Effect of Soil Solution Properties and Cu2+ Co-Existence on the Adsorption of Sulfadiazine onto Paddy Soil
Abstract
:1. Introduction
2. Materials and Method
2.1. Paddy Soil Sampling and Characterization
2.2. Chemicals and Reagents
2.3. Preparation of Soil Organic Particles and Soil Clay
2.4. Batch Sorption Experiment
2.5. Analysis Method
2.6. Data Calculation
3. Results
3.1. Effect of Soil Solution Properties on the Sorption of SDZ
3.2. Effect of Cu2+ Co-Existing on the Sorption of SDZ
3.3. Co-Adsorption Mechanism of Cu and SDZ on Different Soil Components
4. Discussion
4.1. Effects of Soil Solution Properties on the Sorption of SDZ in Paddy Soils
4.2. Effect of Cu2+ Co-Existing on the Sorption of SDZ
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kim, J.H.; Kuppusamy, S.; Kim, S.Y.; Kim, S.C.; Kim, H.T.; Lee, Y.B. Occurrence of sulfonamide class of antibiotics resistance in Korean paddy soils under long-term fertilization practices. J. Soils Sediments 2017, 17, 1618–1625. [Google Scholar] [CrossRef]
- Pan, M.; Chu, L.M. Occurrence of antibiotics and antibiotic resistance genes in soils from wastewater irrigation areas in the Pearl River Delta region, southern China. Sci. Total Environ. 2017, 624, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Zhi, D.; Yang, D.; Zheng, Y.; Yang, Y.; He, Y.; Luo, L.; Zhou, Y. Current progress in the adsorption, transport and biodegradation of antibiotics in soil. J. Environ. Manag. 2019, 251, 109598. [Google Scholar] [CrossRef] [PubMed]
- Arunakumara, K.K.I.U.; Walpola, B.C.; Yoon, M.-H. Current status of heavy metal contamination in Asia’s rice lands. Rev. Environ. Sci. Bio/Technol. 2013, 12, 355–377. [Google Scholar] [CrossRef]
- Hu, L.; Qiu, J.; Wang, L.; Tang, H.; Li, C.; Ranst, E.V. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat-maize rotation system in China. Agric. Ecosyst. Environ. 2010, 135, 24–33. [Google Scholar]
- Sarmah, A.K.; Meyer, M.; Boxall, A.B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef] [PubMed]
- Conde-Cid, M.; Álvarez-Esmorís, C.; Paradelo-Núñez, R.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Álvarez-Rodríguez, E.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A. Occurrence of tetracyclines and sulfonamides in manures, agricultural soils and crops from different areas in Galicia (NW Spain). J. Clean. Prod. 2018, 197, 491–500. [Google Scholar] [CrossRef]
- Wei, R.; Ge, F.; Zhang, L.; Hou, X.; Cao, Y.; Gong, L.; Chen, M.; Wang, R.; Bao, E. Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China. Chemosphere 2016, 144, 2377–2383. [Google Scholar] [CrossRef]
- Kremer, E.; Facchin, G.; Estévez, E.; Alborés, P.; Baran, E.; Ellena, J.; Torre, M. Copper complexes with heterocyclic sulfonamides: Synthesis, spectroscopic characterization, microbiological and SOD-like activities: Crystal structure of [Cu(sulfisoxazole)2(H2O)4]·2H2O. J. Inorg. Biochem. 2006, 100, 1167–1175. [Google Scholar] [CrossRef]
- Ftouni, H.; Sayen, S.; Boudesocque, S.; Dechamps-Olivier, I.; Guillon, E. Structural study of the copper(II)–enrofloxacin metallo-antibiotic. Inorg. Chim. Acta 2012, 382, 186–190. [Google Scholar] [CrossRef]
- Morel, M.-C.; Spadini, L.; Brimo, K.; Martins, J.M. Speciation study in the sulfamethoxazole–copper–pH–soil system: Implications for retention prediction. Sci. Total Environ. 2014, 481, 266–273. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, W.; Ma, Q.; Zhou, H. Interactive effects of sulfadiazine and Cu(II) on their sorption and desorption on two soils with different characteristics. Chemosphere 2015, 138, 701–707. [Google Scholar] [CrossRef]
- Pan, B.; Qiu, M.; Wu, M.; Zhang, D.; Peng, H.; Wu, D.; Xing, B. The opposite impacts of Cu and Mg cations on dissolved organic matter-ofloxacin interaction. Environ. Pollut. 2012, 161, 76–82. [Google Scholar] [CrossRef]
- Graouer-Bacart, M.; Sayen, S.; Guillon, E. Macroscopic and molecular approaches of enrofloxacin retention in soils in presence of Cu(II). J. Colloid Interface Sci. 2013, 408, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Jia, D.-A.; Zhou, D.-M.; Wang, Y.-J.; Zhu, H.-W. Adsorption and co-sorption of Cu(II) and tetracycline on two soils with different characteristics. Geoderma 2008, 146, 224–230. [Google Scholar] [CrossRef]
- Bao, Y.; Wan, Y.; Zhou, Q.; Li, W.; Liu, Y. Competitive adsorption and desorption of oxytetracycline and cadmium with different input loadings on cinnamon soil. J. Soils Sediments 2013, 13, 364–374. [Google Scholar] [CrossRef]
- de la Torre, A.; Iglesias, I.; Carballo, M.; Ramírez, P.; Muñoz, M.J. An approach for mapping the vulnerability of European Union soils to antibiotic contamination. Sci. Total Environ. 2012, 414, 672–679. [Google Scholar] [CrossRef]
- Leal, R.M.P.; Alleoni, L.; Tornisielo, V.L.; Regitano, J.B. Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils. Chemosphere 2013, 92, 979–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, E.T. Aggregate Structure and Carbon, Nitrogen, and Phosphorus in Native and Cultivated Soils. Soil Sci. Soc. Am. J. 1986, 50, 627–633. [Google Scholar] [CrossRef]
- Dumat, C.; Cheshire, M.V.; Fraser, A.R.; Shand, C.A.; Staunton, S. The effect of removal of soil organic matter and iron on the adsorption of radiocaesium. Eur. J. Soil Sci. 2010, 48, 675–683. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Q.; Deng, X.; Nan, Z.; Liang, X.; Wen, H.; Huang, K.; Wu, Y. Single and competitive sorption of sulfadiazine and chlortetracycline on loess soil from Northwest China. Environ. Pollut. 2020, 263, 114650. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.K. Analysis Method of Soil Agricultural Chemistry; China Agricultural Science and Technology Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Al-Degs, Y.; El-Barghouthi, M.I.; Issa, A.A.; Khraisheh, M.A.; Walker, G.M. Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: Equilibrium and kinetic studies. Water Res. 2006, 40, 2645–2658. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, H. Adsorption behavior of antibiotic in soil environment: A critical review. Front. Environ. Sci. Eng. 2015, 9, 565–574. [Google Scholar] [CrossRef]
- Srinivasan, P.; Sarmah, A.K.; Manley-Harris, M. Co-contaminants and factors affecting the sorption behaviour of two sulfonamides in pasture soils. Environ. Pollut. 2013, 180, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-L.; Liu, L.-C.; Chen, W.-R. Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils. Environ. Pollut. 2017, 231, 1163–1171. [Google Scholar] [CrossRef]
- Ötker, H.M.; Akmehmet-Balcıoğlu, I. Adsorption and degradation of enrofloxacin, a veterinary antibiotic on natural zeolite. J. Hazard. Mater. 2005, 122, 251–258. [Google Scholar] [CrossRef]
- Wegst-Uhrich, S.R.; Navarro, D.A.; Zimmerman, L.; Aga, D.S. Assessing antibiotic sorption in soil: A literature review and new case studies on sulfonamides and macrolides. Chem. Cent. J. 2014, 8, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lertpaitoonpan, W.; Ong, S.K.; Moorman, T. Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere 2009, 76, 558–564. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, Y.; Shen, G.; Zhang, H.; Yuan, Z.; Zhang, W. Adsorption/desorption behavior and mechanisms of sulfadiazine and sulfamethoxazole in agricultural soil systems. Soil Tillage Res. 2019, 186, 233–241. [Google Scholar] [CrossRef]
- Rath, S.; Fostier, A.H.; Pereira, L.A.; Dioniso, A.C.; Ferreira, F.D.O.; Doretto, K.M.; Peruchi, L.M.; Viera, A.; Neto, O.F.D.O.; Bosco, S.M.D.; et al. Sorption behaviors of antimicrobial and antiparasitic veterinary drugs on subtropical soils. Chemosphere 2019, 214, 111–122. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, Y. Influence of strength and species of cation on adsorption of norfloxacin in typical soils of China. Huan Jing Ke Xue 2007, 28, 2383–2388. [Google Scholar] [PubMed]
- Maszkowska, J.; Białk-Bielińska, A.; Mioduszewska, K.; Wagil, M.; Kumirska, J.; Stepnowski, P. Sorption of sulfisoxazole onto soil—An insight into different influencing factors. Environ. Sci. Pollut. Res. 2015, 22, 12182–12189. [Google Scholar] [CrossRef]
- Gao, J.; Pedersen, J.A. Adsorption of Sulfonamide Antimicrobial Agents to Clay Minerals. Environ. Sci. Technol. 2005, 39, 9509–9516. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Huwe, B. Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils. Environ. Pollut. 2016, 213, 561–570. [Google Scholar] [CrossRef]
- Laak, T.; Gebbink, W.A.; Tolls, J. The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin, and oxytetracline to soil. Environ. Toxicol. Chem. 2010, 25, 904–911. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Song, X.; Wang, Q.; Liu, Y.; Lin, N. Influence of coexisting Cr(VI) and sulfate anions and Cu(II) on the sorption of F-53B to soils. Chemosphere 2019, 216, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Deng, S.; Wang, B.; Huang, J.; Wang, Y.; Yu, G. Adsorption behavior and mechanism of perfluorooctane sulfonate on nanosized inorganic oxides. J. Colloid Interface Sci. 2016, 474, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Shuang, Y.; Li, L.; Li, C.; Guo, B. Effects of copper and aluminum on the adsorption of sulfathiazole and tylosin on peat and soil. Environ. Pollut. 2014, 184, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, K.; Tao, S.; Xing, B. Sorption of Aromatic Organic Contaminants by Biopolymers: Effects of pH, Copper (II) Complexation, and Cellulose Coating. Environ. Sci. Technol. 2007, 41, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.-G.; Shan, X.-Q.; Zhang, S.-Z.; Kong, J.-J.; Wen, B.; Zhang, J.; Zheng, L.-R.; Xie, Y.-N.; Janssens, K. Insight to ternary complexes of co-adsorption of norfloxacin and Cu(II) onto montmorillonite at different pH using EXAFS. J. Hazard. Mater. 2011, 186, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Pignatello, J.J. Sorption of Apolar Aromatic Compounds to Soil Humic Acid Particles Affected by Aluminum(III) Ion Cross-Linking. J. Environ. Qual. 2004, 33, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
Soil Components | pH | OM 1 (mg g−1) | CEC 2 (cmol kg−1) | Zeta-Potential (ζ, mV) |
---|---|---|---|---|
Crude soil | 6.8 | 23.68 ± 2.46 | 5.84 ± 0.11 | −33.79 ± 2.06 |
Organic particle | 7.3 | 50.55 ± 3.12 | 8.15 ± 0.19 | −59.99 ± 5.25 |
Soil Clay | 5.3 | -- | 3.84 ± 0.04 | −64.55 ± 3.35 |
Treatments | The Pseudo-First-Order | The Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|
qe (μmol kg−1) | k1 | R | qe (μmol kg−1) | k2 | R | |
Crude soil | 65.84 ± 0.36 | 1.40 ± 0.59 | 0.9980 | 69.48 ± 0.76 | 0.02 ± 0.00 | 0.9901 |
pH 5.0 | 60.16 ± 0.37 | 0.19 ± 0.02 | 0.9990 | 65.72 ± 0.32 | 0.02 ± 0.00 | 0.9996 |
pH 7.0 | 41.56 ± 0.30 | 1.69 ± 0.69 | 0.9986 | 43.96 ± 0.33 | 0.20 ± 0.07 | 0.9989 |
pH 9.0 | 45.72 ± 0.40 | 1.04 ± 0.37 | 0.9977 | 48.40 ± 0.45 | 0.13 ± 0.05 | 0.9983 |
FA 1 mg L−1 | 52.08 ± 0.33 | 0.33 ± 0.15 | 0.9986 | 74.24 ± 0.39 | 0.04 ± 0.01 | 0.9990 |
FA 3 mg L−1 | 69.24 ± 0.44 | 0.45 ± 0.08 | 0.9979 | 74.24 ± 0.39 | 0.04 ± 0.01 | 0.9990 |
FA 5 mg L−1 | 71.12 ± 0.29 | 0.29 ± 0.13 | 0.9989 | 74.52 ± 0.25 | 0.07 ± 0.01 | 0.9995 |
0.05 M CaCl2 | 22.88 ± 0.27 | 0.06 ± 0.01 | 0.9997 | 28.28 ± 0.49 | 0.49 ± 0.01 | 0.9998 |
0.1 M CaCl2 | 19.68 ± 0.20 | 0.16 ± 0.02 | 0.9999 | 22.00 ± 0.19 | 0.19 ± 0.01 | 0.9999 |
Treatments | Linear | Freundlich | |||
---|---|---|---|---|---|
kd (L kg−1) | R | KF (μmol1 − N LN kg−1) | n | R | |
Crude soil | 2.17 ± 0.47 | 0.9537 | 18.56 ± 1.95 | 1.48 ± 0.09 | 0.9990 |
pH 5.0 | 1.65 ± 0.11 | 0.9743 | 12.57 ± 0.75 | 1.22 ± 0.26 | 0.9755 |
pH 7.0 | 1.82 ± 0.15 | 0.9841 | 17.47 ± 0.86 | 1.32 ± 0.46 | 0.9952 |
pH 9.0 | 1.42 ± 0.17 | 0.9251 | 11.85 ± 0.66 | 1.32 ± 0.42 | 0.9578 |
FA 1 mg L−1 | 2.07 ± 0.21 | 0.9436 | 24.46 ± 0.68 | 1.89 ± 0.20 | 0.9644 |
FA 3 mg L−1 | 3.70 ± 0.33 | 0.9540 | 25.56 ± 0.73 | 1.89 ± 0.86 | 0.9925 |
FA 5 mg L−1 | 4.22 ± 0.36 | 0.9589 | 28.45 ± 0.96 | 1.96 ± 0.30 | 0.9950 |
0.05M CaCl2 | 1.48 ± 0.13 | 0.9538 | 10.86 ± 0.35 | 1.90 ± 0.40 | 0.9772 |
0.1 M CaCl2 | 4.22 ± 0.36 | 0.9589 | 10.90 ± 0.54 | 1.27 ± 0.40 | 0.9454 |
Treatments | The Pseudo-First-Order | The Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|
qe (μmol L−1) | k1 | R | qe (μmol L−1) | k2 | R | |
Crude soil | 42.76 ± 0.26 | 0.54 ± 0.09 | 0.9992 | 45.64 ± 0.23 | 0.07 ± 0.01 | 0.9996 |
Cu2+ 200 mg L−1 | 77.92 ± 0.42 | 0.76 ± 0.18 | 0.9977 | 82.40 ± 0.40 | 0.06 ± 0.01 | 0.9988 |
Cu2+ 500 mg L−1 | 91.16 ± 0.37 | 0.58 ± 0.10 | 0.9984 | 93.92 ± 0.71 | 0.07 ± 0.01 | 0.9178 |
Organic particles | 70.64 ± 0.75 | 0.09 ± 0.01 | 0.9974 | 81.64 ± 0.97 | 0.01 ± 0.00 | 0.9982 |
Cu2+ 200 mg L−1 | 79.52 ± 0.51 | 0.34 ± 0.06 | 0.9975 | 104.56 ± 0.49 | 0.03 ± 0.01 | 0.9987 |
Cu2+ 500 mg L−1 | 81.60 ± 0.40 | 0.39 ± 0.07 | 0.9984 | 106.08 ± 0.36 | 0.04 ± 0.01 | 0.9992 |
Clay | 19.40 ± 0.11 | 0.25 ± 0.04 | 0.9999 | 20.36 ± 0.11 | 0.14 ± 0.03 | 1.0000 |
Cu2+ 200 mg L−1 | 15.24 ± 0.26 | 0.09 ± 0.01 | 0.9997 | 18.96 ± 0.36 | 0.02 ± 0.00 | 0.9997 |
Cu2+ 500 mg L−1 | 13.76 ± 0.14 | 0.66 ± 0.14 | 0.9998 | 15.08 ± 0.13 | 0.22 ± 0.05 | 0.9999 |
Treatments | Linear | Freundlich | |||
---|---|---|---|---|---|
kd (L kg−1) | R | KF (μmol1 LN kg−1) | n | R | |
Crude soil | 6.57 ± 0.38 | 0.9801 | 18.65 ± 1.56 | 1.45 ± 0.29 | 0.9992 |
Cu2+ 200 mg L−1 | 28.62 ± 1.09 | 0.9914 | 35.76 ± 2.34 | 1.20 ± 0.12 | 1.0000 |
Cu2+ 500 mg L−1 | 36.62 ± 2.62 | 0.9706 | 40.68 ± 2.66 | 1.87 ± 0.25 | 1.0000 |
Organic particles | 1.69 ± 0.20 | 0.9266 | 15.43 ± 1.35 | 1.46 ± 0.06 | 0.9938 |
Cu2+ 200 mg L−1 | 9.05 ± 0.94 | 0.9408 | 30.21 ± 1.98 | 1.81 ± 0.32 | 0.9987 |
Cu2+ 500 mg L−1 | 11.55 ± 0.85 | 0.9692 | 32.53 ± 2.01 | 1.13 ± 0.30 | 0.9996 |
Clay | 1.87 ± 0.13 | 0.9725 | 13.69 ± 0.96 | 1.63 ± 0.08 | 0.9940 |
Cu2+ 200 mg L−1 | 1.66 ± 0.12 | 0.9715 | 12.56 ± 0.58 | 1.54 ± 0.04 | 0.9979 |
Cu2+ 500 mg L−1 | 1.00 ± 0.15 | 0.8920 | 8.57 ± 0.35 | 1.50 ± 0.14 | 0.9445 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Lv, S.; Hu, S.; Chao, L.; Rong, F.; Wang, X.; Dong, M.; Liu, K.; Li, M.; Liu, A. Effect of Soil Solution Properties and Cu2+ Co-Existence on the Adsorption of Sulfadiazine onto Paddy Soil. Int. J. Environ. Res. Public Health 2021, 18, 13383. https://doi.org/10.3390/ijerph182413383
Xu Z, Lv S, Hu S, Chao L, Rong F, Wang X, Dong M, Liu K, Li M, Liu A. Effect of Soil Solution Properties and Cu2+ Co-Existence on the Adsorption of Sulfadiazine onto Paddy Soil. International Journal of Environmental Research and Public Health. 2021; 18(24):13383. https://doi.org/10.3390/ijerph182413383
Chicago/Turabian StyleXu, Ziwen, Shiquan Lv, Shuxiang Hu, Liang Chao, Fangxu Rong, Xin Wang, Mengyang Dong, Kai Liu, Mingyue Li, and Aiju Liu. 2021. "Effect of Soil Solution Properties and Cu2+ Co-Existence on the Adsorption of Sulfadiazine onto Paddy Soil" International Journal of Environmental Research and Public Health 18, no. 24: 13383. https://doi.org/10.3390/ijerph182413383
APA StyleXu, Z., Lv, S., Hu, S., Chao, L., Rong, F., Wang, X., Dong, M., Liu, K., Li, M., & Liu, A. (2021). Effect of Soil Solution Properties and Cu2+ Co-Existence on the Adsorption of Sulfadiazine onto Paddy Soil. International Journal of Environmental Research and Public Health, 18(24), 13383. https://doi.org/10.3390/ijerph182413383