The Impact of Sustainability Goals on Productivity Growth: The Moderating Role of Global Warming
Abstract
:1. Introduction
2. Literature and Hypotheses
3. Research Design and Methodologies
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Obs. | Mean | SD | Min. | Max. | Skewness | Kurtosis | LLC |
---|---|---|---|---|---|---|---|---|
Δln(y) | 2346 | 0.017 | 0.048 | −0.456 | 0.469 | −1.049 | 24.122 | −18.1 *** |
sk | 2319 | 22.392 | 6.327 | 1.096 | 48.412 | 0.508 | 4.159 | −8.3 *** |
(n + δ + g) | 2346 | 0.071 | 0.031 | −0.269 | 0.494 | 1.828 | 40.409 | −10.7 *** |
Temp | 2447 | 1.011 | 0.503 | −0.494 | 2.917 | 0.518 | 3.363 | −12.4 *** |
CO2 | 2334 | 0.491 | 0.417 | 0.031 | 4.125 | 2.567 | 13.177 | −9.7 *** |
Life | 2484 | 70.214 | 9.538 | 39.441 | 84.681 | −0.874 | 2.961 | −39.5 *** |
MDER | 2478 | 1829.26 | 105.69 | 1620 | 2072 | −0.027 | 1.851 | −16.7 *** |
Δln(y) | ln(sk) | ln(n+δ+g) | Temp | CO2 | ln(Life) | ln(MDER) | |
---|---|---|---|---|---|---|---|
Δln(y) | 1 | ||||||
ln(sk) | 0.133 *** | 1 | |||||
(n + δ + g) | −0.370 *** | 0.021 | 1 | ||||
Temp | −0.074 *** | 0.128 *** | −0.054 *** | 1 | |||
CO2 | 0.075 *** | 0.148 *** | −0.01 | 0.084 *** | 1 | ||
ln(Life) | −0.050 ** | 0.291 *** | −0.176 *** | 0.206 *** | 0.034 * | 1 | |
ln(MDER) | −0.019 | 0.210 *** | −0.227 *** | 0.307 *** | 0.081 *** | 0.720 *** | 1 |
References
- Eisenmenger, N.; Pichler, M.; Krenmayr, N.; Noll, D.; Plank, B.; Schalmann, E.; Wandl, M.-T.; Gingrich, S. The Sustainable Development Goals prioritize economic growth over sustainable resource use: A critical reflection on the SDGs from a socio-ecological perspective. Sustain. Sci. 2020, 15, 1101–1110. [Google Scholar] [CrossRef]
- United Nations Environment Programme. A UN Framework for the Immediate Socio-Economic Response to COVID-19; UN: New York, NY, USA, 2020. [Google Scholar]
- Mariño, R.; Singh Banga, R. UN Sustainable Development Goals (SDGs): A time to act. J. Oral Res. 2016, 5, 5–6. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.; Metternicht, G.; Wiedmann, T. Initial progress in implementing the Sustainable Development Goals (SDGs): A review of evidence from countries. Sustain. Sci. 2018, 13, 1453–1467. [Google Scholar] [CrossRef]
- Tiseo, I. Global Climate Change. 2020. Available online: https://www.statista.com/statistics/492507/concerns-about-climate-change-united-states-by-age-group/ (accessed on 27 September 2021).
- Suggitt, A.J.; Gillingham, P.K.; Hill, J.K.; Huntley, B.; Kunin, W.E.; Roy, D.B.; Thomas, C.D. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 2011, 120, 1–8. [Google Scholar] [CrossRef]
- Forzieri, G.; Cescatti, A.; e Silva, F.B.; Feyen, L. Increasing risk over time of weather-related hazards to the European population: A data-driven prognostic study. Lancet Planet. Health 2017, 1, 200–208. [Google Scholar] [CrossRef]
- Watts, N.; Amann, M.; Ayeb-Karlsson, S.; Belesova, K.; Bouley, T.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; Chambers, J.; et al. The Lancet Countdown on health and climate change: From 25 years of inaction to a global transformation for public health. Lancet 2018, 391, 581–630. [Google Scholar] [CrossRef]
- Kriegler, E.; Edmonds, J.; Hallegatte, S.; Ebi, K.L.; Kram, T.; Riahi, K.; Winkler, H.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared climate policy assumptions. Clim. Chang. 2014, 122, 401–414. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Kohler, T.A.; Lenton, T.M.; Svenning, J.C.; Scheffer, M. Future of the human climate niche. Proc. Natl. Acad. Sci. USA 2020, 117, 11350. [Google Scholar] [CrossRef] [PubMed]
- McMichael, A.J.; Woodruff, R.E.; Hales, S. Climate change and human health: Present and future risks. Lancet 2006, 367, 859–869. [Google Scholar] [CrossRef]
- Roson, R.; Mensbrugghe, D. Van der Climate change and economic growth: Impacts and interactions. Int. J. Sustain. Econ. 2012, 4, 270–285. [Google Scholar] [CrossRef]
- Kalaitzidakis, P.; Mamuneas, T.; Stengos, T. Greenhouse Emissions and Productivity Growth. J. Risk Financ. Manag. 2018, 11, 38. [Google Scholar] [CrossRef] [Green Version]
- Blundell, R.; Bond, S.; Windmeijer, F. Estimation in dynamic panel data models: Improving on the performance of the standard GMM estimator. In Nonstationary Panels, Panel Cointegration, and Dynamic Panels; Baltagi, B.H., Fomby, T.B., Carter Hill, R., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2001; pp. 53–91. ISBN 0731-9053. [Google Scholar]
- Allen, C.; Metternicht, G.; Wiedmann, T. National pathways to the Sustainable Development Goals (SDGs): A comparative review of scenario modelling tools. Environ. Sci. Policy 2016, 66, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Dell, M.; Jones, B.F.; Olken, B.A. Temperature shocks and economic growth: Evidence from the last half century. Am. Econ. J. Macroecon. 2012, 4, 66–95. [Google Scholar] [CrossRef] [Green Version]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [Green Version]
- Mugambiwa, S.S.; Tirivangasi, H.M. Climate change: A threat towards achieving “sustainable development goal number two” (end hunger, achieve food security and improved nutrition and promote sustainable agriculture) in South Africa. Jamba J. Dis. Risk Stud. 2017, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Burke, M.; Hsiang, S.M.; Miguel, E. Global non-linear effect of temperature on economic production. Nature 2015, 527, 235–239. [Google Scholar] [CrossRef]
- Tol, R.S.J. The Economic Effects of Climate Change. J. Econ. Perspect. 2009, 23, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, M.; Brovkin, V.; Cox, P.M. Positive feedback between global warming and atmospheric CO 2 concentration inferred from past climate change. Geophys. Res. Lett. 2006, 33, L10702. [Google Scholar] [CrossRef]
- Florides, G.A.; Christodoulides, P. Global warming and carbon dioxide through sciences. Environ. Int. 2009, 35, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Esso, L.J.; Keho, Y. Energy consumption, economic growth and carbon emissions: Cointegration and causality evidence from selected African countries. Energy 2016, 114, 492–497. [Google Scholar] [CrossRef]
- Rigas, N.; Kounetas, K. The Role of temperature, Precipitation and CO2 emissions on Countries’ Economic Growth and Productivity. MPRA Pap. 2021, 104, 104727. [Google Scholar] [CrossRef]
- Stern, D.I.; Common, M.S.; Barbier, E.B. Economic growth and environmental degradation: The environmental Kuznets curve and sustainable development. World Dev. 1996, 24, 1151–1160. [Google Scholar] [CrossRef]
- Balogh, J.M.; Jámbor, A. Determinants of CO2 emission: A global evidence. Int. J. Energy Econ. Policy 2017, 7, 217–226. [Google Scholar]
- Jardón, A.; Kuik, O.; Tol, R.S.J. Economic growth and carbon dioxide emissions: An analysis of Latin America and the Caribbean. Atmosfera 2017, 30, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.K.; Khan, M.I.; Rehan, M. The relationship between energy consumption, economic growth and carbon dioxide emissions in Pakistan. Financ. Innov. 2020, 6, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Ansuategi, A.; Perrings, C. Transboundary externalities in the environmental transition hypothesis. Environ. Resour. Econ. 2000, 17, 353–373. [Google Scholar] [CrossRef]
- Chavaillaz, Y.; Roy, P.; Partanen, A.-I.; Da Silva, L.; Bresson, É.; Mengis, N.; Chaumont, D.; Matthews, H.D. Exposure to excessive heat and impacts on labour productivity linked to cumulative CO2 emissions. Sci. Rep. 2019, 9, 13711. [Google Scholar] [CrossRef]
- Azam, M.; Khan, A.Q.; Abdullah, H.B.; Qureshi, M.E. The impact of CO2 emissions on economic growth: Evidence from selected higher CO2 emissions economies. Environ. Sci. Pollut. Res. 2016, 23, 6376–6389. [Google Scholar] [CrossRef]
- Lorentzen, P.; McMillan, J.; Wacziarg, R. Death and development. J. Econ. Growth 2008, 13, 81–124. [Google Scholar] [CrossRef]
- Acemoglu, D.; Johnson, S. Disease and development: The effect of life expectancy on economic growth. J. Polit. Econ. 2007, 115, 925–985. [Google Scholar] [CrossRef] [Green Version]
- Cervellati, M.; Sunde, U. Life expectancy and economic growth: The role of the demographic transition. J. Econ. Growth 2011, 16, 99–133. [Google Scholar] [CrossRef]
- Timmer, C.P. Food Security and Economic Growth: An Asian perspective. Asia. Pac. Econ. Lit. 2005, 19, 1–17. [Google Scholar] [CrossRef]
- Gandhi, V.P.; Zhou, Z. Food demand and the food security challenge with rapid economic growth in the emerging economies of India and China. Food Res. Int. 2014, 63, 108–124. [Google Scholar] [CrossRef]
- Deolalikar, A.B. Nutrition and Labor Productivity in Agriculture: Estimates for Rural South India. Rev. Econ. Stat. 1988, 70, 406–413. [Google Scholar] [CrossRef]
- Son, J.Y.; Gouveia, N.; Bravo, M.A.; de Freitas, C.U.; Bell, M.L. The impact of temperature on mortality in a subtropical city: Effects of cold, heat, and heat waves in São Paulo, Brazil. Int. J. Biometeorol. 2016, 60, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Zivin, J.G.; Neidell, M. Temperature and the allocation of time: Implications for climate change. J. Labor Econ. 2014, 32, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Horrocks, J.; Menclova, A.K. The effects of weather on crime. N. Zeal. Econ. Pap. 2011, 45, 231–254. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Kebede, A.S. Indirect impacts of coastal climate change and sea-level rise: The UK example. Clim. Policy 2012, 12, S28–S52. [Google Scholar] [CrossRef]
- Woodard, D.L.; Davis, S.J.; Randerson, J.T. Economic carbon cycle feedbacks may offset additional warming from natural feedbacks. Proc. Natl. Acad. Sci. USA 2019, 116, 759–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauer, M.E.; Santos-Lozada, A.R. Inaction on Climate Change Projected to Reduce European Life Expectancy. Popul. Res. Policy Rev. 2021, 40, 629–638. [Google Scholar] [CrossRef]
- Namany, S.; Al-Ansari, T.; Govindan, R. Optimisation of the energy, water, and food nexus for food security scenarios. Comput. Chem. Eng. 2019, 129, 106513. [Google Scholar] [CrossRef]
- Tonn, B.; Hawkins, B.; Rose, E.; Marincic, M. A futures perspective of health, climate change and poverty in the United States. Futures 2021, 131, 102759. [Google Scholar] [CrossRef]
- Talib, M.N.A.; Ahmed, M.; Naseer, M.M.; Slusarczyk, B.; Popp, J. The Long-Run Impacts of Temperature and Rainfall on Agricultural Growth in Sub-Saharan Africa. Sustainability 2021, 13, 595. [Google Scholar] [CrossRef]
- Leisner, C.P. Review: Climate change impacts on food security- focus on perennial cropping systems and nutritional value. Plant Sci. 2020, 293, 110412. [Google Scholar] [CrossRef] [PubMed]
- Corona-López, E.; Román-Gutiérrez, A.D.; Otazo-Sánchez, E.M.; Guzmán-Ortiz, F.A.; Acevedo-Sandoval, O.A. Water–Food Nexus Assessment in Agriculture: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 4983. [Google Scholar] [CrossRef]
- PWT Penn World Table 9.1. Available online: https://www.rug.nl/ggdc/productivity/pwt/ (accessed on 3 January 2018).
- The World Bank World Development Indicators DataBank. Available online: http://databank.worldbank.org/data/ (accessed on 27 November 2020).
- FAO FAOSTAT. Available online: http://www.fao.org/faostat/en/#data (accessed on 11 May 2020).
- Levin, A.; Lin, C.F.; Chu, C.S.J. Unit Root Tests in Panel Data: Asymptotic and Finite-Sample Properties. J. Econ. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Baltagi, H. Econometric Analysis of Panel Data; John Wiley & Sons: Hoboken, NJ, USA, 2001; ISBN 978-1-118-67232-7. [Google Scholar]
- Windmeijer, F. A Finite Sample Correction for the Variance of Linear Efficient Two-step GMM Estimators. J. Econ. 2005, 126, 25–51. [Google Scholar] [CrossRef]
- Mankiw, N.G.; Romer, P.M.; Weil, D.N. A Contribution to the Empirics of Economic Growth Author. Q. J. Econ. 1992, 107, 407–437. [Google Scholar] [CrossRef]
- Lucas, R.E. Why Doesn’t Capital Flow from Rich to Poor Countries? Am. Econ. Rev. 1990, 80, 92–96. [Google Scholar] [CrossRef]
- Schumpeter, J.A. The Theory of Economic Development: An Inquiry Into Profits, Capital, Credits, Interest and the Business Cycle; Harvard Economic Studies: Cambridge, MA, USA, 1934; ISBN 0878556982. [Google Scholar]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277–299. [Google Scholar] [CrossRef] [Green Version]
- Roodman, D. A Note on the Theme of Too Many Instruments. Oxf. Bull. Econ. Stat. 2009, 71, 135–158. [Google Scholar] [CrossRef]
- Chaussé, P. Computing Generalized Method of Moments and Generalized Empirical Likelihood with R. J. Stat. Softw. 2010, 34, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Law, S.H.; Azman-Saini, W.N.W. Institutional quality, governance, and financial development. Econ. Gov. 2012, 13, 217–236. [Google Scholar] [CrossRef] [Green Version]
- Baltagi, B.H.; Bun, M.J.G.; Sarafidis, V. Dynamic Panel Data Models. In The Oxford Handbook of Panel Data; Oxford University Press: Oxford, UK, 2015; pp. 76–110. [Google Scholar]
- Dawson, J.F. Moderation in Management Research: What, Why, When, and How. J. Bus. Psychol. 2014, 29, 1–19. [Google Scholar] [CrossRef]
- Hasegawa, T.; Fujimori, S.; Havlík, P.; Valin, H.; Bodirsky, B.L.; Doelman, J.C.; Fellmann, T.; Kyle, P.; Koopman, J.F.L.; Lotze-Campen, H.; et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Chang. 2018, 8, 699–703. [Google Scholar] [CrossRef] [Green Version]
- Meinshausen, M. Implications of the developed scenarios for climate change. In Achieving the Paris Climate Agreement Goals; Teske, S., Ed.; Springer International Publishing: New York, NY, USA, 2019; pp. 459–469. ISBN 9783030058432. [Google Scholar]
- Nair, M.; Arvin, M.B.; Pradhan, R.P.; Bahmani, S. Is higher economic growth possible through better institutional quality and a lower carbon footprint? Evidence from developing countries. Renew. Energy 2021, 167, 132–145. [Google Scholar] [CrossRef]
- Wilts, R.; Latka, C.; Britz, W. Who is Most Vulnerable to Climate Change Induced Yield Changes? A Dynamic Long Run Household Analysis in Lower Income Countries. Clim. Risk Manag. 2021, 33, 100330. [Google Scholar] [CrossRef]
- Vandenbroucke, G. The baby boomers and the productivity slowdown. Eur. Econ. Rev. 2021, 132, 103609. [Google Scholar] [CrossRef]
- Máté, D.; Rabbi, M.F.; Novotny, A.; Kovács, S. Grand challenges in Central Europe: The relationship of food security, climate change, and energy use. Energies 2020, 13, 5422. [Google Scholar] [CrossRef]
- Alcamo, J.; Dronin, N.; Endejan, M.; Golubev, G.; Kirilenko, A. A new assessment of climate change impacts on food production shortfalls and water availability in Russia. Glob. Environ. Chang. 2007, 17, 429–444. [Google Scholar] [CrossRef]
- Pulatov, B.; Linderson, M.-L.; Hall, K.; Jönsson, A.M. Modeling climate change impact on potato crop phenology, and risk of frost damage and heat stress in northern Europe. Agric. For. Meteorol. 2015, 214–215, 281–292. [Google Scholar] [CrossRef]
- Manap, A.N.M.; Ismail, N.W. Food Security and Economic Growth. Int. J. Mod. Trends Soc. Sci. 2019, 2, 108–118. [Google Scholar] [CrossRef]
- De Laurentiis, V.; Hunt, D.V.L.; Rogers, C.D.F. Overcoming food security challenges within an energy/water/food nexus (EWFN) approach. Sustainability 2016, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Meng, J.; Ludescher, J.; Chen, X.; Ashkenazy, Y.; Kurths, J.; Havlin, S.; Schellnhuber, H.J. Statistical physics approaches to the complex Earth system. Phys. Rep. 2021, 896, 1–84. [Google Scholar] [CrossRef] [PubMed]
- Lechtenböhmer, S.; Nilsson, L.J.; Åhman, M.; Schneider, C. Decarbonising the energy intensive basic materials industry through electrification—Implications for future EU electricity demand. Energy 2016, 115, 1623–1631. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.D.; Rabbitt, M.P.; Coleman-Jensen, A. Who are the World′s Food Insecure? New Evidence from the Food and Agriculture Organization’s Food Insecurity Experience Scale. World Dev. 2017, 93, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Byerlee, D.; Fanzo, J. The SDG of zero hunger 75 years on: Turning full circle on agriculture and nutrition. Glob. Food Sec. 2019, 21, 52–59. [Google Scholar] [CrossRef]
Variable | Abbr. | Description | Source |
---|---|---|---|
GDP | Y | Real GDP at constant 2011 national prices (in million 2011 US$) | Penn World Table (9.1) |
Gross capital formation (% of GDP) | sk | Gross Fixed Capital Formation (GFCF) includes land improvements; purchase of plants, machinery, and equipment; and roads and railways, including schools, offices, hospitals, private residential, commercial, and industrial buildings. | World Development Indicators (WDI), World Bank Databank |
Total employment | N | Number of persons engaged (in millions) | Penn World Table (9.1) |
Temperature change | Temp | The mean temperature change (°C) range disseminates statistics on the average surface by country, with annual updates. | Food and Agriculture Organisation (FAO) |
CO2 emissions (kg per 2011 US$ of GDP) | CO2 | Carbon dioxide emissions stem from burning fossil fuels and cement manufacture during consumption of solid, liquid, and gas fuels and gas flaring. | WDI |
Life Expectancy at birth, Total (Years) | Life | Life expectancy at birth indicates how many years a new-born infant would live if the prevailing mortality patterns remained unchanged throughout life at birth. | WDI |
Minimum Dietary Energy Requirement (kcal/kg/day) | MDER | The MDER is a crucial factor in malnutrition methodology, as it sets a threshold for estimating the prevalence of an undernourished population in a country. | FAO |
Dependent Variable: Productivity Growth Δln(y)i,t | ||||||||
---|---|---|---|---|---|---|---|---|
Independent | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 |
constant | −0.809 | −0.072 | −0.065 | −0.051 | 0.459 | 0.582 | −4.134 | −4.447 |
(−12.53) *** | (−1.34) | (−0.96) | (−0.85) | (1.91) * | (3.61) *** | (−4.62) *** | (−5.00) *** | |
Δln(y)i,t−1 | 0.121 | 0.112 | 0.122 | 0.121 | 0.109 | 0.101 | 0.104 | 0.106 |
(5.66) *** | (5.07) *** | (4.88) *** | (4.56) *** | (4.37) *** | (13.85) *** | (14.43) *** | (14.65) *** | |
ln(sk)i,t | 0.048 | 0.048 | 0.053 | 0.053 | 0.053 | 0.021 | 0.019 | 0.022 |
(2.69) *** | (2.72) *** | (2.59) *** | (2.84) *** | (2.95) *** | (3.86) *** | (3.71) *** | (3.97) *** | |
ln(n + g + δ)i,t | −0.809 | −0.796 | −0.807 | −0.814 | −0.804 | −0.781 | −0.778 | −0.778 |
(−12.53) *** | (−11.99) *** | (−12.05) *** | (−12.33) *** | (−12.24) *** | (−40.42) *** | (−39.52) *** | (−39.66) *** | |
Tempi,t | −0.005 | −0.005 | −0.005 | −0.005 | −0.068 | −0.072 | −0.031 | |
(−2.53) ** | (−2.60) *** | (−2.56) ** | (−2.55) ** | (−1.93) * | (−2.03) ** | (−2.38) ** | ||
CO2i,t | −0.051 | −0.103 | −0.106 | −0.114 | −0.111 | −0.116 | ||
(−1.63) * | (−1.63) * | (−2.61) *** | (−9.38) *** | (−9.01) *** | (−9.36) *** | |||
CO2sqi,t | 0.016 | 0.017 | 0.021 | 0.019 | 0.021 | |||
(2.56) *** | (2.67) *** | (10.76) *** | (10.29) *** | (10.90) *** | ||||
ln(Life)i,t | −0.119 | −0.123 | −0.175 | −0.197 | ||||
(−1.95) * | (−3.25) *** | (−4.49) *** | (−4.92) *** | |||||
Temp*ln(Life)i,t | 0.014 | 0.015 | 0.041 | |||||
(1.76) * | (1.87) * | (3.17) *** | ||||||
ln(MDER)i,t | 0.657 | 0.711 | ||||||
(5.27) *** | (5.68) *** | |||||||
Temp*ln(MDER)i,t | −0.081 | |||||||
(−2.81) *** | ||||||||
Observations | 1787 | 1787 | 1787 | 1787 | 1787 | 1787 | 1787 | 1787 |
Instruments | 18 | 19 | 19 | 20 | 21 | 68 | 69 | 70 |
Wald test | 190.02 *** | 207.58 *** | 216.64 *** | 240.75 *** | 240.75 *** | 2027.3 *** | 1954.4 *** | 2104.1 *** |
AR(2) test | −0.082 | −0.137 | −0.147 | −0.171 | −0.244 | −0.211 | −0.166 | −0.205 |
Sargan test | 31.29 *** | 31.28 *** | 31.06 *** | 31.23 *** | 31.24 *** | 86.77 *** | 87.26 *** | 87.41 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Máté, D.; Novotny, A.; Meyer, D.F. The Impact of Sustainability Goals on Productivity Growth: The Moderating Role of Global Warming. Int. J. Environ. Res. Public Health 2021, 18, 11034. https://doi.org/10.3390/ijerph182111034
Máté D, Novotny A, Meyer DF. The Impact of Sustainability Goals on Productivity Growth: The Moderating Role of Global Warming. International Journal of Environmental Research and Public Health. 2021; 18(21):11034. https://doi.org/10.3390/ijerph182111034
Chicago/Turabian StyleMáté, Domicián, Adam Novotny, and Daniel Francois Meyer. 2021. "The Impact of Sustainability Goals on Productivity Growth: The Moderating Role of Global Warming" International Journal of Environmental Research and Public Health 18, no. 21: 11034. https://doi.org/10.3390/ijerph182111034
APA StyleMáté, D., Novotny, A., & Meyer, D. F. (2021). The Impact of Sustainability Goals on Productivity Growth: The Moderating Role of Global Warming. International Journal of Environmental Research and Public Health, 18(21), 11034. https://doi.org/10.3390/ijerph182111034