Research Advances in the Analysis of Nitrate Pollution Sources in a Freshwater Environment Using δ15N-NO3− and δ18O-NO3−
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Data Sources
2.2. Peer-Reviewed Literature Screening
2.3. Data Extraction and Analysis
3. Determination of Nitrate Isotopes in a Water Environment
3.1. Pretreatment Technology
3.1.1. Distillation Method
3.1.2. Diffusion Method
3.1.3. Ion-Exchange Resin
3.1.4. Bacterial Denitrification
3.1.5. Hydrazoic Acid Method
3.2. Isotope Determination Technique
4. Research Progress in Identifying Nitrate Pollution Sources in a Water Environment by Isotope Technology
5. Definition of Nitrogen and Oxygen Isotope Range of Nitrates from Different Sources
5.1. Range of δ15N-NO3− Values from Different Sources
5.2. Range of the δ18O-NO3− Value from Different Sources
6. Identification of Nitrogen Migration and Transformation in a Freshwater Environment by Isotope Technology
7. Quantitative Analysis of Nitrate Pollution Sources in a Freshwater Environment
8. Research Deficiency and Prospect
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.Q.; Sun, J.C.; Liu, J.T.; Huang, G.X.; Lu, C.; Zhang, Y. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China. J. Contam. Hydrol. 2015, 182, 221–230. [Google Scholar] [CrossRef]
- Jin, Z.; Qin, X.; Chen, L.; Jin, M.; Li, F. Using dual isotopes to evaluate sources and transformations of nitrate in the West Lake watershed, eastern China. J. Contam. Hydrol. 2015, 177, 64–75. [Google Scholar] [CrossRef]
- Meghdadi, A.; Javar, N. Quantification of spatial and seasonal variations in the proportional contribution of nitrate sources using a multi-isotope approach and Bayesian isotope mixing model. Environ. Pollut. 2018, 235, 207–222. [Google Scholar] [CrossRef]
- Onodera, T.; Komatsu, K.; Kohzu, A.; Kanaya, G.; Mizuochi, M.; Syutsubo, K. Evaluation of stable isotope ratios (δ15N and δ18O) of nitrate in advanced sewage treatment processes: Isotopic signature in four process types. Sci. Total Environ. 2020, 762, 144120. [Google Scholar] [CrossRef] [PubMed]
- Hord, N.G. Dietary Nitrates, Nitrites, and Cardiovascular Disease. Curr. Atheroscler. Rep. 2011, 13, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Pasten-Zapata, E.; Ledesma-Ruiz, R.; Harter, T.; Ramirez, A.I.; Mahlknecht, J. Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Sci. Total Environ. 2014, 470, 855–864. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Wang, H.; Wang, L. Tracing nitrate pollution sources and transformations in the over-exploited groundwater region of north China using stable isotopes. J. Contam. Hydrol. 2018, 218, 1–9. [Google Scholar] [CrossRef]
- Ma, B.; Huang, T.; Li, J.; Li, Z.; Long, Y.; Zhang, F.; Pang, Z. Tracing nitrate source and transformation in a semiarid loess aquifer with the thick unsaturated zone. Catena 2021, 198, 105045. [Google Scholar] [CrossRef]
- Wang, Y.J.; Peng, J.F.; Cao, X.F.; Xu, Y.; Qu, J.H. Isotopic and chemical evidence for nitrate sources and transformation processes in a plateau lake basin in Southwest China–ScienceDirect. Sci. Total Environ. 2020, 711, 134856. [Google Scholar] [CrossRef]
- Lockhart, K.M.; King, A.M.; Harter, T. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. J. Contam. Hydrol. 2013, 151, 140–154. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Botte, J.; Baets, B.D.; Accoe, F.; Nestler, A.; Taylor, P.; Cleemput, O.V.; Berglund, M.; Boeckx, P. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface and groundwater. Water Res. 2009, 43, 1159–1170. [Google Scholar] [CrossRef]
- Granger, J.; Sigman, D.M.; Rohde, M.M.; Maldonado, M.T.; Tortell, P.D. N and O isotope effects during nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures. Geochim. Cosmochim. Acta 2010, 74, 1030–1040. [Google Scholar] [CrossRef]
- Feast, N.A.; Hiscock, K.M.; Dennis, P.F.; Andrews, J.N. Nitrogen isotope hydrochemistry and denitrification within the Chalk aquifer system of north Norfolk, UK. J. Hydrol. 1998, 211, 233–252. [Google Scholar] [CrossRef]
- Mao, W.; Liang, Z.W.; Li, W.; Zhu, Y.; Yang, M.Y.; Jia, C.J. Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes. Chin. J. Appl. Ecol. 2013, 24, 1146–1152. (In Chinese) [Google Scholar]
- Sigman, D.M.; Casciotti, K.L.; Andreani, M.; Barford, C.; Galanter, M.; Bohlke, J.K. A bacterial method for the nitrogen isotopic analysis of nitrate inseawater and freshwater. Anal. Chem. 2001, 73, 4145–4153. [Google Scholar] [CrossRef] [PubMed]
- Casciotti, K.L.; Sigman, D.M.; Hastings, M.G.; Bohlke, J.K.; Hilkert, A. Measurement of the oxygen isotopic composition of nitrate inseawater and freshwater using the denitrifier method. Anal. Chem. 2002, 74, 4905–4912. [Google Scholar] [CrossRef] [PubMed]
- Mcilvin, M.R.; Altabet, M.A. Chemical conversion of ni-trate and nitrite to nitrous oxide for nitrogen and oxygenisotopic analysis in freshwater and seawater. Anal. Chem. 2005, 77, 5589–5595. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Q.; Xiao, K.; Wang, F.X.; Sun, J.C.; Jing, T.; Liu, Z.Y. Assessment of temporal and spatial differences of source apportionment of nitrate in an urban river in China, using δ(15)N and δ(18)O values and an isotope mixing model. Environ. Sci. Pollut. Res. Int. 2015, 22, 20226–20233. [Google Scholar] [CrossRef]
- Li, S.; Liu, C.; Li, J.; Liu, X.; Chetelat, B.; Wang, B.; Wang, F. Assessment of the sources of nitrate in the Changjiang River, China using a nitrogen and oxygen isotopic approach. Environ. Sci. Technol. 2010, 44, 1573–1578. [Google Scholar] [CrossRef]
- William, A.B.; Kendall, C.; Cecily, C.Y.; Steven, R.C.; Silva, D.H. Chemical and isotopic evidence of nitrogen transformation in the Mississippi River, 1997–98. Hydrol. Process. 2001, 15, 1285–1300. [Google Scholar]
- Xue, D.; Baets, B.D.; Cleemput, O.V.; Hennessy, C.; Berglund, M.; Boeckx, P. Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water. Environ. Pollut. 2012, 161, 43–49. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, F.; Li, X.; Yan, W.; Li, Y.; Lv, S. Tracking nitrate sources in the Chaohu Lake, China, using the nitrogen and oxygen isotopic approach. Environ. Sci. Pollut. Res. 2018, 25, 19518–19529. [Google Scholar] [CrossRef]
- Ming, X.; Groves, C.; Wu, X.; Chang, L.; Zheng, Y.; Yang, P. Nitrate migration and transformations in groundwater revealed by dual nitrate isotopes and hydrochemistry in a karst World Heritage site. Sci. Total Environ. 2020, 735, 138907. [Google Scholar] [CrossRef]
- Aravena, R.; Robertson, W.D. Use of Multiple Isotope Tracers to Evaluate Denitrification in Ground Water: Study of Nitrate from a Large-Flux Septic System Plume. Groundwater 2010, 36, 975–982. [Google Scholar] [CrossRef]
- Jiang, H.; Lan, W.; Li, T.; Xu, Z.; Liu, W.; Pan, K. Isotopic Composition Reveals the Impact of Oyster Aquaculture on Pelagic Nitrogen Cycling in a Subtropical Estuary. Water Res. 2020, 187, 116431. [Google Scholar] [CrossRef]
- Yu, L.; Zheng, T.; Zheng, X.; Hao, Y.; Yuan, R. Nitrate source apportionment in groundwater using Bayesian isotope mixing model based on nitrogen isotope fractionation. Sci. Total Environ. 2020, 718, 137242. [Google Scholar] [CrossRef] [PubMed]
- Koh, D.C.; Kim, E.Y.; Ryu, J.S.; Ko, K.S. Factors controlling groundwater chemistry in an agricultural area with complex topographic and land use patterns in mid-western South Korea. Hydrol. Process. 2010, 23, 2915–2928. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, C.; Zheng, L.; Dong, X.; Chen, Y.; Li, C. Identification of nitrate sources and transformations in basin using dual isotopes and hydrochemistry combined with a Bayesian mixing model: Application in a typical mining city. Environ. Pollut. 2020, 267, 115651. [Google Scholar] [CrossRef] [PubMed]
- Gooddy, D.C.; Macdonald, D.; Lapworth, D.J.; Bennett, S.A.; Griffiths, K.J. Nitrogen sources, transport and processing in peri-urban floodplains. Sci. Total Environ. 2014, 494, 28–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; Liu, W.; Zhang, J.; Zhou, L.; Xu, Z. Spatiotemporal variations of nitrate sources and dynamics in a typical agricultural riverine system under monsoon climate. J. Environ. Sci. 2020, 93, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Yang, H.A.; Wang, J.F.; Guo, J.Y.; Tang, X.Y.; Chen, J.G. Combined use of stable nitrogen and oxygen isotopes to constrain the nitrate sources in a karst lake. Agric. Ecosyst. Environ. 2020, 303, 107089. [Google Scholar] [CrossRef]
- Matiatos, I. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece). Sci. Total Environ. 2016, 541, 802–814. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Q.; Wang, H.W. Assessment of sources and transformation of nitrate in the alluvial-pluvial fan region of north China using a multi-isotope approach. J. Environ. Sci. 2020, 89, 9–22. [Google Scholar] [CrossRef]
- Sui, Y.; Ou, Y.; Yan, B.; Rousseau, A.N.; Fang, Y.; Geng, R.; Wang, L.; Ye, N. A dual isotopic framework for identifying nitrate sources in surface runoff in a small agricultural watershed, northeast China. J. Clean. Prod. 2020, 246, 119074. [Google Scholar] [CrossRef]
- Re, V.; Kammoun, S.; Sacchi, E.; Trabelsi, R.; Zouari, K.; Matiatos, I.; Allais, E.; Daniele, S. A critical assessment of widely used techniques for nitrate source apportionment in arid and semi-arid regions. Sci. Total Environ. 2021, 775, 145688. [Google Scholar] [CrossRef] [PubMed]
- Widory, D.; Petelet-Giraud, E.; Negrel, P.; Ladouche, B. Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: A synthesis. Environ. Sci. Technol. 2005, 39, 539. [Google Scholar] [CrossRef]
- Heaton, T.; Stuart, M.E.; Sapiano, M.; Sultana, M.M. An isotope study of the sources of nitrate in Malta’s groundwater. J. Hydrol. 2012, 414, 244–254. [Google Scholar] [CrossRef]
- Valiente, N.; Carrey, R.; Otero, N.; Soler, A.; Sanz, D.; Muñoz-Martín, A.; Jirsa, F.; Wanek, W.; Gómez-Alday, J.J. A multi-isotopic approach to investigate the influence of land use on nitrate removal in a highly saline lake-aquifer system. Sci. Total Environ. 2018, 631, 649–659. [Google Scholar] [CrossRef]
- Cao, Y.C.; Sun, G.Q.; Xing, G.X.; Xu, H. Natural abundance of 15N in main N-containing chemical fertilizers of China. Pedosphere 1991, 1, 377–382. [Google Scholar]
- Li, X.D.; Masuda, H.; Koba, K.; Zeng, H. Nitrogen isotope study on nitrate-contaminated groundwater in the Sichuan Basin, China. Water Air Soil Pollut. 2007, 178, 145–156. [Google Scholar] [CrossRef]
- Zhang, Y. Nitrogen inputs and isotopes in precipitation in the North China Plain. Atmos. Environ. 2008, 42, 1436–1448. [Google Scholar] [CrossRef]
- Townsend-Small, A.; McCarthy, M.J.; Brandes, J.A.; Yang, L.; Gardner, W.S. Stable isotopic composition of nitrate in Lake Taihu, China, and major inflow rivers. Hydrobiologia 2007, 581, 135–140. [Google Scholar] [CrossRef]
- Elliott, E.M.; Kendall, C.; Wankel, S.D.; Burns, D.A.; Boyer, E.W.; Harlin, K.; Bain, D.J.; Butler, T.J. Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the Midwestern and Northeastern United States. Environ. Sci. Technol. 2007, 41, 7661–7667. [Google Scholar] [CrossRef] [PubMed]
- Heaton, T.H.E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: A review. Chem. Geol. Isot. Geosci. Sect. 1986, 59, 87–102. [Google Scholar] [CrossRef]
- Fogg, G.E.; Rolston, D.E.; Decker, D.L.; Louie, D.T.; Grismer, M.E. Spatial variation in nitrogen isotope values beneath nitrate contamination sources. Groundwater 1998, 36, 418–426. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Krothe, N.C.; Spalding, R.F. Nitrogen isotope indicators of seasonal source variability to ground water. Environ. Geol. 1997, 32, 210–218. [Google Scholar] [CrossRef]
- Choi, W.J.; Han, G.H.; Lee, S.M.; Lee, G.T.; Yoon, K.S.; Choi, S.M.; Ro, H.M. Impact of land-use types on nitrate concentration and δ15N in unconfined ground water in rural areas of Korea. Agric. Ecosyst. Environ. 2007, 120, 259–268. [Google Scholar] [CrossRef]
- Choi, W.J.; Lee, S.M.; Ro, H.M.; Cheol, K.; Yoo, K.H. Natural 15N abundances of maize and soil amended with urea and composted pig manure. Plant Soil. 2002, 245, 223–232. [Google Scholar] [CrossRef]
- Choi, W.J.; Ro, H.M.; Lee, S.M. Natural 15N abundances of inorganic nitrogen in soil treated with fertilizer and compost under changing soil moisture regimes. Soil Biol. Biochem. 2003, 35, 1289–1298. [Google Scholar] [CrossRef]
- Curt, M.D.; Aguado, P.; Sánchez, G.; Bigeriego, M.; Fernandez, J. Nitrogen isotope ratios of synthetic and organic sources of nitrate water contamination in Spain. Water Air Soil Pollut. 2004, 151, 135–142. [Google Scholar] [CrossRef]
- Widory, D.; Kloppmann, W.; Chery, L.; Bonnin, J.; Rochdi, H.; Guinamant, J.L. Nitrate in groundwater, an isotope multi-tracer approach. J. Contam. Hydrol. 2004, 72, 165–188. [Google Scholar] [CrossRef]
- Bateman, A.S.; Kelly, S.D. Fertilizer nitrogen isotope signatures. Isot. Environ. Health Stud. 2007, 43, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Xing, G.X.; Cao, Y.C.; Shi, S.L.; Sun, G.Q.; Du, L.J.; Zhu, J.G. Pollution Sources and denitrification of nitrogen in Tai Lake basin. Sci. China. 2001, 31, 130–137. (In Chinese) [Google Scholar]
- Roadcap, G.S.; Hackley, K.C.; Hwang, H.H. Application of Nitrogen and Oxygen Isotopes to Identify Sources of Nitrate. In Proceedings of the 12th Annual Illinois Groundwater Consortium Conference, Makanda, IL, USA, 22 April 2002; Available online: https://www.ideals.illinois.edu/handle/2142/55259. (accessed on 17 September 2021).
- Karr, J.D.; Showers, W.J.; Wendell, G.J.; Scott, A.A. Tracing nitrate transport and environmental impact from intensive swine farming using delta nitrogen. J. Environ. Qual. 2001, 30, 1163–1175. [Google Scholar] [CrossRef]
- Mariotti, A.; Landreau, A.; Simon, B. 15N isotope biogeochemistry and natural denitrification process in ground water: Application to the chalk aquifer in northern France. Geochim. Cosmochim. Acta. 1988, 52, 1869–1878. [Google Scholar] [CrossRef]
- McClelland, J.W.; Valiela, I. Linking nitrogen in estuarine producers to land-derived sources. Limnol. Oceanogr. 1998, 43, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Bedard-Haughn, A.; Groenigen, J.; Kessel, C.V. Tracing 15N through landscapes: Potential uses and precautions. J. Hydrol. 2003, 272, 175–190. [Google Scholar] [CrossRef]
- Li, S.L.; Liu, C.Q. The character and application of δ18O-NO3− in the groundwater of Guiyang. Carsologica Sin. 2006, 25, 108–111. (In Chinese) [Google Scholar]
- Wassenaar, L.I. Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of 15N and 18O in NO3−. Appl. Geochem. 1995, 10, 391–405. [Google Scholar] [CrossRef]
- Rock, L.; Mayer, B. Isotopic assessment of sources and processes affecting sulfate and nitrate in surface water and ground water of Luxembourg. Isot. Environ. Health Stud. 2002, 38, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Mayer, B.; Bollwerk, S.M.; Mansfeldt, T.; Hütter, B.; Veizer, J. The oxygen isotope composition of nitrate generated by nitrification in acid forest floors. Geochim. Cosmochim. Acta 2001, 65, 2743–2756. [Google Scholar] [CrossRef]
- Deutsch, B.; Mewes, M.; Liskow, I.; Voss, M. Quantification of diffuse nitrate inputs into a small river system using stable isotopes of oxygen and nitrogen in nitrate. Org. Geochem. 2006, 37, 1333–1342. [Google Scholar] [CrossRef]
- Spoelstra, J.; Schiff, S.L.; Hazlett, P.W.; Jeffries, D.S.; Semkin, R.G. The isotopic composition of nitrate produced from nitrification in a hardwood forest floor. Geochim. Cosmochim. Acta 2007, 71, 3757–3771. [Google Scholar] [CrossRef]
- Kendall, C. Tracing nitrogen sources and cycling in catchments. In Isotope Tracers in Catchment Hydrology; Elsevier: Amsterdam, The Netherlands, 1998; pp. 519–576. Available online: https://www.sciencedirect.com/science/article/pii/B9780444815460500239. (accessed on 17 September 2021).
- Durka, W.; Schulze, E.D.; Gebauer, G.; Susanne, V. Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 1994, 372, 765–767. [Google Scholar] [CrossRef]
- Piatek, K.B.; Mitchell, M.J.; Silva, S.R.; Kendall, C. Sources of nitrate in snowmelt discharge: Evidence from water chemistry and stable isotopes of nitrate. Water Air Soil Pollut. 2005, 165, 13–35. [Google Scholar] [CrossRef]
- Hales, H.C.; Ross, D.S.; Lini, A. Isotopic signature of nitrate in two contrasting watersheds of Brush Brook, Vermont, USA. Biogeochemistry 2007, 84, 51–66. [Google Scholar] [CrossRef]
- Lee, K.S.; Bong, Y.S.; Lee, D.; Kim, Y. Tracing the sources of nitrate in the Han River watersheds in Korea, using δ15N-NO3− and δ18O- NO3− values. Sci. Total Environ. 2008, 395, 117–124. [Google Scholar] [CrossRef]
- Pardo, L.H.; Kendall, C.; Pett-Ridge, J.; Chang, C.C.Y. Evaluating the source of stream water nitrate using 15N and 18O in nitrate in two watersheds in New Hampshire, USA. Hydrol. Process. 2004, 18, 2699–2712. [Google Scholar] [CrossRef]
- Finlay, J.C.; Sterner, R.W.; Kumar, S. Isotopic evidence for in-lake production of accumulating nitrate in Lake Superior. Ecol. Appl. 2007, 17, 2323–2332. [Google Scholar] [CrossRef]
- Hübner, H. Isotope Effects of Nitrogen in the Soil and Biosphere; Elsevier: Amsterdam, The Netherlands, 1986; pp. 361–425. [Google Scholar]
- Rivers, C.N.; Barrett, M.H.; Hiscock, K.M.; Dennis, P.F.; Feast, N.A.; Lerner, D.N. Use of nitrogen isotopes to identify nitrogen contamination of the Sherwood sandstone aquifer beneath the city of Nottingham, United Kingdom. Hydrogeol. J. 1996, 4, 90–102. [Google Scholar] [CrossRef]
- Mariotti, A.; Letolle, R. Application de l’etudeisotopique de l’azote en hydrologie et en hydrogeology-analyse desresultatsobtenussur un exempleprecis: Le Bassin de Melarchez (Seine-et-Marne, France). J. Hydrol. 1977, 33, 157–172. [Google Scholar] [CrossRef]
- Flipse, W.J.; Bonner, F.T. Nitrogen-isotope ratios of nitrate in ground water under fertilized fields, Long Island, New York. Groundwater 1985, 23, 59–67. [Google Scholar] [CrossRef]
- Kendall, C.; Campbell, D.H.; Burns, D.A.; Shanley, J.B.; Chang, C.Y. Tracing sources of nitrate in snowmelt runoff using the oxygen and nitrogen isotopic compositions of nitrate. Biogeochem. Seas. Snow-Cover. Catchments Proc. Boulder Symp. 1995, 228, 339–347. [Google Scholar]
- Aravena, R.; Evans, M.L.; Cherry, J.A. Stable Isotopes of Oxygen and Nitrogen in Source Identification of Nitrate from Septic Systems. Groundwater 1993, 31, 180–186. [Google Scholar] [CrossRef]
- Williard, K.; Dewalle, D.R.; Edwards, P.J.; Sharpe, W.E. 18O isotopic separation of stream nitrate sources in mid-Appalachian forested watersheds. J. Hydrol. 2001, 252, 174–188. [Google Scholar] [CrossRef]
- Kendall, C.; Elliott, E.M.; Wankel, S.D. Tracing Anthropogenic Inputs of Nitrogen to Ecosystems. Blackwell Publ. 2007, 2, 375–449. [Google Scholar]
- Amberger, A.; Schmidt, H.L. Natural isotope contents of nitrate as indicators for its origin. Geochim. Cosmochim. Acta 1987, 51, 2699–2705. [Google Scholar] [CrossRef]
- Fukada, T.; Hiscock, K.M.; Dennis, P.F. A dual isotope approach to the nitrogen hydrochemistry of an urban aquifer. Appl. Geochem. 2004, 19, 709–719. [Google Scholar] [CrossRef]
- Zhang, H.; Kang, X.; Wang, X.; Zhang, J.; Chen, G. Quantitative identification of nitrate sources in the surface runoff of three dominant forest types in subtropical China based on Bayesian model. Sci. Total Environ. 2019, 703, 135074. [Google Scholar] [CrossRef]
- Hollocher, T.C. Source of the oxygen atoms of nitrate in the oxidation of nitrate by nitrocacteragilis and evidence against a P-O-N anhydride mechanism in oxidative phosphorylation. Arch. Biochem. Biophys. 1984, 233, 721–727. [Google Scholar] [CrossRef]
- Kendall, C.; Aravena, R. Nitrate isotopes in groundwater systems. In Environmental Tracers in Subsurface Hydrology; Springer: New York, NY, USA, 2000; pp. 261–297. [Google Scholar]
- Jiang, H.; Ma, J.; Xu, H.; Xu, Z.; Liu, W.; Pan, K. Multiple isotopic compositions reveal complex nitrogen cycling in a subtropical estuary. Environ. Pollut. 2021, 272, 116410. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zheng, B.; Jia, H.; Chen, Z. Determination sources of nitrates into the Three Gorges Reservoir using nitrogen and oxygen isotopes. Sci. Total Environ. 2019, 687, 128–136. [Google Scholar] [CrossRef]
- Fadhullah, W.; Yaccob, N.S.; Syakir, M.I.; Muhammad, S.A.; Li, S.L. Nitrate sources and processes in the surface water of a tropical reservoir by stable isotopes and mixing model. Sci. Total Environ. 2020, 700, 134517. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Q.Q.; Liu, W.J.; Zhang, J.Y.; Pan, K.; Zhao, T.; Xu, Z.F. Isotopic compositions reveal the driving forces of high nitrate level in an urban river: Implications for pollution control. J. Clean. Prod. 2021, 298, 126693. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Q.Q.; Liu, W.J.; Zhang, J.Y.; Zhao, T.; Xu, Z.F. Climatic and anthropogenic driving forces of the nitrogen cycling in a subtropical river basin. Environ. Res. 2021, 194, 110721. [Google Scholar] [CrossRef] [PubMed]
- Narsimha, A.; Hui, Q. Groundwater chemistry, distribution and potential health risk appraisal of nitrate enriched groundwater: A case study from the semi-urban region of South India. Ecotoxicol. Environ. Saf. 2021, 207, 111277. [Google Scholar]
- Li, C.; Li, S.L.; Yue, F.J.; Liu, J.; Zhong, J.; Yan, Z.F.; Zhang, R.C.; Wang, Z.J.; Xu, S. Identification of sources and transformations of nitrate in the Xijiang River using nitrate isotopes and Bayesian model. Sci. Total Environ. 2019, 646, 801–810. [Google Scholar] [CrossRef]
- Panno, S.V.; Hackley, K.C.; Kelly, W.R.; Hwang, H.H. Isotopic evidence of nitrate sources and denitrification in the Mississippi River, Illinois. J. Environ. Qual. 2006, 35, 495–504. [Google Scholar] [CrossRef]
- Yi, Q.; Zhang, Y.; Xie, K.; Chen, Q.W.; Zheng, F.F.; Tonina, D.; Shi, W.Q.; Chen, C. Tracking nitrogen pollution sources in plain watersheds by combining high-frequency water quality monitoring with tracing dual nitrate isotopes. J. Hydrol. 2020, 581, 124439. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, J.; Li, H.; Jin, H.; Gao, S.; Ji, Z.; Zhu, Y.; Ran, L.; Zhang, J.; Liao, Y. Sources of nitrate in Xiangshan Bay (China), as identified using nitrogen and oxygen isotopes. Estuar. Coast. Shelf Sci. 2018, 207, 109–118. [Google Scholar] [CrossRef]
- Humborg, C.; Conley, D.J.; Rahm, L.; Wulff, F.; Ittekkot, V. Silicon retention in river basins: Far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. AMBIO J. Hum. Environ. 2000, 29, 45–50. [Google Scholar] [CrossRef]
- Phillips, D.L.; Koch, P.L. Incorporating concentration dependence in stable isotope mixing models. Oecologia 2002, 130, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.W.; Semmens, B.X. Incorporating uncertainty and prior information into stable isotope mixing models. Ecol. Lett. 2008, 11, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Parnell, A.C.; Inger, R.; Bearhop, S.; Jackson, A.L.; Rands, S. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 2010, 5, e9672. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, Y.; Cheng, S.; Li, Q.; Yu, H. Application of the dual-isotope approach and Bayesian isotope mixing model to identify nitrate in groundwater of a multiple land-use area in Chengdu Plain, China. Sci. Total Environ. 2020, 717, 137134. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Baets, B.D.; Cleemput, O.V.; Hennessy, C.; Berglund, M.; Boeckx, P. Classification of Nitrate Polluting Activities through Clustering of Isotope Mixing Model Outputs. J. Environ. Qual. 2013, 42, 1486–1497. [Google Scholar] [CrossRef] [PubMed]
- Kruk, M.K.; Mayer, B.; Nightingale, M.; Laceby, J.P. Tracing nitrate sources with a combined isotope approach (δ15N-NO3, δ18O-NO3 and δ11B) in a large mixed-use watershed in southern Alberta, Canada. Sci. Total Environ. 2019, 703, 135043. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, C.; Zhai, T.; Zhang, Q.; Wang, H.; Xiao, L. Research Advances in the Analysis of Nitrate Pollution Sources in a Freshwater Environment Using δ15N-NO3− and δ18O-NO3−. Int. J. Environ. Res. Public Health 2021, 18, 11805. https://doi.org/10.3390/ijerph182211805
Niu C, Zhai T, Zhang Q, Wang H, Xiao L. Research Advances in the Analysis of Nitrate Pollution Sources in a Freshwater Environment Using δ15N-NO3− and δ18O-NO3−. International Journal of Environmental Research and Public Health. 2021; 18(22):11805. https://doi.org/10.3390/ijerph182211805
Chicago/Turabian StyleNiu, Chao, Tianlun Zhai, Qianqian Zhang, Huiwei Wang, and Lele Xiao. 2021. "Research Advances in the Analysis of Nitrate Pollution Sources in a Freshwater Environment Using δ15N-NO3− and δ18O-NO3−" International Journal of Environmental Research and Public Health 18, no. 22: 11805. https://doi.org/10.3390/ijerph182211805