Effects of Exercise in Patients Undergoing Chemotherapy for Head and Neck Cancer: A Pilot Randomized Controlled Trial
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants and Procedure
2.3. Intervention
2.4. Outcome Measures
2.5. Body Composition and Muscular Strength
2.6. Balance
2.7. Flexibility
2.8. Cardiovascular Fitness
2.9. Health-Related Quality of Life (HRQoL)
2.10. Statistical Analysis and Sample Size Calculation
3. Results
3.1. Demographic and Medical Characteristics
3.2. Body Composition
3.3. Balance, Flexibility and Muscle Strength
3.4. Cardiovascular Fitness
3.5. HRQoL
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Colagiuri, B.; Dhillon, H.; Butow, P.N.; Jansen, J.; Cox, K.; Jacquet, J. Does Assessing Patients’ Expectancies About Chemotherapy Side Effects Influence Their Occurrence? J. Pain Symptom Manag. 2013, 46, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Josée, S.; Hans, I.; Marie-Hélène, S.; Morin, C.M. Cancer treatments and their side effects are associated with aggravation of insomnia: Results of a longitudinal study. Cancer 2015, 121, 1703–1711. [Google Scholar] [CrossRef]
- Silver, H.J.; Dietrich, M.S.; Murphy, B.A. Changes in body mass, energy balance, physical function, and inflammatory state in patients with locally advanced head and neck cancer treated with concurrent chemoradiation after low-dose induction chemotherapy. Head Neck 2007, 29, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Lonbro, S.; Dalgas, U.; Primdahl, H.; Johansen, J.; Nielsen, J.L.; Overgaard, J.; Overgaard, K. Lean body mass and muscle function in head and neck cancer patients and healthy individuals—Results from the DAHANCA 25 study. Acta Oncol. 2013, 52, 1543–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, S.N.; Travers, A.; Lowe, D.; Levy, A.R.; Midgely, A.W. Importance of activity and recreation for the quality of life of patients treated for cancer of the head and neck. Br. J. Oral Maxillofac. Surg. 2019, 57, 125–134. [Google Scholar] [CrossRef]
- Sindhu, S.K.; Bauman, J.E. Current Concepts in Chemotherapy for Head and Neck Cancer. Oral Maxillofac. Surg. Clin. N. Am. 2019, 31, 145–154. [Google Scholar] [CrossRef]
- Florea, A.M.; Busselberg, D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers 2011, 3, 1351–1371. [Google Scholar] [CrossRef]
- Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem. 2019, 88, 102925. [Google Scholar] [CrossRef]
- Sakai, H.; Ikeno, Y.; Tsukimura, Y.; Inomata, M.; Suzuki, Y.; Kon, R.; Ikarashi, N.; Chiba, Y.; Yamada, T.; Kamei, J. Upregulation of ubiquitinated proteins and their degradation pathway in muscle atrophy induced by cisplatin in mice. Toxicol. Appl. Pharmacol. 2020, 403, 115165. [Google Scholar] [CrossRef]
- Sakai, H.; Sagara, A.; Arakawa, K.; Sugiyama, R.; Hirosaki, A.; Takase, K.; Jo, A.; Sato, K.; Chiba, Y.; Yamazaki, M.; et al. Mechanisms of cisplatin-induced muscle atrophy. Toxicol. Appl. Pharmacol. 2014, 278, 190–199. [Google Scholar] [CrossRef]
- Miyagi, M.Y.S.; Latancia, M.T.; Testagrossa, L.A.; Andrade-Oliveira, V.; Pereira, W.O.; Hiyane, M.I.; Enjiu, L.M.; Pisciottano, M.; Seelaender, M.C.L.; Camara, N.O.S.; et al. Physical exercise contributes to cisplatin-induced nephrotoxicity protection with decreased CD4+ T cells activation. Mol. Immunol. 2018, 101, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Miyagi, M.Y.; Seelaender, M.; Castoldi, A.; de Almeida, D.C.; Bacurau, A.V.; Andrade-Oliveira, V.; Enjiu, L.M.; Pisciottano, M.; Hayashida, C.Y.; Hiyane, M.I.; et al. Long-term aerobic exercise protects against cisplatin-induced nephrotoxicity by modulating the expression of IL-6 and HO-1. PLoS ONE 2014, 9, e108543. [Google Scholar] [CrossRef] [PubMed]
- Hojman, P.; Fjelbye, J.; Zerahn, B.; Christensen, J.F.; Dethlefsen, C.; Lonkvist, C.K.; Brandt, C.; Gissel, H.; Pedersen, B.K.; Gehl, J. Voluntary exercise prevents cisplatin-induced muscle wasting during chemotherapy in mice. PLoS ONE 2014, 9, e109030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, E.E.; LaMonte, S.J.; Erb, N.L.; Beckman, K.L.; Sadeghi, N.; Hutcheson, K.A.; Stubblefield, M.D.; Abbott, D.M.; Fisher, P.S.; Stein, K.D.; et al. American Cancer Society Head and Neck Cancer Survivorship Care Guideline. CA Cancer J. Clin. 2016, 66, 203–239. [Google Scholar] [CrossRef]
- McNeely, M.L.; Parliament, M.B.; Seikaly, H.; Jha, N.; Magee, D.J.; Haykowsky, M.J.; Courneya, K.S. Effect of exercise on upper extremity pain and dysfunction in head and neck cancer survivors—A randomized controlled trial. Cancer 2008, 113, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Su, T.L.; Chen, A.N.; Leong, C.P.; Huang, Y.C.; Chiang, C.W.; Chen, I.H.; Lee, Y.Y. The effect of home-based program and outpatient physical therapy in patients with head and neck cancer: A randomized, controlled trial. Oral Oncol. 2017, 74, 130–134. [Google Scholar] [CrossRef]
- Lonbro, S.; Dalgas, U.; Primdahl, H.; Johansen, J.; Nielsen, J.L.; Aagaard, P.; Hermann, A.P.; Overgaard, J.; Overgaard, K. Progressive resistance training rebuilds lean body mass in head and neck cancer patients after radiotherapy—Results from the randomized DAHANCA 25B trial. Radiother. Oncol. 2013, 108, 314–319. [Google Scholar] [CrossRef]
- Lonkvist, C.K.; Vinther, A.; Zerahn, B.; Rosenbom, E.; Deshmukh, A.S.; Hojman, P.; Gehl, J. Progressive resistance training in head and neck cancer patients undergoing concomitant chemoradiotherapy. Laryngoscope Investig. Otolaryngol. 2017, 2, 295–306. [Google Scholar] [CrossRef]
- Samuel, S.R.; Maiya, A.G.; Fernandes, D.J.; Guddattu, V.; Saxena, P.U.P.; Kurian, J.R.; Lin, P.J.; Mustian, K.M. Effectiveness of exercise-based rehabilitation on functional capacity and quality of life in head and neck cancer patients receiving chemo-radiotherapy. Support Care Cancer 2019, 27, 3913–3920. [Google Scholar] [CrossRef]
- Capozzi, L.C.; McNeely, M.L.; Lau, H.Y.; Reimer, R.A.; Giese-Davis, J.; Fung, T.S.; Culos-Reed, S.N. Patient-reported outcomes, body composition, and nutrition status in patients with head and neck cancer: Results from an exploratory randomized controlled exercise trial. Cancer 2016, 122, 1185–1200. [Google Scholar] [CrossRef] [Green Version]
- Van der Molen, L.; van Rossum, M.A.; Burkhead, L.M.; Smeele, L.E.; Rasch, C.R.; Hilgers, F.J. A randomized preventive rehabilitation trial in advanced head and neck cancer patients treated with chemoradiotherapy: Feasibility, compliance, and short-term effects. Dysphagia 2011, 26, 155–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.G.; Alexander, N.B.; Djuric, Z.; Zhou, J.; Tao, Y.; Schipper, M.; Feng, F.Y.; Eisbruch, A.; Worden, F.P.; Strath, S.J.; et al. Maintaining physical activity during head and neck cancer treatment: Results of a pilot controlled trial. Head Neck 2016, 38 (Suppl. 1), E1086–E1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, L.Q.; Anton, P.M.; Fogleman, A.; Hopkins-Price, P.; Verhulst, S.; Rao, K.; Malone, J.; Robbs, R.; Courneya, K.S.; Nanavati, P.; et al. Pilot, randomized trial of resistance exercise during radiation therapy for head and neck cancer. Head Neck 2013, 35, 1178–1188. [Google Scholar] [CrossRef] [PubMed]
- Grote, M.; Maihofer, C.; Weigl, M.; Davies-Knorr, P.; Belka, C. Progressive resistance training in cachectic head and neck cancer patients undergoing radiotherapy: A randomized controlled pilot feasibility trial. Radiat. Oncol. 2018, 13, 215. [Google Scholar] [CrossRef]
- Sandmael, J.A.; Bye, A.; Solheim, T.S.; Stene, G.B.; Thorsen, L.; Kaasa, S.; Lund, J.A.; Oldervoll, L.M. Feasibility and preliminary effects of resistance training and nutritional supplements during versus after radiotherapy in patients with head and neck cancer: A pilot randomized trial. Cancer 2017, 123, 4440–4448. [Google Scholar] [CrossRef]
- Bye, A.; Sandmael, J.A.; Stene, G.B.; Thorsen, L.; Balstad, T.R.; Solheim, T.S.; Pripp, A.H.; Oldervoll, L.M. Exercise and Nutrition Interventions in Patients with Head and Neck Cancer during Curative Treatment: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 3233. [Google Scholar] [CrossRef]
- Yen, C.J.; Hung, C.H.; Kao, C.L.; Tsai, W.M.; Chan, S.H.; Cheng, H.C.; Jheng, W.T.; Lu, Y.J.; Tsai, K.L. Multimodal exercise ameliorates exercise responses and body composition in head and neck cancer patients receiving chemotherapy. Support Care Cancer 2019, 27, 4687–4695. [Google Scholar] [CrossRef]
- Yen, C.J.; Hung, C.H.; Tsai, W.M.; Cheng, H.C.; Yang, H.L.; Lu, Y.J.; Tsai, K.L. Effect of Exercise Training on Exercise Tolerance and Level of Oxidative Stress for Head and Neck Cancer Patients Following Chemotherapy. Front. Oncol. 2020, 10, 1536. [Google Scholar] [CrossRef]
- Rikli, R.E.; Jones, C.J. Senior Fitness Test, 2nd ed.; Human Kinetics, Inc.: Champaign, IL, USA, 2012. [Google Scholar]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef]
- Jones, C.J.; Rakovski, C.; Rutledge, D.; Gutierrez, A. A comparison of women with fibromyalgia syndrome to criterion fitness standards: A pilot study. J. Aging Phys. Act. 2015, 23, 103–111. [Google Scholar] [CrossRef]
- Bohannon, R.W. Reference values for the timed up and go test: A descriptive meta-analysis. J. Geriatr. Phys. Ther. 2006, 29, 64–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathias, S.; Nayak, U.S.; Isaacs, B. Balance in elderly patients: The “get-up and go” test. Arch. Phys. Med. Rehabil. 1986, 67, 387–389. [Google Scholar] [PubMed]
- Golding, L.A. YMCA Fitness Testing and Assessment Manual; YMCA of the USA: Chicago, IL, USA, 2000. [Google Scholar]
- Medicine, A.C.S. ACSM’s Health-Related Physical Fitness Assessment Manual; Wolters Kluwer Health/Lippincott Williams & Wilkins: Indianapolis, IN, USA, 2013. [Google Scholar]
- Garnacho-Castano, M.V.; Dominguez, R.; Munoz Gonzalez, A.; Feliu-Ruano, R.; Serra-Paya, N.; Mate-Munoz, J.L. Exercise Prescription Using the Borg Rating of Perceived Exertion to Improve Fitness. Int. J. Sports Med. 2018, 39, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Aaronson, N.K.; Ahmedzai, S.; Bergman, B.; Bullinger, M.; Cull, A.; Duez, N.J.; Filiberti, A.; Flechtner, H.; Fleishman, S.B.; de Haes, J.C.; et al. The European Organization for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. J. Natl. Cancer Inst. 1993, 85, 365–376. [Google Scholar] [CrossRef]
- Singer, S.; Arraras, J.I.; Chie, W.C.; Fisher, S.E.; Galalae, R.; Hammerlid, E.; Nicolatou-Galitis, O.; Schmalz, C.; Verdonck-de Leeuw, I.; Gamper, E.; et al. Performance of the EORTC questionnaire for the assessment of quality of life in head and neck cancer patients EORTC QLQ-H&N35: A methodological review. Qual. Life Res. 2013, 22, 1927–1941. [Google Scholar] [CrossRef]
- Adamsen, L.; Quist, M.; Midtgaard, J.; Andersen, C.; Moller, T.; Knutsen, L.; Tveteras, A.; Rorth, M. The effect of a multidimensional exercise intervention on physical capacity, well-being and quality of life in cancer patients undergoing chemotherapy. Support Care Cancer 2006, 14, 116–127. [Google Scholar] [CrossRef]
- Xiao, C.; Beitler, J.J.; Higgins, K.A.; Chico, C.E.; Withycombe, J.S.; Zhu, Y.; Zhao, H.; Lin, I.H.; Li, F.; Jeon, S.; et al. Pilot study of combined aerobic and resistance exercise on fatigue for patients with head and neck cancer: Inflammatory and epigenetic changes. Brain Behav. Immun. 2020, 88, 184–192. [Google Scholar] [CrossRef]
- Sandmael, J.A.; Bye, A.; Solheim, T.S.; Balstad, T.R.; Thorsen, L.; Skovlund, E.; Kaasa, S.; Lund, J.A.; Oldervoll, L. Physical rehabilitation in patients with head and neck cancer: Impact on health-related quality of life and suitability of a post-treatment program. Laryngoscope Investig. Otolaryngol. 2020, 5, 330–338. [Google Scholar] [CrossRef]
- Hou, S.; Huh, B.; Kim, H.K.; Kim, K.H.; Abdi, S. Treatment of Chemotherapy-Induced Peripheral Neuropathy: Systematic Review and Recommendations. Pain Physician 2018, 21, 571–592. [Google Scholar]
- Duregon, F.; Vendramin, B.; Bullo, V.; Gobbo, S.; Cugusi, L.; Di Blasio, A.; Neunhaeuserer, D.; Zaccaria, M.; Bergamin, M.; Ermolao, A. Effects of exercise on cancer patients suffering chemotherapy-induced peripheral neuropathy undergoing treatment: A systematic review. Crit. Rev. Oncol. Hematol. 2018, 121, 90–100. [Google Scholar] [CrossRef]
- Streckmann, F.; Kneis, S.; Leifert, J.A.; Baumann, F.T.; Kleber, M.; Ihorst, G.; Herich, L.; Grussinger, V.; Gollhofer, A.; Bertz, H. Exercise program improves therapy-related side-effects and quality of life in lymphoma patients undergoing therapy. Ann. Oncol. 2014, 25, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Gewandter, J.S.; Fan, L.; Magnuson, A.; Mustian, K.; Peppone, L.; Heckler, C.; Hopkins, J.; Tejani, M.; Morrow, G.R.; Mohile, S.G. Falls and functional impairments in cancer survivors with chemotherapy-induced peripheral neuropathy (CIPN): A University of Rochester CCOP study. Support. Care Cancer 2013, 21, 2059–2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eickmeyer, S.M.; Walczak, C.K.; Myers, K.B.; Lindstrom, D.R.; Layde, P.; Campbell, B.H. Quality of life, shoulder range of motion, and spinal accessory nerve status in 5-year survivors of head and neck cancer. PM R. 2014, 6, 1073–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.A.; Kang, J.Y.; Kim, Y.D.; An, A.R.; Kim, S.W.; Kim, Y.S.; Lim, J.Y. Effects of a scapula-oriented shoulder exercise programme on upper limb dysfunction in breast cancer survivors: A randomized controlled pilot trial. Clin. Rehabil. 2010, 24, 600–613. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.O.; Thomson, C.A. Physical Activity and Cancer Survivorship. Nutr. Clin. Pract. 2014, 29, 768–779. [Google Scholar] [CrossRef]
- Midgley, A.W.; Lowe, D.; Levy, A.R.; Mepani, V.; Rogers, S.N. Exercise program design considerations for head and neck cancer survivors. Eur. Arch. Oto-Rhino-Laringol. 2018, 275, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Jansen, F.; Eerenstein, S.E.J.; Cnossen, I.C.; Lissenberg-Witte, B.I.; de Bree, R.; Doornaert, P.; Halmos, G.B.; Hardillo, J.A.U.; van Hinte, G.; Honings, J.; et al. Effectiveness of a guided self-help exercise program tailored to patients treated with total laryngectomy: Results of a multi-center randomized controlled trial. Oral Oncol. 2020, 103, 104586. [Google Scholar] [CrossRef]
- Jones, L.W.; Eves, N.D.; Haykowsky, M.; Joy, A.A.; Douglas, P.S. Cardiorespiratory exercise testing in clinical oncology research: Systematic review and practice recommendations. Lancet Oncol. 2008, 9, 757–765. [Google Scholar] [CrossRef]
- Santo, A.S.; Golding, L.A. Predicting maximum oxygen uptake from a modified 3-minute step test. Res. Q. Exerc. Sport 2003, 74, 110–115. [Google Scholar] [CrossRef]
- Chang, E.T.; Adami, H.O. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1765–1777. [Google Scholar] [CrossRef] [Green Version]
- Hanna, E.Y.; Mendoza, T.R.; Rosenthal, D.I.; Gunn, G.B.; Sehra, P.; Yucel, E.; Cleeland, C.S. The symptom burden of treatment-naive patients with head and neck cancer. Cancer 2015, 121, 766–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nekhlyudov, L.; Lacchetti, C.; Siu, L.L. Head and Neck Cancer Survivorship Care Guideline: American Society of Clinical Oncology Clinical Practice Guideline Endorsement Summary. J. Oncol. Pract. 2018, 14, 167–171. [Google Scholar] [CrossRef] [PubMed]
Clinical Characteristic | Control (n = 20) | Exercise (n = 20) | p-Value |
---|---|---|---|
Age | 54.3 (9.9) | 52.1 (15.7) | 0.655 |
Gender (M/F) | 11/9 | 14/6 | |
Tumor site, n (%) | 0.532 | ||
Tongue | 3 | 3 | |
Nasopharyngeal | 9 | 11 | |
Oropharyngeal | 6 | 6 | |
parotid | 2 | 0 | |
Cancer stage, n (%) | 0.749 | ||
Stage 1–2 | 11 | 12 | |
Stage 3–4 | 9 | 8 |
Body Composition | Group | Time 1 Mean (SD) | Time 2 Mean (SD) | p (Within Group, T1–T2) | p (Between Group, T1) | p (Between Group, T2) |
---|---|---|---|---|---|---|
Body weight (kg) | Control (n = 20) | 61.6 (12.1) | 61.9 (12.4) | 0.865 | 0.916 | 0.916 |
Exercise (n = 20) | 60.6 (11.4) | 59.9 (11.0) | 0.310 | |||
BMI (kg/m2) | Control (n = 20) | 23.1 (3.2) | 23.2 (3.3) | 0.842 | 0.158 | 0.139 |
Exercise (n = 20) | 21.2 (3.4) | 21.1 (3.3) | 0.866 | |||
Body fat percentage | Control (n = 20) | 25.9 (3.5) | 25.8 (2.5) | 0.495 | 0.114 | 0.002 * |
Exercise (n = 20) | 25.5 (4) | 21.0 (2.8) | 0.348 | |||
Visceral fat level | Control (n = 20) | 8.9 (5.1) | 8.9 (4.9) | 0.803 | 0.415 | 0.357 |
Exercise (n = 20) | 6.9 (4.8) | 6.7 (4.8) | 0.317 | |||
Skeletal muscle percentage | Control (n = 20) | 31.5 (2.9) | 31.4 (2.4) | 0.865 | 0.067 | 0.008 * |
Exercise (n = 20) | 34.1 (3.4) | 34.5 (2.4) * | 0.612 |
Physical Fitness | Group | Time 1 Mean (SD) | Time 2 Mean (SD) | p (Within Group, T1–T2) | p (Between Group, T1) | p (Between Group, T2) |
---|---|---|---|---|---|---|
Dynamic balance (s) | Control (n = 20) | 8.3 (1.29) | 8.4 (1.29) | 0.705 | 0.184 | 0.01 * |
Exercise (n = 20) | 7.29 (2.21) | 6.42 (1.51) | 0.196 | |||
Flexibility (cm) | ||||||
Upper extremity | Control (n = 20) | −9.2 (14.4) | −12.3 (16.6) | 0.011 * | 0.359 | 0.832 |
Exercise (n = 20) | −19.6 (16.7) | −11 (15.6) | 0.018 * | |||
Lower extremity | Control (n = 20) | 4.0 (10.8) | 0.2 (11.6) | 0.191 | 0.275 | 0.944 |
Exercise (n = 20) | −0.92 (5.1) | 4.28 (4.19) * | 0.028 * | |||
Strength (reps/30 s) | ||||||
Upper extremity | Control (n = 20) | 23.4 (8.4) | 21.06 (5.38) | 0.093 | 0.672 | 0.037 * |
Exercise (n = 20) | 24.1 (6.3) | 27.0 (5.8) | 0.027 * | |||
Lower extremity | Control (n = 20) | 15.6 (4.37) | 13.1 3(3.87) | 0.013 * | 0.158 | 0.025 * |
Exercise (n = 20) | 19.7(6.58) | 20.14 (7.04) | 0.752 |
3 min Step Test | Group | Time 1 Mean (SD) | Time 2 Mean (SD) | p (Within Group, T1–T2) | p (Between Group, T1) | p (Between Group, T2) |
---|---|---|---|---|---|---|
Heart Rate (HR) | ||||||
Rest (bpm) | Control (n = 20) | 77.9 (16.4) | 79.0 (16.8) | 0.461 | 0.084 | 0.888 |
Exercise (n = 20) | 94.3 (16.3) | 79.1 (4.3) | 0.051 | |||
Peak (bpm) | Control (n = 20) | 126.6 (23.4) | 109.4 (23.6) | 0.109 | 0.191 | 0.177 |
Exercise (n = 20) | 130.3 (29.9) | 118.3 (15.9) | 0.310 | |||
Time of completion (s) | Control (n = 20) | 167.1 (38.7) | 165.4 (28.9) | 0.345 | 0.857 | 0.186 |
Exercise (n = 20) | 163.3 (30.3) | 163.3 (17.8) | 0.818 | |||
Physical fitness index | Control (n = 20) | 78.0 (25.1) | 67.6 (19.8) | 0.031 * | 0.053 | 0.503 |
Exercise (n = 20) | 56.7 (10.1) | 64.7 (25.1) | 0.237 | |||
Heart rate recovery | ||||||
1–1.5 min (beats) | Control (n = 20) | 41.7 (6.4) | 44.9 (8.3) | 0.132 | 0.007 * | 0.168 |
Exercise (n = 20) | 52.9 (5.7) | 48.9 (8.6) | 0.237 | |||
2–2.5 min (beats) | Control (n = 20) | 36.6 (6.6) | 41.7 (9.6) | 0.028 * | 0.002 * | 0.305 |
Exercise (n = 20) | 46.7 (4.2) | 44.3 (5.6) | 0.344 | |||
3–3.5 min (beats) | Control (n = 20) | 33.7 (7.8) | 40.6 (8.6) | 0.003 * | 0.005 * | 0.621 |
Exercise (n = 20) | 44.4 (5.2) | 41.9 (4.9) | 0.237 |
Domain | Group | Time 1 Mean (SD) | Time 2 Mean (SD) | p (Within Group, T1–T2) | p (Between Group, T1) | p (Between Group, T2) |
---|---|---|---|---|---|---|
EORTC QLQ-C30 | ||||||
Global health status | Control (n = 20) | 5.75 (0.55) | 5.45 (1.31) | 0.379 | 0.792 | 0.001 * |
Exercise (n = 20) | 5.85 (1.60) | 7.10 (1.48) * | 0.014 | |||
Physical functioning | Control (n = 20) | 6.15 (0.93) | 9.50 (3.15) | <0.001 * | 0.745 | 0.018 * |
Exercise (n = 20) | 6.05 (1.00) | 7.45 (1.93) | 0.001 | |||
Role functioning | Control (n = 20) | 2.60 (0.82) | 4.65 (1.39) | <0.001 * | 0.357 | 0.024 * |
Exercise (n = 20) | 2.85 (0.87) | 3.65 (1.30) | 0.053 | |||
Emotional functioning | Control (n = 20) | 6.15 (1.93) | 10.50 (3.29) | <0.001 * | 0.295 | <0.001 * |
Exercise (n = 20) | 5.45 (1.19) | 7.35 (1.95) | 0.003 * | |||
Cognitive functioning | Control (n = 20) | 2.55 (0.69) | 2.70 (1.08) | 0.624 | 0.484 | 0.121 |
Exercise (n = 20) | 2.70 (0.66) | 3.30 (1.30) | 0.069 | |||
Social functioning | Control (n = 20) | 3.50 (0.83) | 5.70 (1.38) | <0.001 * | 0.664 | 0.139 |
Exercise (n = 20) | 3.60 (0.60) | 5.10 (1.11) | <0.001 * | |||
Fatigue | Control (n = 20) | 3.70 (0.67) | 7.95 (1.88) | <0.001 * | 0.272 | <0.001 * |
Exercise (n = 20) | 3.95 (0.76) | 5.85 (1.78) | <0.001 * | |||
Nausea and vomiting | Control (n = 20) | 2.30 (0.47) | 5.50 (1.79) | <0.001 * | 0.744 | 0.087 |
Exercise (n = 20) | 2.35 (0.49) | 4.60 (1.43) | <0.001 * | |||
Pain | Control (n = 20) | 2.55 (0.60) | 3.15 (1.42) | 0.090 | 0.575 | 0.330 |
Exercise (n = 20) | 2.45 (0.51) | 2.80 (0.70) | 0.050 * | |||
Dyspnea | Control (n = 20) | 1.30 (0.47) | 1.70 (0.98) | 0.088 | 0.5204 | 0.719 |
Exercise (n = 20) | 1.40 (0.50) | 1.60 (0.75) | 0.297 | |||
Insomnia | Control (n = 20) | 1.25 (0.44) | 1.55 (0.83) | 0.111 | 0.690 | 0.732 |
Exercise (n = 20) | 1.30 (0.47) | 1.65 (0.75) | 0.110 | |||
Appetite loss | Control (n = 20) | 1.55 (0.89) | 3.30 (0.86) | <0.001 * | 0.687 | 0.012* |
Exercise (n = 20) | 1.15 (0.36) | 2.55 (0.95) | <0.001 * | |||
Constipation | Control (n = 20) | 1.30 (0.47) | 2.15 (0.81) | 0.037* | 0.526 | 0.151 |
Exercise (n = 20) | 1.45 (0.51) | 1.80 (0.70) | 0.130 | |||
Diarrhea | Control (n = 20) | 1.15 (0.37) | 1.55 (0.89) | 0.056 | 0.052 | 0.600 |
Exercise (n = 20) | 1.35 (0.48) | 1.70 (0.86) | 0.190 | |||
Financial difficulties | Control (n = 20) | 2.15 (2.49) | 2.05 (0.83) | 0.428 | 0.258 | 0.852 |
Exercise (n = 20) | 1.95 (0.60) | 2.10 (0.85) | 0.527 | |||
QLQ-H&N35 | ||||||
Oral pain | Control (n = 20) | 4.85 (0.93) | 5.95 (2.35) | 0.051 | 0.298 | 0.815 |
Exercise (n = 20) | 5.20 (1.15) | 6.10 (1.61) | 0.082 | |||
Swallowing problems | Control (n = 20) | 4.60 (0.68) | 4.75 (0.71) | 0.179 | 0.183 | 0.523 |
Exercise (n = 20) | 4.90 (0.72) | 4.60 (0.75) | 0.137 | |||
Sense problems | Control (n = 20) | 2.35 (0.58) | 4.10 (1.37) | <0.001 * | 0.295 | 0.072 |
Exercise (n = 20) | 2.55 (0.60) | 3.35 (1.18) | 0.095 | |||
Speech problem | Control (n = 20) | 4.05 (1.14) | 5.05 (1.82) | 0.049 * | 0.298 | 0.918 |
Exercise (n = 20) | 4.40 (0.94) | 5.00 (1.17) | 0.048 * | |||
Social eating problems | Control (n = 20) | 4.65 (0.87) | 6.55 (1.93) | <0.001 * | 0.154 | 0.794 |
Exercise (n = 20) | 5.10 (1.07) | 6.40 (1.66) | 0.001 | |||
Social contact problems | Control (n = 20) | 6.75 (1.25) | 6.95 (2.68) | 0.793 | 0.667 | 0.823 |
Exercise (n = 20) | 6.90 (0.91) | 6.80 (1.32) | 0.793 | |||
Sex problems | Control (n = 20) | 3.65 (1.03) | 4.10 (1.44) | 0.304 | 0.013* | 0.085 |
Exercise (n = 20) | 4.35 (0.59) | 4.85 (1.22) | 0.126 | |||
Teeth problems | Control (n = 20) | 1.30 (0.47) | 1.35 (0.48) | 0.716 | 0.478 | 0.569 |
Exercise (n = 20) | 1.20 (0.41) | 1.45 (0.60) | 0.204 | |||
Mouth opening problems | Control (n = 20) | 1.1 (0.30) | 1.40 (0.82) | 0.083 | 0.222 | 0.657 |
Exercise (n = 20) | 1.25 (0.44) | 1.30 (0.57) | 0.789 | |||
Dry mouth | Control (n = 20) | 1.25 (0.44) | 1.50 (0.88) | 0.330 | 0.503 | 0.836 |
Exercise (n = 20) | 1.35 (0.48) | 1.45 (0.60) | 0.606 | |||
Sticky saliva | Control (n = 20) | 1.30 (0.47) | 1.65 (1.03) | 0.201 | 0.268 | 0.730 |
Exercise (n = 20) | 1.15 (0.36) | 1.55 (0.75) | 0.072 | |||
Coughing | Control (n = 20) | 1.25 (0.44) | 1.50 (0.82) | 0.096 | 0.503 | 0.664 |
Exercise (n = 20) | 1.35 (0.48) | 1.60 (0.59) | 0.204 | |||
Feeling ill | Control (n = 20) | 1.40 (0.50) | 2.75 (0.91) | <0.001 * | 0.176 | <0.001 * |
Exercise (n = 20) | 1.20 (0.41) | 1.75 (0.64) | 0.002 * | |||
Pain killers | Control (n = 20) | 1.25 (0.44) | 1.50 (0.51) | 0.056 | 0.324 | 0.107 |
Exercise (n = 20) | 1.40 (0.50) | 1.25 (0.44) | 0.330 | |||
Nutritional supplements | Control (n = 20) | 1.5 (0.512) | 1.75 (0.44) | 0.171 | 0.532 | 0.054 |
Exercise (n = 20) | 1.40 (0.50) | 1.45 (0.51) | 0.748 | |||
Feeding tube | Control (n = 20) | 1.00 (0.00) | 1.00 (0.00) | - | - | - |
Exercise (n = 20) | 1.00 (0.00) | 1.00 (0.00) | - | |||
Weight loss | Control (n = 20) | 1.40 (0.503) | 1.55 (0.51) | 0.267 | 0.324 | 0.214 |
Exercise (n = 20) | 1.25 (0.44) | 1.35 (0.49) | 0.428 | |||
Weight gain | Control (n = 20) | 1.05 (0.223) | 1.10 (0.31) | 0.577 | 0.324 | 0.044 * |
Exercise (n = 20) | 1.00 (0.00) | 1.45 (0.68) | 0.008 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, K.-Y.; Cheng, H.-C.; Yen, C.-J.; Hung, C.-H.; Huang, Y.-T.; Yang, H.-L.; Cheng, W.-T.; Tsai, K.-L. Effects of Exercise in Patients Undergoing Chemotherapy for Head and Neck Cancer: A Pilot Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2021, 18, 1291. https://doi.org/10.3390/ijerph18031291
Lin K-Y, Cheng H-C, Yen C-J, Hung C-H, Huang Y-T, Yang H-L, Cheng W-T, Tsai K-L. Effects of Exercise in Patients Undergoing Chemotherapy for Head and Neck Cancer: A Pilot Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2021; 18(3):1291. https://doi.org/10.3390/ijerph18031291
Chicago/Turabian StyleLin, Kuan-Yin, Hui-Ching Cheng, Chia-Jui Yen, Ching-Hsia Hung, Yu-Ting Huang, Hsin-Lun Yang, Wan-Ting Cheng, and Kun-Ling Tsai. 2021. "Effects of Exercise in Patients Undergoing Chemotherapy for Head and Neck Cancer: A Pilot Randomized Controlled Trial" International Journal of Environmental Research and Public Health 18, no. 3: 1291. https://doi.org/10.3390/ijerph18031291