Factors of the Ecosystem Service Value in Water Conservation Areas Considering the Natural Environment and Human Activities: A Case Study of Funiu Mountain, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. ESV Valuation of
- (1)
- Equivalent correction of the ESV
- (2)
- Calculation of the ESV
2.2.2. Influencing Mechanism Analysis
- (1)
- Determining the indicators that affect the ESV
- (2)
- Random forest regression model
2.3. Data Sources
3. Results
3.1. Spatiotemporal Variation in the ESV
3.1.1. Characteristics of the Temporal Variation
3.1.2. Spatial Distribution and Variation Characteristics
3.2. Analysis of the Influencing Factors of the ESV
3.2.1. Determining the RF Parameters
3.2.2. Coefficient of the Influencing Factors
3.2.3. Gradient Differentiation of the Influencing Factors
4. Discussion
4.1. Methods
4.1.1. ESV Evaluation Method
4.1.2. ESV Influencing Factor Analysis Method
4.2. Influencing Factors of the ESV
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Costanza, R.; De Groot, R.; Sutton, P.; Van Der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The nature and value of ecosystem services: An overview highlighting hydrologic services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Serafy, S. Pricing the invaluable: The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1998, 25, 25–27. [Google Scholar] [CrossRef]
- Braat, L.C.; de Groot, R. The ecosystem services agenda: Bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosyst. Serv. 2012, 1, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Delgado, L.E.; Marín, V.H. Ecosystem services and ecosystem degradation: Environmentalist’s expectation? Ecosyst. Serv. 2020, 45, 101177. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- De Groot, R.; Brander, L.; Van Der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Dai, X.; Johnson, B.A.; Luo, P.; Yang, K.; Dong, L.; Wang, Q.; Liu, C.; Li, N.; Lu, H.; Ma, L.; et al. Estimation of urban ecosystem services value: A case study of Chengdu, Southwestern China. Remote Sens. 2021, 13, 207. [Google Scholar] [CrossRef]
- Yin, D.; Li, X.; Li, G.; Zhang, J.; Yu, H. Spatio-temporal evolution of land use transition and its eco-environmental effects: A case study of the Yellow River Basin, China. Land 2020, 9, 514. [Google Scholar] [CrossRef]
- Benayas, J.M.R.; Newton, A.C.; Diaz, A.; Bullock, M.J. Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science 2009, 325, 1121–1124. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Seppelt, R.; Fath, B.; Burkhard, B.; Fisher, J.; Grêt-Regamey, A.; Lautenbach, S.; Pert, P.; Hotes, S.; Spangenberg, J.; Verburg, P.; et al. Form follows function? Proposing a blueprint for ecosystem service assessments based on reviews and case studies. Ecol. Indic. 2012, 21, 145–154. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Ghermandi, A.; Fichtman, E. Cultural ecosystem services of multifunctional constructed treatment wetlands and waste stabilization ponds: Time to enter the mainstream? Ecol. Eng. 2015, 84, 615–623. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Guo, A.; Zhang, Y.; Zhong, F.; Jiang, D. Spatiotemporal patterns of ecosystem service value changes and their coordination with economic development: A case study of the Yellow River Basin, China. Int. J. Environ. Res. Public Health 2020, 17, 2–17. [Google Scholar] [CrossRef]
- Song, W.; Deng, X.Z.; Yuan, Y.W.; Wang, Z.; Li, Z.H. Impacts of land-use change on valued ecosystem service in rapidly urbanized North China Plain. Ecol. Model. 2015, 318, 245–253. [Google Scholar] [CrossRef]
- Tianhong, L.; Wenkai, L.; Zhenghan, Q. Variations in ecosystem service value in response to land use changes in Shenzhen. Ecol. Econ. 2010, 69, 1427–1435. [Google Scholar] [CrossRef]
- Chee, Y.E. An ecological perspective on the valuation of ecosystem services. Biol. Conserv. 2004, 120, 549–565. [Google Scholar] [CrossRef]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Roces-Díaz, J.V.; Díaz-Varela, R.A.; Álvarez-Álvarez, P.; Recondo, C.; Díaz-Varela, E.R. A multiscale analysis of ecosystem services supply in the NW Iberian Peninsula from a functional perspective. Ecol. Indic. 2015, 50, 24–34. [Google Scholar] [CrossRef]
- Richardson, L.; Loomis, J.; Kroeger, T.; Casey, F. The role of benefit transfer in ecosystem service valuation. Ecol. Econ. 2015, 115, 51–58. [Google Scholar] [CrossRef]
- Zhao, B.; Kreuter, U.; Li, B.; Ma, Z.; Chen, J.; Nakagoshi, N. An ecosystem service value assessment of land-use change on Chongming Island, China. Land Use Policy 2004, 21, 139–148. [Google Scholar] [CrossRef]
- Fu, B.; Li, Y.; Wang, Y.; Zhang, B.; Yin, S.; Zhu, H.; Xing, Z. Evaluation of ecosystem service value of riparian zone using land use data from 1986 to 2012. Ecol. Indic. 2016, 69, 873–881. [Google Scholar] [CrossRef]
- Yi, H.; Güneralp, B.; Filippi, A.M.; Kreuter, U.P.; Güneralp, I. Impacts of Land on ecosystem services in the San Antonio River Basin, Texas, from 1984 to 2010. Ecol. Econ. 2017, 135, 125–135. [Google Scholar] [CrossRef]
- Ruckelshaus, M.; McKenzie, E.; Tallis, H.; Guerry, A.; Daily, G.; Kareiva, P.; Polasky, S.; Ricketts, T.; Bhagabati, N.; Wood, S.A. Notes from the field: Lessons learned from using ecosystem service approaches to inform real-world decisions. Ecol. Econ. 2015, 115, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Lautenbach, S.; Kugel, C.; Lausch, A.; Seppelt, R. Analysis of historic changes in regional ecosystem service provisioning using land use data. Ecol. Indic. 2011, 11, 676–687. [Google Scholar] [CrossRef]
- Hu, S.; Chen, L.; Li, L.; Zhang, T.; Yuan, L.; Cheng, L.; Wang, J.; Wen, M. Simulation of land use change and ecosystem service value dynamics under ecological constraints in Anhui Province, China. Int. J. Environ. Res. Public Health 2020, 17, 4228. [Google Scholar] [CrossRef]
- Woldeyohannes, A.; Cotter, M.; Biru, W.D.; Kelboro, G. Assessing changes in ecosystem service values over 1985–2050 in response to land use and land cover dynamics in Abaya-Chamo Basin, Southern Ethiopia. Land 2020, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Fan, X.; Lin, H.; Hong, T.; Hong, W. Impact of Urbanization on the value of ecosystem services in Nanping City, China. Pol. J. Environ. Stud. 2020, 30, 965–975. [Google Scholar] [CrossRef]
- Sutton, P.C.; Costanza, R. Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation. Ecol. Econ. 2002, 41, 509–527. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landsc. Urban Plan. 2013, 116, 60–72. [Google Scholar] [CrossRef]
- Liu, S.; Yang, M.; Mou, Y.; Meng, Y.; Zhou, X.; Peng, C. Effect of urbanization on ecosystem service values in the Beijing-Tianjin-Hebei urban agglomeration of China from 2000 to 2014. Sustainability 2020, 12, 10233. [Google Scholar] [CrossRef]
- Hou, Y.; Zhou, S.; Burkhard, B.; Müller, F. Socioeconomic influences on biodiversity, ecosystem services and human well-being: A quantitative application of the DPSIR model in Jiangsu, China. Sci. Total Environ. 2014, 490, 1012–1028. [Google Scholar] [CrossRef]
- Wang, B.; Gao, P.; Niu, X.; Sun, J. Policy-driven China’s grain to green program: Implications for ecosystem services. Ecosyst. Serv. 2017, 27, 38–47. [Google Scholar] [CrossRef]
- Yin, F.; Mao, F.; Fu, B.; Liu, G. Farmland ecosystem service and its formation mechanism. Chin. J. Appl. Ecol. 2006, 17, 929–934. [Google Scholar]
- Ling, H.; Yan, J.; Xu, H.; Guo, B.; Zhang, Q. Estimates of shifts in ecosystem service values due to changes in key factors in the Manas River basin, northwest China. Sci. Total Environ. 2019, 659, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Li, B.; Hou, Y.; Bi, X.; Zhang, X. Effects of land use and climate change on ecosystem services in Central Asia’s arid regions: A case study in Altay Prefecture, China. Sci. Total Environ. 2017, 607, 633–646. [Google Scholar] [CrossRef]
- De Lima, G.T.N.P.; Hackbart, V.C.D.S.; Bertolo, L.S.; Dos Santos, R.F. Identifying driving forces of landscape changes: Historical relationships and the availability of ecosystem services in the Atlantic Forest. Ecosyst. Serv. 2016, 22, 11–17. [Google Scholar] [CrossRef]
- Zhao, Z.G.; Yu, D.; Han, C.Y.; Wang, K.R. Ecosystem services value prediction and driving forces in the Poyang Lake eco-economic zone. Acta Ecol. Sin. 2017, 37, 8411–8421. [Google Scholar] [CrossRef] [Green Version]
- Zhi, Y.; Jin, Z.; Lu, L.; Yang, T.; Zhou, D.; Pei, Z.; Wu, D.; Fu, D.; Zhang, D.; Li, X. Improving atmospheric corrosion prediction through key environmental factor identification by random forest-based model. Corros. Sci. 2021, 178, 109084. [Google Scholar] [CrossRef]
- Xiao, L.; Zhou, Y.; Huang, H.; Liu, Y.-J.; Li, K.; Li, M.-Y.; Tian, Y.; Wu, F. Application of geostatistical analysis and random forest for source analysis and human health risk assessment of potentially toxic elements (PTEs) in Arable Land soil. Int. J. Environ. Res. Public Health 2020, 17, 9296. [Google Scholar] [CrossRef]
- Song, C.S. Scientific Survey of the Funiu Mountain Nature Reserve; China Forestry Publishing House: Beijing, China, 1994; pp. 12–14. [Google Scholar]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar] [CrossRef]
- Xing, L.; Zhu, Y.; Wang, J. Spatial spillover effects of urbanization on ecosystem services value in Chinese cities. Ecol. Indic. 2021, 121, 107028. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, R.; Huang, J.; Yang, W. An analysis of the spatial and temporal changes in Chinese terrestrial ecosystem service functions. Chin. Sci. Bull. 2012, 57, 2120–2131. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Qin, F.; Zhu, J.; Zhang, C.C. The effects of land use structure and landscape pattern change on ecosystem service values. Acta Ecol. Sin. 2017, 37, 1286–1296. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; Erb, K.-H.; Mertz, O.; Espindola, G. Land system science: Between global challenges and local realities. Curr. Opin. Environ. Sustain. 2013, 5, 433–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laliberté, E.; Wells, J.A.; De Clerck, F.; Metcalfe, D.J.; Catterall, C.P.; Queiroz, C.; Aubin, I.; Bonser, S.P.; Ding, Y.; Fraterrigo, J.M.; et al. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol. Lett. 2010, 13, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, J.; Wang, H.; Fu, B.; Chen, J.; He, W. Impacts of land use change on ecosystem service value in Lijiang River Basin, China. Environ. Sci. Pollut. Res. 2021, 28, 46100–46115. [Google Scholar] [CrossRef]
- Schirpke, U.; Tscholl, S.; Tasser, E. Spatio-temporal changes in ecosystem service values: Effects of land-use changes from past to future (1860–2100). J. Environ. Manag. 2020, 272, 111068. [Google Scholar] [CrossRef]
- Su, C.H.; Wang, Y.L. Evolution of ecosystem services and its driving factors in the upper reaches of the Fenhe River watershed, China. Acta. Ecol. Sin. 2018, 38, 7886–7898. [Google Scholar] [CrossRef]
- Sun, Y.J.; Ren, Z.Y.; Hao, M.Y.; Duan, Y.F. Spatial and temporal changes in the synergy and trade-off between ecosystem services, and its influencing factors in Yanan, Loess Plateau. Acta. Ecol. Sin. 2019, 39, 3443–3454. [Google Scholar] [CrossRef]
- Hong, Y.; Ding, Q.; Zhou, T.; Kong, L.; Wang, M.; Zhang, J.; Yang, W. Ecosystem service bundle index construction, spatiotemporal dynamic display, and driving force analysis. Ecosyst. Health Sustain. 2020, 6, 1–14. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Chao, L.; Shi, D.; Ni, Z. Evaluation of sustainable use of water resources based on random forest: A Case study in the Lishui River Basin, Central China. J. Coast. Res. 2020, 105, 134–136. [Google Scholar] [CrossRef]
- Chen, J.; Yang, S.T.; Li, H.W.; Zhang, B.; Lv, J.R. Research on Geographical environment unit division based on the method of natural breaks (Jenks). ISPRS 2013, 3, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Mei, Z.; Liu, W.; Xia, Y. Identification of the key factors affecting Chinese carbon intensity and their historical trends using random forest algorithm. J. Geogr. Sci. 2020, 30, 743–756. [Google Scholar] [CrossRef]
- Kong, F.; Nakagoshi, N. Spatial-temporal gradient analysis of urban green spaces in Jinan, China. Landsc. Urban Plan. 2006, 78, 147–164. [Google Scholar] [CrossRef]
- Li, T.; Ding, Y. Spatial disparity dynamics of ecosystem service values and GDP in Shaanxi Province, China in the last 30 years. PLoS ONE 2017, 12, e0174562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, W.F.; Zhang, D.M.; Luo, Y.M.; Tao, S.; Xu, X.L. Influence of natural factors on vegetation NDVI using geographical detection in Sichuan Province. Acta Geogr. Sin. 2019, 74, 1758–1776. [Google Scholar] [CrossRef]
- Zhuo, G.; Chen, S.R.; Zhou, B. Spatio-temporal variation of vegetation coverage over the Tibetan Plateau and its responses to climatic factors. Acta. Ecol. Sin. 2018, 38, 3208–3218. [Google Scholar] [CrossRef]
- Yoshida, A.; Chanhda, H.; Ye, Y.-M.; Liang, Y.-R. Ecosystem service values and land use change in the opium poppy cultivation region in Northern Part of Lao PDR. Acta Ecol. Sin. 2010, 30, 56–61. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Hu, G.; Wei, Z. Changes in ecosystem service values in Zoige Plateau, China. Agric. Ecosyst. Environ. 2010, 139, 766–770. [Google Scholar] [CrossRef]
- McDonnell, M.J.; Pickett, S.T.; Groffman, P.; Bohlen, P.; Pouyat, R.V.; Zipperer, W.C.; Parmelee, R.W.; Carreiro, M.M.; Medley, K. Ecosystem processes along an urban-to-rural gradient. Urban Ecol. 1997, 1, 21–36. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Chen, N.; Zhu, B.; Tao, H.T.; Cheng, H.R. Source analysis of ambient PM2.5 in Wuhan City based on random forest model. Environ. Sci. 2021. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, Y.; Liu, Y.J.; Xiao, L.; Li, K.; Duan, J.S.; Wei, H.L. Source analysis of heavy metals in farmland based on environmental variables and random forest approach: District of Xiangzhou District in Xiangyang City. Acta Sci. Circumst. 2020, 40, 4548–4558. [Google Scholar] [CrossRef]
- Xu, J.; Liu, F.; Wu, H.Y.; Song, X.D.; Zhao, Y.G.; Zhang, G.L. Predicting of key environmental factors from soil properties based on artificial neural network and random forest learning model. Chin. J. Soil. Sci. 2021, 52, 269–278. [Google Scholar] [CrossRef]
- Chen, D.-L.; Lu, X.-H.; Kuang, B. Measurement of cultivated land utilization efficiency: Construction and application of random forest. J. Nat. Resour. 2019, 34, 1331–1344. [Google Scholar] [CrossRef]
- Luo, Q.; Zhou, J.; Li, Z.; Yu, B. Spatial differences of ecosystem services and their driving factors: A comparation analysis among three urban agglomerations in China’s Yangtze River economic belt. Sci. Total. Environ. 2020, 725, 138452. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Zhang, H. An ecosystem service valuation of land use change in Taiyuan City, China. Ecol. Model. 2012, 225, 127–132. [Google Scholar] [CrossRef]
First Category | Second Category | Cropland | Forestland | Grassland | Water Land | Unused Land |
---|---|---|---|---|---|---|
Provisioning services | Food production | 1324.5 | 437.1 | 569.5 | 702.0 | 26.5 |
Raw material production | 516.5 | 3947.0 | 476.8 | 463.6 | 53.0 | |
Regulating services | Gas regulation | 953.6 | 5721.8 | 1986.7 | 675.5 | 79.5 |
Climate regulation | 1284.8 | 5390.7 | 2066.2 | 2728.4 | 172.2 | |
Hydrological regulation | 1019.9 | 5417.1 | 2013.2 | 24,860.6 | 92.7 | |
Waste treatment | 1841.0 | 2278.1 | 1748.3 | 19,668.6 | 344.4 | |
Supporting services | Soil conservation | 1947.0 | 5324.4 | 2966.8 | 543.0 | 225.2 |
Maintain biodiversity | 1351.0 | 5973.4 | 2476.8 | 4543.0 | 529.8 | |
Cultural services | Provide aesthetic landscape | 225.2 | 2754.9 | 1152.3 | 5880.7 | 317.9 |
First-Level Influencing Factors | Second-Level Influencing Factors | Third-Level Influencing Factors |
---|---|---|
Natural factors | Topography | Elevation (X1) |
Slope (X2) | ||
Climate | Temperature (X3) | |
Precipitation (X4) | ||
Soil texture | Silt content of soil (X5) | |
Clay content of soil (X6) | ||
Sand content of soil (X7) | ||
Vegetation coverage | NDVI (X8) | |
Humanistic factors | Economic development | Economic density (X9) |
Population | Population density (X10) | |
Urbanization | Land urbanization level (X11) | |
Location factors | Land location | Distance from urban area (X12) |
Distance from rural settlements (X13) | ||
Traffic location | Distance from main traffic road (X14) | |
Water location | Distance from main river system (X15) |
Data Type | Description | Source |
---|---|---|
Land use Data | The land use data were generated through artificial visual interpretation based on Landsat TM/ETM images of 2000, 2005, 2010, and 2015. The resolution of these images is 30 m. Finally, we obtained six land use types: cultivated land, forest land, grassland, water area, construction land, and unused land. | U.S. Geological Survey (https://glovis.usgs.gov/ accessed on 17 October 2021) |
Vegetation Coverage Data | The vegetation coverage data were from MODND1T China’s 500 m NDVI composite products and resampled to 1 km × 1 km. | Geospatial Data Cloud (http://www.gscloud.cn/ accessed on 17 October 2021) |
Economic and Population Data | The GDP and population data of the county unit were converted to a scale of 1 km × 1 km by combining the data of land use, night light, and residential density. | Resource and Environment Data Cloud Platform (http://www.resdc.cn/ accessed on 17 October 2021) |
Topography and Geomorphology Data | The elevation and slope were extracted from DEM data with a resolution of 250 m and then resampled to 1 km × 1 km. | Geospatial Data Cloud (http://www.gscloud.cn/ accessed on 17 October 2021) |
Meteorological Data | Based on the daily temperature and precipitation data from meteorological stations from 2000 to 2015, the spatial interpolation generated the precipitation and annual average temperature data of 1 km × 1 km. | China Meteorological Data Sharing Service (http://data.cma.cn/ accessed on 17 October 2021) |
Soil Texture Data | Data were generated according to the soil type map and the second soil Census data, including soil silt content, soil clay content, and soil sand content. | Resource and Environment Data Cloud Platform (http://www.resdc.cn/ accessed on 17 October 2021) |
Traffic Data | Combined with the map and planning drawings, the traffic data from 2000 to 2015 were sorted out, and only the main roads such as railway, high-speed, provincial road, county road, and township road were retained. | Open Street Map (https://www.openstreetmap.org/ accessed on 17 October 2021) |
Basic Geographic Data | Data were generated according to the navigation database, Google earth, and some measured data, including county and township administrative division data. | Data Center of Lower Yellow River Regions (http://henu.geodata.cn accessed on 17 October 2021) |
Types of Ecosystem Services | ESV/Billion Yuan | Rate of Change/% | ||||||
---|---|---|---|---|---|---|---|---|
First Category | Second Category | 2000 | 2005 | 2010 | 2015 | 2000–2005 | 2005–2010 | 2010–2015 |
Provisioning services | Food production | 1.71 | 1.70 | 1.69 | 1.68 | −0.47 | −0.77 | −0.60 |
Raw material production | 5.87 | 5.86 | 5.86 | 5.86 | −0.05 | 0.00 | −0.11 | |
Regulating services | Gas regulation | 8.95 | 8.95 | 8.95 | 8.94 | −0.05 | 0.01 | −0.14 |
Climate regulation | 8.89 | 8.90 | 8.90 | 8.88 | 0.10 | −0.05 | −0.15 | |
Hydrological regulation | 10.18 | 10.34 | 10.35 | 10.35 | 1.86 | −0.20 | 0.05 | |
Waste treatment | 6.10 | 6.23 | 6.20 | 6.20 | 2.29 | −0.48 | −0.04 | |
Supporting services | Soil conservation | 9.34 | 9.32 | 9.32 | 9.30 | −0.16 | −0.08 | −0.22 |
Maintain biodiversity | 9.95 | 9.97 | 9.96 | 9.95 | 0.23 | −0.05 | −0.13 | |
Cultural services | Provide aesthetic landscape | 4.56 | 4.60 | 4.60 | 4.60 | 1.00 | −0.03 | 0.00 |
Total | 65.53 | 65.91 | 65.83 | 65.75 | 0.57 | −0.12 | −0.11 |
County | ESV/Billion Yuan | Rate of Change/% | |||||
---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2000–2005 | 2005–2010 | 2010–2015 | |
Lushi | 10.307 | 10.306 | 10.281 | 10.307 | −0.01 | −0.24 | 0.25 |
Lushan | 5.484 | 5.523 | 5.636 | 5.623 | 0.71 | 2.06 | −0.24 |
Luanchuan | 8.192 | 8.177 | 8.090 | 8.077 | −0.18 | −1.07 | −0.15 |
Nanzhao | 7.924 | 8.089 | 8.135 | 8.116 | 2.08 | 0.58 | −0.23 |
Neixiang | 5.290 | 5.295 | 5.301 | 5.289 | 0.09 | 0.11 | −0.23 |
Ruyang | 3.162 | 3.160 | 3.150 | 3.143 | −0.08 | −0.31 | −0.22 |
Songxian | 8.575 | 8.577 | 8.496 | 8.485 | 0.02 | −0.94 | −0.14 |
Xixia | 10.900 | 10.895 | 10.872 | 10.852 | −0.05 | −0.20 | −0.19 |
Xichuan | 5.699 | 5.887 | 5.865 | 5.862 | 3.31 | −0.38 | −0.04 |
Grade | Influence Coefficient | 2000 | 2005 | 2010 | 2015 |
---|---|---|---|---|---|
Level 1 | >0.3 | No data | X10 | X10 | X10 |
Level 2 | 0.15~0.3 | X13, X10, X4 | X4 | X8 | X8 |
Level 3 | 0.05~0.15 | X1, X8, X2 | X13, X8, X1, X2 | X4, X9, X13 | X4, X9 |
Level 4 | 0.01~0.05 | X9, X3, X7, X12, X11, X6, X5 | X9, X7, X3, X11, X12, X6 | X1, X2, X12, X11, X7, X3 | X13, X1, X2, X11, X3, X12, X7 |
Level 5 | ≤0.01 | X14, X15 | X5, X15, X14 | X15, X5, X6, X14 | X15, X5, X6, X14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Gao, J.; Zhou, B.; Yang, J. Factors of the Ecosystem Service Value in Water Conservation Areas Considering the Natural Environment and Human Activities: A Case Study of Funiu Mountain, China. Int. J. Environ. Res. Public Health 2021, 18, 11074. https://doi.org/10.3390/ijerph182111074
Guo C, Gao J, Zhou B, Yang J. Factors of the Ecosystem Service Value in Water Conservation Areas Considering the Natural Environment and Human Activities: A Case Study of Funiu Mountain, China. International Journal of Environmental Research and Public Health. 2021; 18(21):11074. https://doi.org/10.3390/ijerph182111074
Chicago/Turabian StyleGuo, Chunyang, Jianhua Gao, Boyan Zhou, and Jie Yang. 2021. "Factors of the Ecosystem Service Value in Water Conservation Areas Considering the Natural Environment and Human Activities: A Case Study of Funiu Mountain, China" International Journal of Environmental Research and Public Health 18, no. 21: 11074. https://doi.org/10.3390/ijerph182111074
APA StyleGuo, C., Gao, J., Zhou, B., & Yang, J. (2021). Factors of the Ecosystem Service Value in Water Conservation Areas Considering the Natural Environment and Human Activities: A Case Study of Funiu Mountain, China. International Journal of Environmental Research and Public Health, 18(21), 11074. https://doi.org/10.3390/ijerph182111074