Correlation of ADIPOQ Gene Single Nucleotide Polymorphisms with Bone Strength Index in Middle-Aged and the Elderly of Guangxi Mulam Ethnic Group
Abstract
:1. Introduction
2. Objects and Methods
2.1. Objects
2.2. Methods
2.2.1. Bone Strength Index Determination
2.2.2. Body Composition Index Determination
2.2.3. APN Gene SNP Genotyping
2.3. Statistical Analysis
3. Results
3.1. Trends of Bone Strength Index of the Mulam Middle-Aged and Elderly People Growing with Age
3.2. Analysis of Factors Influencing on Bone Strength INDEX of Middle-Aged and Elderly People of the Mulam Ethnic Minority
3.3. Frequency Distribution of ADIPOQ Genotypes and Alleles in the Middle-Aged and Elderly Mulam People
3.4. Analysis of Linkage Unbalance among ADIPOQ Gene Polymorphism Loci in the Middle-Aged and Elderly Mulam People
4. Discussion
4.1. Changes in Bone Strength Index
4.2. Analysis of Risk Factors for Osteoporosis
4.3. Relationship between SNP and Bone Strength Index
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OP | osteoporosis |
SI | bone strength index |
APN | adiponectin |
BMD | bone mineral density |
LD | linkage disequilibrium |
References
- Isakova, J.; Talaibekova, E.; Vinnikov, D.; Saadanov, I.; Aldasheva, N. ADIPOQ, KCNJ11 and TCF7L2 polymorphisms in type 2 diabetes in Kyrgyz population: A case-control study. J. Cell. Mol. Med. 2018, 23, 1628–1631. [Google Scholar] [CrossRef] [Green Version]
- Hiwasa, T.; Zhang, X.-M.; Kimura, R.; Ohno, M.; Chen, P.-M.; Nishi, E.; Ono, K.; Kimura, T.; Kamitsukasa, I.; Wada, T.; et al. Elevated Adiponectin Antibody Levels in Sera of Patients with Atherosclerosis-Related Coronary Artery Disease, Cerebral Infarction and Diabetes Mellitus. J. Circ. Biomark. 2016, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Jia, A.M.; Chen, K.; Song, Y.Y. Research progress of association between adiponectin gene polymorphism and coro-nary heart disease. Chin. J. Arterioscler. 2020, 28, 627–633. [Google Scholar]
- Cao, Y.; Gomes, S.A.; Rangel, E.B.; Paulino, E.C.; Fonseca, T.L.; Li, J.; Teixeira, M.B.; Gouveia, C.H.; Bianco, A.C.; Kapiloff, M.S.; et al. S-nitrosoglutathione reductase-dependent PPARγ denitrosylation participates in MSC-derived adipogenesis and osteogenesis. J. Clin. Investig. 2015, 125, 1679–1691. [Google Scholar] [CrossRef] [Green Version]
- Berner, H.S.; Lyngstadaas, S.P.; Spahr, A.; Monjo, M.; Thommesen, L.; Drevon, C.A.; Syversen, U.; Reseland, J.E. Adiponectin and its receptors are expressed in bone-forming cells. Bone 2004, 35, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.A.; Wang, Y.; Callon, K.E.; Watson, M.; Lin, J.; Lam, J.B.B.; Costa, J.L.; Orpe, A.; Broom, N.; Naot, D.; et al. In Vitro and in Vivo Effects of Adiponectin on Bone. Endocrinology 2009, 150, 3603–3610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.H.; Huang, X.F.; Zhou, Q.H.; Lin, C.W.; Yang, Y.Y.; Wei, Y.S.; Huang, C.S.; Wu, L.T. Correlation of the adiponectin gene single nu-cleotide polymorphisms with bone mineral density in females of Guangxi Zhuang nationality. Acta Anat. Sin. 2012, 43, 109–113. [Google Scholar]
- Wang, Y.B.; Wang, J.H. Progress in adiponectin inosteoporosis bone metabolic diseases. Chin. J. Anat. 2016, 39, 746–748. [Google Scholar]
- Oshima, K.; Nampei, A.; Matsuda, M.; Iwaki, M.; Fukuhara, A.; Hashimoto, J.; Yoshikawa, H.; Shimomura, I. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem. Biophys. Res. Commun. 2005, 331, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, I. Adiponectin in metabolic bone disease. Curr. Med. Chem. 2012, 19, 5481–5492. [Google Scholar] [CrossRef] [PubMed]
- Biver, E.; Salliot, C.; Combescure, C.; Gossec, L.; Hardouin, P.; Legroux-Gerot, I.; Cortet, B. Influence of Adipokines and Ghrelin on Bone Mineral Density and Fracture Risk: A Systematic Review and Meta-Analysis. J. Clin. Endocrinol. Metab. 2011, 96, 2703–2713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.H.; Liu, Y.L.; Liu, H.M.; Song, Y.Y. Relationship between serum adiponectin level and bone mineral density in elderly men. Chin. J. Osteoporosis. 2013, 19, 465–468. [Google Scholar]
- Chen, L.H.; Lu, Y.B.; Zhou, X.H.; Kang, Y.W.; Deng, H.Q.; Liu, Y.Y. Correlation between adipokines Omentin-1, adiponec-tinand bone mineal density in middle-aged women. Chin. J. Osteoporos. 2019, 25, 909–912. [Google Scholar]
- Napoli, N.; Pedone, C.; Pozzilli, P.; Lauretani, F.; Ferrucci, L.; Incalzi, R.A. Adiponectin and bone mass density: The InCHI-ANTI study. Bone 2010, 47, 1001–1005. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.L.; Liang, Y.C.; Pan, C.M. nvestigation on prevalence of chronic diseases among Mulam residents in Guangxi. Appl. Prev. Med. 2013, 19, 43–45. [Google Scholar]
- Chen, X.C.; Li, Y.; Yu, H.R.; Gong, J.G.; Zhou, L.N.; Gong, J.C.; Xu, L.; Deng, Q.Y. Differences of bone mineral density and change with age among female adults of minorities in Guangxi. Acta Anat. Sin. 2018, 49, 683–687. [Google Scholar]
- Cauley, J.A. Defining Ethnic and Racial Differences in Osteoporosis and Fragility Fractures. Clin. Orthop. Relat. Res. 2011, 469, 1891–1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, W.B.; Yu, W.; Wang, Y.P.; Li, M.; Wang, O.; Zhang, Z.L. Principles and Guidelines for Diagnosis and treatment of Primary Osteoporosis in Communities. Chin. Gen. Pract. 2019, 22, 1125–1132. [Google Scholar]
- Shi, Y.M.; Luo, Q.; Jiang, Y.M.; Wang, Y.; Wu, Q.M.; Zhang, H.J. Analysis of bone strength and influencing factors in adults. J. Shanghai Jiaotong Univ. Med. Sci. 2010, 30, 28–31. [Google Scholar]
- Han, Y.J.; Tie, X.J.; Yi, L.H.M. Meta-analysis on the prevalence rate osteoporosis in the middle-aged and elderly in China. Chin. J. Tissue Eng. Res. 2014, 18, 1129–1134. [Google Scholar]
- Akune, T.; Ohba, S.; Kamekura, S.; Yamaguchi, M.; Chung, U.I.; Kubota, N.; Terauchi, Y.; Harada, Y.; Azuma, Y.; Nakamura, K.; et al. PPARgamma insufficiency enhances oste-ogenesis through osteoblast formation from bone marrow progenitors. J. Clin. Investig. 2004, 113, 846–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedetti, M.G.; Furlini, G.; Zati, A.; Mauro, G.L. The Effectiveness of Physical Exercise on Bone Density in Osteoporotic Patients. Biomed. Res. Int. 2018, 2018, 4840531. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Huang, X.F.; Zhou, Q.H.; Lin, C.W.; Yang, Y.Y.; Wei, Y.S.; Huang, C.-S.; Wu, L.T.; Wu, Y.M.; He, L.F. Association between adiponectin gene single nu-cleotide poly morphisms and bone mineral density in a female population of Zhuang nationality in Guangxi Baise area. Chin. J. Tissue Eng. Res. 2011, 15, 6252–6256. [Google Scholar]
- Kim, K.-C.; Chun, H.; Lai, C.-Q.; Parnell, L.D.; Jang, Y.; Lee, J.; Ordovas, J.M. The association between genetic variants of RUNX2, ADIPOQ and vertebral fracture in Korean postmenopausal women. J. Bone Miner. Metab. 2014, 33, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Hwang, J.-Y.; Han, B.-G.; Lee, J.-Y.; Park, E.K.; Kim, B.-J.; Lee, S.H.; Kim, G.S.; Kim, S.-Y.; Koh, J.-M. Association ofADIPOR1polymorphisms with bone mineral density in postmenopausal Korean women. Exp. Mol. Med. 2012, 44, 394–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Age Groups | Bone Strength Index | |||
---|---|---|---|---|
n | Males | n | Females | |
45- | 16 | 108.19 ± 16.41 | 41 | 102.76 ± 13.35 |
50- | 14 | 103.93 ± 19.76 | 29 | 101.76 ± 14.25 |
55- | 24 | 105.33 ± 12.03 | 33 | 92.15 ± 17.89 ab |
60- | 38 | 104.32 ± 16.24 | 53 | 87.72 ± 13.36 ab |
65- | 27 | 99.78 ± 12.89 | 26 | 94.08 ± 18.50 a |
70- | 46 | 94.59 ± 15.92 a | 37 | 76.89 ± 15.2 ab |
F value | 3.125 | 14.747 | ||
p | 0.01 | <0.01 |
Variables | r | p |
---|---|---|
Age | −0.343 | <0.01 |
Height | 0.182 | <0.01 |
Weight | 0.123 | 0.016 |
BMI (kg/m2) | 0.023 | 0.654 |
Fat content | −0.108 | 0.035 |
Muscle mass | 0.245 | <0.01 |
Waist-to-hip ratio | −0.064 | 0.212 |
Visceral fat content | −0.061 | 0.235 |
Subcutaneous fat content | −0.118 | 0.021 |
Variables | B | S.E. | β | t | p |
---|---|---|---|---|---|
Age | −0.613 | 0.084 | −0.344 | −7.318 | <0.01 |
Muscle mass | 0.584 | 0.123 | 0.220 | 4.733 | <0.01 |
Subcutaneous fat content | −0.590 | 0.184 | −0.151 | −3.203 | <0.01 |
Loci | Genotype | Normal | Osteopenia | OR (95% CI) | χ2 | p |
---|---|---|---|---|---|---|
rs266729 | CC | 176 | 38 | 1.000 | - | |
GC | 103 | 43 | 1.934 (1.173–3.186) | 6.807 | 0.009 | |
GG | 18 | 6 | 1.544 (0.575–4.147) | 0.347 | 0.556 | |
Allelic gene | ||||||
G | 139 | 55 | 1.000 | - | ||
C | 455 | 119 | 0.661 (0.456–0.959) | 4.803 | 0.028 | |
rs1063539 | CC | 27 | 4 | 1.000 | - | |
GC | 144 | 35 | 1.641 (0.539–4.994) | 0.773 | 0.379 | |
GG | 126 | 48 | 2.571 (0.855–7.736) | 2.996 | 0.083 | |
Allelic gene | ||||||
G | 396 | 131 | 1.000 | - | ||
C | 198 | 43 | 0.656 (0.447–0.964) | 4.645 | 0.031 | |
rs2241766 | GG | 26 | 3 | 1.000 | - | |
GT | 136 | 36 | 2.294 (0.657–8.009) | 1.778 | 0.182 | |
TT | 135 | 48 | 3.081 (0.892–10.645) | 3.457 | 0.063 | |
Allelic gene | ||||||
G | 188 | 42 | 1.000 | - | ||
T | 406 | 132 | 1.455 (0.987–2.145) | 3.62 | 0.057 | |
rs3774261 | AA | 89 | 24 | 1.000 | - | |
GA | 152 | 49 | 1.034 (0.734–1.455) | 0.036 | 0.85 | |
GG | 56 | 14 | 0.87 (0.458–1.651) | 0.182 | 0.67 | |
Allelic gene | ||||||
A | 330 | 97 | 1.000 | - | ||
G | 264 | 77 | 0.992 (0.706–1.394) | 0.002 | 0.964 | |
rs710445 | AA | 116 | 22 | 1.000 | - | |
GA | 126 | 43 | 1.799 (1.015–3.189) | 4.109 | 0.043 | |
GG | 55 | 22 | 2.109 (1.077–4.132) | 4.843 | 0.028 | |
Allelic gene | ||||||
A | 358 | 87 | 1.000 | - | ||
G | 236 | 87 | 1.517 (1.080–2.130) | 5.824 | 0.016 |
Haplotype | Case | Control | p | OR (95% CI) |
---|---|---|---|---|
CCGAA | 0.188 | 0.262 | 0.038 | 0.639 (0.418–0.979) |
CCGAG | 0.032 | 0.037 | 0.745 | 0.855 (0.331–2.208) |
CGTAA | 0.063 | 0.071 | 0.691 | 0.870 (0.437–1.732) |
CGTAG | 0.114 | 0.089 | 0.345 | 1.302 (0.752–2.255) |
CGTGA | 0.231 | 0.257 | 0.451 | 0.857 (0.573–1.281) |
GGTAG | 0.138 | 0.068 | 0.004 | 2.182 (1.274–3.738) |
GGTGG | 0.172 | 0.146 | 0.421 | 1.207 (0.763–1.907) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, M.; Ning, N.; Jiang, Y.; Aschner, M.; Huang, X.; Bin, X.; Wang, J. Correlation of ADIPOQ Gene Single Nucleotide Polymorphisms with Bone Strength Index in Middle-Aged and the Elderly of Guangxi Mulam Ethnic Group. Int. J. Environ. Res. Public Health 2021, 18, 13034. https://doi.org/10.3390/ijerph182413034
Zhou M, Ning N, Jiang Y, Aschner M, Huang X, Bin X, Wang J. Correlation of ADIPOQ Gene Single Nucleotide Polymorphisms with Bone Strength Index in Middle-Aged and the Elderly of Guangxi Mulam Ethnic Group. International Journal of Environmental Research and Public Health. 2021; 18(24):13034. https://doi.org/10.3390/ijerph182413034
Chicago/Turabian StyleZhou, Min, Ning Ning, Yueming Jiang, Michael Aschner, Xiufeng Huang, Xiaoyun Bin, and Jinhua Wang. 2021. "Correlation of ADIPOQ Gene Single Nucleotide Polymorphisms with Bone Strength Index in Middle-Aged and the Elderly of Guangxi Mulam Ethnic Group" International Journal of Environmental Research and Public Health 18, no. 24: 13034. https://doi.org/10.3390/ijerph182413034
APA StyleZhou, M., Ning, N., Jiang, Y., Aschner, M., Huang, X., Bin, X., & Wang, J. (2021). Correlation of ADIPOQ Gene Single Nucleotide Polymorphisms with Bone Strength Index in Middle-Aged and the Elderly of Guangxi Mulam Ethnic Group. International Journal of Environmental Research and Public Health, 18(24), 13034. https://doi.org/10.3390/ijerph182413034