The Use of Middle Latency Auditory Evoked Potentials (MLAEP) as Methodology for Evaluating Sedation Level in Propofol-Drug Induced Sleep Endoscopy (DISE) Procedure
Abstract
:1. Introduction
2. Materials and Methods
Statistics | Age | BMI | ESS | AHI | ODI | LOS |
---|---|---|---|---|---|---|
Min | 18 | 18 | 1 | 2.5 | 1 | 48 |
1st Qt | 42 | 27 | 10 | 14.2 | 11.5 | 69 |
Median | 52 | 28 | 12 | 28 | 21 | 79 |
Mean | 49.808 | 28.424 | 11.758 | 32.853 | 22.848 | 76.303 |
SD | 13.142 | 3.758 | 2.503 | 19.289 | 14.203 | 11.244 |
3rd Qt | 42 | 27 | 10 | 14.2 | 11.5 | 69 |
Max | 75 | 38 | 19 | 85 | 50 | 94 |
Ethics Approval
DISE Procedure Divided into 8 Steps: | In Every Step, We Collected the Following Data: |
---|---|
(1) t0-Start DISE Procedure |
|
(2) t1-Loss of Consciousness | |
(3) t2-Snoring Pre-Event | |
(4) t3-1st EVENT | |
(5) t4-Snoring Post-Event | |
(6) t5-2nd EVENT | |
(7) t6-Awakening | |
(8) t7-End DISE Procedure |
3. Results
DISE Procedure Steps | Effect Site Propofol Concentration | |||
---|---|---|---|---|
Min | Max | Mean | SD | |
1-Start DISE Procedure | 0.00 | 0.00 | 0.00 | 0.00 |
2-Loss of Consciousness | 0.40 | 3.20 | 1.70 | 0.54 |
3-Snoring Pre-Event | 0.60 | 3.80 | 2.34 | 0.54 |
4-1st EVENT | 1.70 | 4.40 | 2.66 | 0.47 |
5-Snoring Post-Event | 1.80 | 4.80 | 2.67 | 0.50 |
6-2nd EVENT | 1.40 | 3.90 | 2.48 | 0.55 |
7-Awakening | 1.30 | 3.00 | 2.01 | 0.39 |
8-End DISE Procedure | 1.00 | 2.90 | 1.67 | 0.35 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strollo, P.J.; Rogers, R.M. Obstructive Sleep Apnea. N. Engl. J. Med. 1996, 334, 99–104. [Google Scholar] [CrossRef]
- Yaggi, H.K.; Concato, J.; Kernan, W.N.; Lichtman, J.H.; Brass, L.M.; Mohsenin, V. Obstructive Sleep Apnea as a Risk Factor for Stroke and Death. N. Engl. J. Med. 2005, 353, 2034–2041. [Google Scholar] [CrossRef] [Green Version]
- Georgalas, C.; Garas, G.; Hadjihannas, E.; Oostra, A. Assessment of obstruction level and selection of patients for obstructive sleep apnoea surgery: An evidence-based approach. J. Laryngol. Otol. 2009, 124, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dijemeni, E.; D’Amone, G.; Gbati, I. Drug-induced sedation endoscopy (DISE) classification systems: A systematic review and meta-analysis. Sleep Breath. 2017, 21, 983–994. [Google Scholar] [CrossRef] [Green Version]
- De Vito, A.; Carrasco Llatas, M.; Vanni, A.; Bosi, M.; Braghiroli, A.; Campanini, A.; de Vries, N.; Hamans, E.; Hohenhorst, W.; Kotecha, B.T.; et al. European position paper on drug-induced sedation endoscopy (DISE). Sleep Breath. 2014, 18, 453–465. [Google Scholar] [CrossRef]
- Kotecha, B.; De Vito, A. Drug induced sleep endoscopy: Its role in evaluation of the upper airway obstruction and patient selection for surgical and non-surgical treatment. J. Thorac. Dis. 2018, 10, S40–S47. [Google Scholar] [CrossRef] [Green Version]
- Park, D.; Kim, J.S.; Heo, S.J. Obstruction patterns during drug-induced sleep endoscopy vs natural sleep endoscopy in patients with obstructive sleep apnea. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Antkowiak, B.; Kirschfeld, K. Neuronale Mechanismen der Narkose. Anästhesiologie Intensivmedizin Notfallmedizin Schmerztherapie 2000, 35, 731–743. [Google Scholar] [CrossRef]
- Kotani, Y.; Shimazawa, M.; Yoshimura, S.; Iwama, T.; Hara, H. The Experimental and Clinical Pharmacology of Propofol, an Anesthetic Agent with Neuroprotective Properties. CNS Neurosci. Ther. 2008, 14, 95–106. [Google Scholar] [CrossRef]
- Barakat, A.R.; Sutcliffe, N.; Schwab, M. Effect site concentration during propofol TCI sedation: A comparison of sedation score with two pharmacokinetic models. Anaesthesia 2007, 62, 661–666. [Google Scholar] [CrossRef]
- Shteamer, J.W.; Dedhia, R.C. Sedative choice in drug-induced sleep endoscopy: A neuropharmacology-based review. Laryngoscope 2016, 127, 273–279. [Google Scholar] [CrossRef]
- Rabelo, F.A.W.; Küpper, D.S.; Sander, H.H.; Fernandes, R.M.F.; Valera, F.C.P. Polysomnographic evaluation of propofol-induced sleep in patients with respiratory sleep disorders and controls. Laryngoscope 2013, 123, 2300–2305. [Google Scholar] [CrossRef]
- Carrasco Llatas, M.; Agostini Porras, G.; Cuesta González, M.T.; Rodrigo Sanbartolomé, R.A.; Giner Bayarri, P.; Gómez-Pajares, F.; Galfore, J.D. Drug-induced sleep endoscopy: A two drug comparison and simultaneous polysomnography. Eur. Arch. Otorhinolaryngol. 2014, 271, 181–187. [Google Scholar] [CrossRef]
- Eastwood, P.R.; Platt, P.R.; Shepherd, K.; Maddison, K.; Hillman, D.R. Collapsibility of the Upper Airway at Different Concentrations of Propofol Anesthesia. Anesthesiology 2005, 103, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Lo, Y.-L.; Ni, Y.-L.; Wang, T.-Y.; Lin, T.-Y.; Li, H.-Y.; White, D.P.; Lin, J.-R.; Kuo, H.-P. Bispectral Index in Evaluating Effects of Sedation Depth on Drug-Induced Sleep Endoscopy. J. Clin. Sleep Med. 2015, 11, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Johansen, J.W. Update on Bispectral Index monitoring. Best Pr. Res. Clin. Anaesthesiol. 2006, 20, 81–99. [Google Scholar] [CrossRef]
- Kotecha, B.T.; Alam Hannan, S.; Khalil, H.M.B.; Georgalas, C.; Bailey, P. Sleep nasendoscopy: A 10-year retrospective audit study. Eur. Arch. Oto Rhino Laryngol. 2007, 264, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Babar-Craig, H.; Rajani, N.K.; Bailey, P.; Kotecha, B.T. Validation of sleep nasendoscopy for assessment of snoring with bispectral index monitoring. Eur. Arch. Oto Rhino Laryngol. 2012, 269, 1277–1279. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, S.; Oda, S.; Otaki, K.; Nakane, M.; Kawamae, K. Change in auditory evoked potential index and bispectral index during induction of anesthesia with anesthetic drugs. J. Clin. Monit. 2014, 29, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Thornton, C.; Sharpe, R.M. Evoked responses in anaesthesia. Br. J. Anaesth. 1998, 81, 771–781. [Google Scholar] [CrossRef]
- Iselin-Chaves, I.A.; El Moalem, H.E.; Gan, T.J.; Ginsberg, B.; Glass, P.S.A. Changes in the Auditory Evoked Potentials and the Bispectral Index following Propofol or Propofol and Alfentanil. Anesthesiology 2000, 92, 1300–1310. [Google Scholar] [CrossRef]
- Sebel, P.S.; Heneghan, G.P.; Ingram, D.A. Evoked responses-a neurophysiological indicator of depth of anaesthesia? Br. J. Anaesth. 1985, 57, 841–842. [Google Scholar] [CrossRef] [Green Version]
- Gajraj, R.J.; Doi, M.; Mantzaridis, H.; Kenny, G.N. Comparison of bispectral EEG analysis and auditory evoked potentials for monitoring depth of anaesthesia during propofol anaesthesia. Br. J. Anaesth. 1999, 82, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Stoppe, C.; Peters, D.; Fahlenkamp, A.V.; Cremer, J.; Rex, S.; Schälte, G.; Rossaint, R.; Coburn, M. aepEX monitor for the measurement of hypnotic depth in patients undergoing balanced xenon anaesthesia. Br. J. Anaesth. 2012, 108, 80–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schraag, S.; Flaschar, J.; Schleyer, M.; Georgieff, M.; Kenny, G.N.C. The contribution of remifentanil to middle latency auditory evoked potentials during induction of propofol anesthesia. Anesth. Analg. 2006, 103, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Tsurukiri, J.; Mishima, S.; Ohta, S. Initial middle latency auditory evoked potentials index helps to predict resuscitated outcomes in patients with cardiac arrest. Am. J. Emerg. Med. 2013, 31, 895–899. [Google Scholar] [CrossRef]
- Mantzaridis, H.; Kenny, G.N.C. Auditory evoked potential index: A quantitative measure of changes in auditory evoked potentials during general anaesthesia. Anaesthesia 1997, 52, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Doi, M.; Morita, K.; Mantzaridis, H.; Sato, S.; Kenny, G.N.C. Prediction of responses to various stimuli during seda-tion: A comparison of three EEG variables. Intensive Care Med. 2005, 31, 41–47. [Google Scholar] [CrossRef]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonsignore, M.R.; Saaresranta, T.; Riha, R.L. Sex differences in obstructive sleep apnoea. Eur. Respir. Rev. 2019, 28, 190030. [Google Scholar] [CrossRef]
- Kapsimalis, F.; Kryger, M. Sleep Breathing Disorders in the U.S. Female Population. J. Women’s Health 2009, 18, 1211–1219. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, F.; Li, C.; Zheng, Y.; Hu, J.; Zhou, Y.; Geng, L.; Jiang, S.; Teng, Y.; Tao, M. Association of snoring and body composition in (peri-post) menopausal women. BMC Women’s Health 2020, 20, 1–7. [Google Scholar] [CrossRef]
- Jehan, S.; Masters-Isarilov, A.; Salifu, I.; Zizi, F.; Jean-Louis, G.; Pandi-Perumal, S.; Gupta, R.; Brzezinski, A.; McFarlane, S. Sleep Disorders in Post-menopausal Women. J. Sleep Disord. Ther. 2015, 4, 212. [Google Scholar]
- Arigliani, M.; Toraldo, D.M.; Montevecchi, F.; Conte, L.; Galasso, L.; De Rosa, F.; Lattante, C.; Ciavolino, E.; Arigliani, C.; Palumbo, A.; et al. A New Technological Ad-vancement of the Drug-Induced Sleep Endoscopy (DISE) Procedure: The “All in One Glance” Strategy. Int. J. Environ. Res. Public Health 2020, 17, 4261. [Google Scholar] [CrossRef]
- Jensen, E.W.; Lindholm, P.; Henneberg, S.W. Autoregressive modeling with exogenous input of middle-latency auditory-evoked potentials to measure rapid changes in depth of anesthesia. Methods Inf. Med. 1996, 35, 256–260. [Google Scholar] [PubMed]
- Wenningmann, I.; Paprotny, S.; Strassmann, S.; Ellerkmann, R.K.; Rehberg, B.; Soehle, M.; Urban, B.W. Correlation of the A-LineTM ARX index with acoustically evoked potential amplitude. Br. J. Anaesth. 2006, 97, 666–675. [Google Scholar] [CrossRef] [Green Version]
- Gepts, E.; Camu, F.; Cockshott, I.D.; Douglas, E.J. Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth. Analg. 1987, 66, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Enlund, M. TCI: Target Controlled Infusion, or Totally Confused Infusion? Call for an Optimised Population Based Pharmacokinetic Model for Propofol. Upsala J. Med Sci. 2008, 113, 161–170. [Google Scholar] [CrossRef]
- De Vito, A.; Agnoletti, V.; Berrettini, S.; Piraccini, E.; Criscuolo, A.; Corso, R.; Campanini, A.; Gambale, G.; Vicini, C. Drug-induced sleep endoscopy: Conventional versus target controlled infusion techniques—A randomized controlled study. Eur. Arch. Otorhinolaryngol. 2011, 268, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Yeganeh, N.; Roshani, B.; Almasi, A.; Jamshidi, N. Correlation between bispectral index and predicted effect-site concentration of propofol in different levels of target-controlled, propofol induced sedation in healthy volunteers. Arch. Iran Med. 2010, 13, 126–134. [Google Scholar] [PubMed]
- Toraldo, D.M.; Arigliani, M.; De Benedetto, M. Depressed ventilatory drive for respiratory muscle weakness and chemo-responsiveness as a pathophysiological mechanism of CSA after surgery for obstructive sleep apnoea. Acta Otorhinolaryngol. Ital. 2020, 40, 311–312. [Google Scholar] [CrossRef]
- Kurita, T.; Doi, M.; Katoh, T.; Sano, H.; Sato, S.; Mantzaridis, H.; Kenny, G.N.C. Auditory Evoked Potential Index Predicts the Depth of Sedation and Movement in Response to Skin Incision during Sevoflurane Anesthesia. Anesthesiology 2001, 95, 364–370. [Google Scholar] [CrossRef]
- Paludetti, G.; Maurizi, M.; Ottaviani, F. Effects of stimulus repetition rate on the auditory brain stem responses (ABR). Am. J. Otol. 1983, 4, 226–234. [Google Scholar]
- Janczewski, G.; Kochanek, K.; Dawidowicz, J.; Dobrzyński, P.; Checiński, P. Evaluation of the effect of auditory fatigue on the human ear based on the measurement of brain stem auditory potentials (ABR). II. Relation of temporary auditory threshold shift and changes in the latency of wave V. Med. Pr. 1988, 39, 170–174. [Google Scholar] [PubMed]
- Jacobson, G.P.; Privitera, M.; Neils, J.R.; Grayson, A.S.; Yeh, H.S. The effects of anterior temporal lobectomy (ATL) on the middle-latency auditory evoked potential (MLAEP). Electroencephalogr. Clin. Neurophysiol. 1990, 75, 230–241. [Google Scholar] [CrossRef]
- Daunderer, M.; Feuerecker, M.S.; Scheller, B.; Pape, N.B.; Schwender, D.; Kuhnle, G.E. Midlatency auditory evoked potentials in children: Effect of age and general anaesthesia. Br. J. Anaesth. 2007, 99, 837–844. [Google Scholar] [CrossRef] [Green Version]
- Pagliari, J.; Almadori, G.; Paludetti, G.; Ottaviani, F.; Altissimi, G. Potenziali evocati uditivi precoci (ABR) e a latenza intermedia (MLR) in bambini normoacusici con disordini del linguaggio. In Progressi in ORL Pediatrica; CIC: Rome, Italy, 1987; pp. 341–344. [Google Scholar]
- Shetty, R.M.; Bellini, A.; Wijayatilake, D.S.; Hamilton, M.A.; Jain, R.; De La Cerda, G.; Stowell, S.; Karanth, S. BIS monitoring versus clinical assessment for sedation in mechanically ventilated adult patients in the intensive care unit and its impact on clinical outcomes and resource utilization. Cochrane Database Syst. Rev. 2018, 2. [Google Scholar] [CrossRef]
- American Society of Anesthesiologists Task Force on Sedation and Analgesia by Non-Anesthesiologists. Practice guidelines for sedation and analgesia by non-anesthesiologists: An updated report by the American Society of Anesthesiologists task force on sedation and analgesia by non-anesthesiologists. Anesthesiology 2002, 96, 1004–1017. [Google Scholar] [CrossRef]
DISE Procedure Steps | MLAEPi | BIS | ||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Mean | SD | Min | Max | Mean | SD | |
1-Start DISE Procedure | 19.00 | 99.00 | 77.55 | 20.30 | 83.00 | 99.00 | 95.30 | 3.37 |
2-Loss of Consciousness | 3.80 | 83.00 | 43.74 | 15.90 | 40.00 | 97.00 | 67.00 | 12.30 |
3-Snoring Pre-Event | 7.00 | 75.00 | 31.31 | 13.80 | 43.00 | 85.00 | 60.60 | 9.89 |
4-1st EVENT | 6.00 | 65.00 | 26.72 | 10.90 | 34.00 | 85.00 | 57.00 | 9.39 |
5-Snoring Post-Event | 4.00 | 56.00 | 24.81 | 10.90 | 40.00 | 78.00 | 59.70 | 9.71 |
6-2nd EVENT | 5.00 | 57.00 | 30.44 | 12.60 | 32.00 | 83.00 | 65.40 | 10.20 |
7-Awakening | 7.00 | 81.00 | 43.11 | 2.19 | 43.00 | 92.00 | 72.01 | 9.88 |
8-End DISE Procedure | 7.00 | 89.00 | 53.26 | 16.18 | 56.00 | 92.00 | 79.42 | 6.40 |
Difference between Contiguous Steps | Mean of MLAEPi | Mean of BIS | t-Statistics | p-Value Adj. |
---|---|---|---|---|
diff t1–t2 | 33.81 | 28.313 | 2.681 | 0.009 |
diff t2–t3 | 12.422 | 6.404 | 5.083 | 0.000 |
diff t3–t4 | 4.596 | 3.515 | 1.198 | 0.233 |
diff t4–t5 | 1.909 | −2.616 | 5.342 | 0.000 |
diff t5–t6 | −5.636 | −5.747 | 0.108 | 0.914 |
diff t6–t7 | −12.667 | −6.606 | −4.431 | 0.999 |
diff t7–t8 | −10.152 | −7.414 | −2.352 | 0.979 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arigliani, M.; Toraldo, D.M.; Ciavolino, E.; Lattante, C.; Conte, L.; Arima, S.; Arigliani, C.; Palumbo, A.; De Benedetto, M. The Use of Middle Latency Auditory Evoked Potentials (MLAEP) as Methodology for Evaluating Sedation Level in Propofol-Drug Induced Sleep Endoscopy (DISE) Procedure. Int. J. Environ. Res. Public Health 2021, 18, 2070. https://doi.org/10.3390/ijerph18042070
Arigliani M, Toraldo DM, Ciavolino E, Lattante C, Conte L, Arima S, Arigliani C, Palumbo A, De Benedetto M. The Use of Middle Latency Auditory Evoked Potentials (MLAEP) as Methodology for Evaluating Sedation Level in Propofol-Drug Induced Sleep Endoscopy (DISE) Procedure. International Journal of Environmental Research and Public Health. 2021; 18(4):2070. https://doi.org/10.3390/ijerph18042070
Chicago/Turabian StyleArigliani, Michele, Domenico M. Toraldo, Enrico Ciavolino, Caterina Lattante, Luana Conte, Serena Arima, Caterina Arigliani, Antonio Palumbo, and Michele De Benedetto. 2021. "The Use of Middle Latency Auditory Evoked Potentials (MLAEP) as Methodology for Evaluating Sedation Level in Propofol-Drug Induced Sleep Endoscopy (DISE) Procedure" International Journal of Environmental Research and Public Health 18, no. 4: 2070. https://doi.org/10.3390/ijerph18042070
APA StyleArigliani, M., Toraldo, D. M., Ciavolino, E., Lattante, C., Conte, L., Arima, S., Arigliani, C., Palumbo, A., & De Benedetto, M. (2021). The Use of Middle Latency Auditory Evoked Potentials (MLAEP) as Methodology for Evaluating Sedation Level in Propofol-Drug Induced Sleep Endoscopy (DISE) Procedure. International Journal of Environmental Research and Public Health, 18(4), 2070. https://doi.org/10.3390/ijerph18042070