara, Y.; Tomida, S.; Takahashi, Y.; Senoo, S.; Taniguchi, A.; Itano, J.; Yamamoto, K.I.; et al. The heterodimer S100A8/A9 is a potent therapeutic target for idiopathic pulmonary fibrosis. J. Mol. Med. 2021, 99, 131–145. [Google Scholar] [CrossRef]
- Wang, H.; Yang, H.; Tracey, K.J. Extracellular role of HMGB1 in inflammation and sepsis. J. Intern. Med. 2004, 255, 320–331. [Google Scholar] [CrossRef] [PubMed]
- Kusano, T.; Chiang, K.C.; Inomata, M.; Shimada, Y.; Ohmori, N.; Goto, T.; Sato, S.; Goto, S.; Nakano, T.; Kawamoto, S.; et al. A novel anti-histone H1 monoclonal antibody, SSV monoclonal antibody, improves lung injury and survival in a mouse model of lipopolysaccharide-induced sepsis-like syndrome. BioMed Res. Int. 2015, 2015, 491649. [Google Scholar] [CrossRef] [Green Version]
- Deng, Q.; Pan, B.; Alam, H.B.; Liang, Y.; Wu, Z.; Liu, B.; Mor-Vaknin, N.; Duan, X.; Williams, A.M.; Tian, Y.; et al. Citrullinated Histone H3 as a Therapeutic Target for Endotoxic Shock in Mice. Front. Immunol. 2019, 10, 2957. [Google Scholar] [CrossRef]
- Farjana, M.; Moni, A.; Sohag, A.A.M.; Hasan, A.; Hannan, M.A.; Hossain, M.G.; Uddin, M.J. Repositioning Vitamin C as a Promising Option to Alleviate Complications associated with COVID-19. Infect. Chemother. 2020, 52, 461–477. [Google Scholar] [CrossRef]
- Karkhanei, B.; Talebi Ghane, E.; Mehri, F. Evaluation of oxidative stress level: Total antioxidant capacity, total oxidant status and glutathione activity in patients with COVID-19. New Microbes New Infect. 2021, 42, 100897. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili Gouvarchin Ghaleh, H.; Hosseini, A.; Aghamollaei, H.; Fasihi-Ramandi, M.; Alishiri, G.; Saeedi-Boroujeni, A.; Hassanpour, K.; Mahmoudian-Sani, M.R.; Farnoosh, G. NLRP3 inflammasome activation and oxidative stress status in the mild and moderate SARS-CoV-2 infected patients: Impact of melatonin as a medicinal supplement. Z. Fur Naturforschung. C J. Biosci. 2021. epub ahead of print. [Google Scholar] [CrossRef]
- Rochette, L.; Ghibu, S. Mechanics Insights of Alpha-Lipoic Acid against Cardiovascular Diseases during COVID-19 Infection. Int. J. Mol. Sci. 2021, 22, 7979. [Google Scholar] [CrossRef] [PubMed]
- Murai, I.H.; Fernandes, A.L.; Sales, L.P.; Pinto, A.J.; Goessler, K.F.; Duran, C.S.C.; Silva, C.B.R.; Franco, A.S.; Macedo, M.B.; Dalmolin, H.H.H.; et al. Effect of a Single High Dose of Vitamin D3 on Hospital Length of Stay in Patients With Moderate to Severe COVID-19: A Randomized Clinical Trial. JAMA 2021, 325, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Butler-Laporte, G.; Nakanishi, T.; Mooser, V.; Morrison, D.R.; Abdullah, T.; Adeleye, O.; Mamlouk, N.; Kimchi, N.; Afrasiabi, Z.; Rezk, N.; et al. Vitamin D and COVID-19 susceptibility and severity in the COVID-19 Host Genetics Initiative: A Mendelian randomization study. PLoS Med. 2021, 18, e1003605. [Google Scholar] [CrossRef] [PubMed]
- Sabico, S.; Enani, M.A.; Sheshah, E.; Aljohani, N.J.; Aldisi, D.A.; Alotaibi, N.H.; Alshingetti, N.; Alomar, S.Y.; Alnaami, A.M.; Amer, O.E.; et al. Effects of a 2-Week 5000 IU versus 1000 IU Vitamin D3 Supplementation on Recovery of Symptoms in Patients with Mild to Moderate Covid-19: A Randomized Clinical Trial. Nutrients 2021, 13, 2170. [Google Scholar] [CrossRef] [PubMed]
- Oristrell, J.; Oliva, J.C.; Casado, E.; Subirana, I.; Dominguez, D.; Toloba, A.; Balado, A.; Grau, M. Vitamin D supplementation and COVID-19 risk: A population-based, cohort study. J. Endocrinol. Investig. 2021, 1–13, epub ahead of print. [Google Scholar] [CrossRef]
- Asif, A.; Farooq, N. Vitamin D Toxicity; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Caglar, A.; Tugce Caglar, H. Vitamin D intoxication due to misuse: 5-year experience. Arch. Pediatr. 2021, 28, 222–225. [Google Scholar] [CrossRef]
- Holick, M.F.; Chen, T.C.; Lu, Z.; Sauter, E. Vitamin D and skin physiology: A D-lightful story. J. Bone Miner. Res. 2007, 22 (Suppl. S2), V28–V33. [Google Scholar] [CrossRef]
- Kearns, S.M.; Ahern, K.W.; Patrie, J.T.; Horton, W.B.; Harris, T.E.; Kadl, A. Reduced adiponectin levels in patients with COVID-19 acute respiratory failure: A case-control study. Physiol. Rep. 2021, 9, e14843. [Google Scholar] [CrossRef]
- Yin, Y.W.; Sheng, Y.J.; Wang, M.; Ma, Y.Q.; Ding, H.M. Interaction of serum proteins with SARS-CoV-2 RBD. Nanoscale 2021, 13, 12865–12873. [Google Scholar] [CrossRef]
- Nakano, T.; Chen, C.L.; Goto, S. Nuclear antigens and auto/alloantibody responses: Friend or foe in transplant immunology. Clin. Dev. Immunol. 2013, 2013, 267156. [Google Scholar] [CrossRef] [Green Version]
- Nakano, T.; Goto, S.; Lai, C.Y.; Hsu, L.W.; Tseng, H.P.; Chen, K.D.; Chiu, K.W.; Wang, C.C.; Cheng, Y.F.; Chen, C.L. Induction of antinuclear antibodies by de novo autoimmune hepatitis regulates alloimmune responses in rat liver transplantation. Clin. Dev. Immunol. 2013, 2013, 413928. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.N.; Joo, E.J.; Lee, C.W.; Ahn, K.S.; Kim, H.L.; Park, D.I.; Park, S.K. Reversion of Gut Microbiota during the Recovery Phase in Patients with Asymptomatic or Mild COVID-19: Longitudinal Study. Microorganisms 2021, 9, 1237. [Google Scholar] [CrossRef]
- Dickson, R.P.; Schultz, M.J.; van der Poll, T.; Schouten, L.R.; Falkowski, N.R.; Luth, J.E.; Sjoding, M.W.; Brown, C.A.; Chanderraj, R.; Huffnagle, G.B.; et al. Lung Microbiota Predict Clinical Outcomes in Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2020, 201, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Nejadghaderi, S.A.; Nazemalhosseini-Mojarad, E.; Asadzadeh Aghdaei, H. Fecal microbiota transplantation for COVID-19; a potential emerging treatment strategy. Med. Hypotheses 2021, 147, 110476. [Google Scholar] [CrossRef] [PubMed]
- Bilinski, J.; Winter, K.; Jasinski, M.; Szczes, A.; Bilinska, N.; Mullish, B.H.; Malecka-Panas, E.; Basak, G.W. Rapid resolution of COVID-19 after faecal microbiota transplantation. Gut 2021. epub ahead of print. [Google Scholar] [CrossRef]
- Wu, T.R.; Lin, C.S.; Chang, C.J.; Lin, T.L.; Martel, J.; Ko, Y.F.; Ojcius, D.M.; Lu, C.C.; Young, J.D.; Lai, H.C. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut 2019, 68, 248–262. [Google Scholar] [CrossRef]
- Huang, T.T.; Lai, H.C.; Ko, Y.F.; Ojcius, D.M.; Lan, Y.W.; Martel, J.; Young, J.D.; Chong, K.Y. Hirsutella sinensis mycelium attenuates bleomycin-induced pulmonary inflammation and fibrosis in vivo. Sci. Rep. 2015, 5, 15282. [Google Scholar] [CrossRef] [Green Version]
- Lai, H.C.; Lin, T.L.; Chen, T.W.; Kuo, Y.L.; Chang, C.J.; Wu, T.R.; Shu, C.C.; Tsai, Y.H.; Swift, S.; Lu, C.C. Gut microbiota modulates COPD pathogenesis: Role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide. Gut 2021. epub ahead of print. [Google Scholar] [CrossRef]
- Li, M.Y.; Li, L.; Zhang, Y.; Wang, X.S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty 2020, 9, 45. [Google Scholar] [CrossRef]
- D’Amico, F.; Baumgart, D.C.; Danese, S.; Peyrin-Biroulet, L. Diarrhea During COVID-19 Infection: Pathogenesis, Epidemiology, Prevention, and Management. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2020, 18, 1663–1672. [Google Scholar] [CrossRef] [PubMed]
- Darling, A.; Ahmadi, K.R.; Ward, K.A.; Harvey, N.C.; Couto Alves, A.; Dunn-Walters, D.K.; Lanham-New, S.A.; Cooer, C.; Blackbourn, D.J. Vitamin D concentration, body mass index, ethnicity and SARS-CoV-2/COVID-19: Initial analysis of the first-reported UK Biobank Cohort positive cases (n 1474) compared with negative controls (n 4643). Proc. Nutr. Soc. 2021, 80, E17. [Google Scholar] [CrossRef]
- Sidiropoulou, P.; Docea, A.O.; Nikolaou, V.; Katsarou, M.S.; Spandidos, D.A.; Tsatsakis, A.; Calina, D.; Drakoulis, N. Unraveling the roles of vitamin D status and melanin during COVID-19 (Review). Int. J. Mol. Med. 2021, 47, 92–100. [Google Scholar] [CrossRef]
- DeLuccia, R.; Clegg, D.; Sukumar, D. The implications of vitamin D deficiency on COVID-19 for at-risk populations. Nutr. Rev. 2021, 79, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Umeda-Raffa, S.; Pergolizzi, J.V., Jr.; Raffa, R.B. Bone fractures during the time of coronavirus. J. Clin. Pharm. Ther. 2021, 46, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Zupin, L.; Gratton, R.; Fontana, F.; Clemente, L.; Pascolo, L.; Ruscio, M.; Crovella, S. Blue photobiomodulation LED therapy impacts SARS-CoV-2 by limiting its replication in Vero cells. J. Biophotonics 2021, 14, e202000496. [Google Scholar] [CrossRef]
- Pelletier-Aouizerate, M.; Zivic, Y. Early cases of acute infectious respiratory syndrome treated with photobiomodulation, diagnosis and intervention: Two case reports. Clin. Case Rep. 2021, 9, 2429–2437. [Google Scholar] [CrossRef]
- Costa, S.G.; Barioni, E.D.; Ignacio, A.; Albuquerque, J.; Camara, N.O.S.; Pavani, C.; Vitoretti, L.B.; Damazo, A.S.; Farsky, S.H.P.; Lino-Dos-Santos-Franco, A. Beneficial effects of Red Light-Emitting Diode treatment in experimental model of acute lung injury induced by sepsis. Sci. Rep. 2017, 7, 12670. [Google Scholar] [CrossRef]
- Moraes, M.N.; de Assis, L.V.M.; Provencio, I.; Castrucci, A.M.L. Opsins outside the eye and the skin: A more complex scenario than originally thought for a classical light sensor. Cell Tissue Res. 2021. [Google Scholar] [CrossRef]
- Sikka, G.; Hussmann, G.P.; Pandey, D.; Cao, S.; Hori, D.; Park, J.T.; Steppan, J.; Kim, J.H.; Barodka, V.; Myers, A.C.; et al. Melanopsin mediates light-dependent relaxation in blood vessels. Proc. Natl. Acad. Sci. USA 2014, 111, 17977–17982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreto Ortiz, S.; Hori, D.; Nomura, Y.; Yun, X.; Jiang, H.; Yong, H.; Chen, J.; Paek, S.; Pandey, D.; Sikka, G.; et al. Opsin 3 and 4 mediate light-induced pulmonary vasorelaxation that is potentiated by G protein-coupled receptor kinase 2 inhibition. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018, 314, L93–L106. [Google Scholar] [CrossRef] [PubMed]
- Yim, P.D.; Gallos, G.; Perez-Zoghbi, J.F.; Zhang, Y.; Xu, D.; Wu, A.; Berkowitz, D.E.; Emala, C.W. Airway smooth muscle photorelaxation via opsin receptor activation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 316, L82–L93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahkamo, L.; Partonen, T.; Pesonen, A.K. Systematic review of light exposure impact on human circadian rhythm. Chronobiol. Int. 2019, 36, 151–170. [Google Scholar] [CrossRef] [Green Version]
- Park, P.J.; Cho, J.Y.; Cho, E.G. Specific visible radiation facilitates lipolysis in mature 3T3-L1 adipocytes via rhodopsin-dependent beta3-adrenergic signaling. Eur. J. Cell Biol. 2017, 96, 301–311. [Google Scholar] [CrossRef]
- Ondrusova, K.; Fatehi, M.; Barr, A.; Czarnecka, Z.; Long, W.; Suzuki, K.; Campbell, S.; Philippaert, K.; Hubert, M.; Tredget, E.; et al. Subcutaneous white adipocytes express a light sensitive signaling pathway mediated via a melanopsin/TRPC channel axis. Sci. Rep. 2017, 7, 16332. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Tsuji, T.; Yang, K.; Ren, X.; Dreyfuss, J.M.; Huang, T.L.; Wang, C.H.; Shamsi, F.; Leiria, L.O.; Lynes, M.D.; et al. Cell-autonomous light sensitivity via Opsin3 regulates fuel utilization in brown adipocytes. PLoS Biol. 2020, 18, e3000630. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.; Hong, S.; Zhang, J.; Ma, L.; Sun, Y.; Zhang, D.; Shen, B.; Zhu, C. Opsin3 sensitizes hepatocellular carcinoma cells to 5-fluorouracil treatment by regulating the apoptotic pathway. Cancer Lett. 2012, 320, 96–103. [Google Scholar] [CrossRef]
- Yoshimoto, T.; Morine, Y.; Takasu, C.; Feng, R.; Ikemoto, T.; Yoshikawa, K.; Iwahashi, S.; Saito, Y.; Kashihara, H.; Akutagawa, M.; et al. Blue light-emitting diodes induce autophagy in colon cancer cells by Opsin 3. Ann. Gastroenterol. Surg. 2018, 2, 154–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Wang, R.; Yang, Y.; Xu, T.; Li, Y.; Xu, J.; Jiang, Z. Expression of OPN3 in lung adenocarcinoma promotes epithelial-mesenchymal transition and tumor metastasis. Thorac. Cancer 2020, 11, 286–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Zhang, T.; Chang, X.; Wang, K.; Lee, M.H.; Ma, W.Y.; Liu, K.; Dong, Z. Targeting Opsin4/Melanopsin with a Novel Small Molecule Suppresses PKC/RAF/MEK/ERK Signaling and Inhibits Lung Adenocarcinoma Progression. Mol. Cancer Res. MCR 2020, 18, 1028–1038. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakano, T.; Chiang, K.-C.; Chen, C.-C.; Chen, P.-J.; Lai, C.-Y.; Hsu, L.-W.; Ohmori, N.; Goto, T.; Chen, C.-L.; Goto, S. Sunlight Exposure and Phototherapy: Perspectives for Healthy Aging in an Era of COVID-19. Int. J. Environ. Res. Public Health 2021, 18, 10950. https://doi.org/10.3390/ijerph182010950
Nakano T, Chiang K-C, Chen C-C, Chen P-J, Lai C-Y, Hsu L-W, Ohmori N, Goto T, Chen C-L, Goto S. Sunlight Exposure and Phototherapy: Perspectives for Healthy Aging in an Era of COVID-19. International Journal of Environmental Research and Public Health. 2021; 18(20):10950. https://doi.org/10.3390/ijerph182010950
Chicago/Turabian StyleNakano, Toshiaki, Kuei-Chen Chiang, Chien-Chih Chen, Po-Jung Chen, Chia-Yun Lai, Li-Wen Hsu, Naoya Ohmori, Takeshi Goto, Chao-Long Chen, and Shigeru Goto. 2021. "Sunlight Exposure and Phototherapy: Perspectives for Healthy Aging in an Era of COVID-19" International Journal of Environmental Research and Public Health 18, no. 20: 10950. https://doi.org/10.3390/ijerph182010950
APA StyleNakano, T., Chiang, K.-C., Chen, C.-C., Chen, P.-J., Lai, C.-Y., Hsu, L.-W., Ohmori, N., Goto, T., Chen, C.-L., & Goto, S. (2021). Sunlight Exposure and Phototherapy: Perspectives for Healthy Aging in an Era of COVID-19. International Journal of Environmental Research and Public Health, 18(20), 10950. https://doi.org/10.3390/ijerph182010950